Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Biotechnology
  • Brief Communication
  • Published:

Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity

Nature Biotechnologyvolume 36pages239–241 (2018)Cite this article

Subjects

Abstract

We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets.

This is a preview of subscription content,access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deep learning outperforms conventional machine learning for the task of predicting Cpf1 activity based on the target sequence composition.
Figure 2: Consideration of chromatin accessibility significantly improves the prediction of Cpf1 activities at endogenous target sites.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Zetsche, B. et al.Cell163, 759–771 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  2. Zetsche, B. et al.Nat. Biotechnol.35, 31–34 (2017).

    Article CAS PubMed  Google Scholar 

  3. Hur, J.K. et al.Nat. Biotechnol.34, 807–808 (2016).

    Article CAS PubMed  Google Scholar 

  4. Kim, Y. et al.Nat. Biotechnol.34, 808–810 (2016).

    Article CAS PubMed  Google Scholar 

  5. Xu, R. et al.Plant Biotechnol. J.15, 713–717 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Kim, D. et al.Nat. Biotechnol.34, 863–868 (2016).

    Article CAS PubMed  Google Scholar 

  7. Kleinstiver, B.P. et al.Nat. Biotechnol.34, 869–874 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Kim, H.K. et al.Nat. Methods14, 153–159 (2017).

    Article CAS PubMed  Google Scholar 

  9. Doench, J.G. et al.Nat. Biotechnol.34, 184–191 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Lee, C.M., Davis, T.H. & Bao, G.Exp. Physiol.doi:10.1113/EP086043 (2017).

  11. Encode Project Consortium.Nature489, 57–74 (2012).

  12. Chari, R., Yeo, N.C., Chavez, A. & Church, G.M.ACS Synth. Biol.6, 902–904 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Haeussler, M. et al.Genome Biol.17, 148 (2016).

    Article PubMed PubMed Central  Google Scholar 

  14. Yamano, T. et al.Cell165, 949–962 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  15. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L.Genome Biol.10, R25 (2009).

    Article PubMed PubMed Central  Google Scholar 

  16. LeCun, Y., Bengio, Y. & Hinton, G.Nature521, 436–444 (2015).

    Article CAS PubMed  Google Scholar 

  17. Goodfellow, I., Bengio, Y. & Courville, A.Deep Learning (MIT Press, 2016).

  18. Min, S., Lee, B. & Yoon, S.Brief. Bioinform.18, 851–869 (2017).

    PubMed  Google Scholar 

  19. Alipanahi, B., Delong, A., Weirauch, M.T. & Frey, B.J.Nat. Biotechnol.33, 831–838 (2015).

    Article CAS PubMed  Google Scholar 

  20. Kelley, D.R., Snoek, J. & Rinn, J.L.Genome Res.26, 990–999 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Doench, J.G. et al.Nat. Biotechnol.32, 1262–1267 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S.Science343, 80–84 (2014).

    Article CAS PubMed  Google Scholar 

  23. Chari, R., Mali, P., Moosburner, M. & Church, G.M.Nat. Methods12, 823–826 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Moreno-Mateos, M.A. et al.Nat. Methods12, 982–988 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Xu, H. et al.Genome Res.25, 1147–1157 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Wong, N., Liu, W. & Wang, X.Genome Biol.16, 218 (2015).

    Article PubMed PubMed Central  Google Scholar 

  27. Bergstra, J. et al. in.Proc. 9th Python Sci. Conf. 3–10 (2010).

  28. Kingma, D.P. & Ba, J. Preprint athttps://arxiv.org/abs/1412.6980 (2014).

  29. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.J. Mach. Learn. Res.15, 1929–1958 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors thank E.-S. Lee for proofreading and R. Gopalappa, N. Kim, S. Park, and J. Park for assisting in sample preparation. This work was supported in part by the National Research Foundation of Korea (grants 2017R1A2B3004198 (H.K.), 2017M3A9B4062403 (H.K.), 2013M3A9B4076544 (H.K.), 2014M3C9A3063541 (S.Y.)), Brain Korea 21 Plus Project (Yonsei University College of Medicine), Brain Korea 21 Plus Project (SNU ECE) in 2017, Institute for Basic Science (IBS; IBS-R026-D1), and the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (grants HI17C0676 (H.K.), and HI16C1012 (H.K.)).

Author information

Author notes
  1. Hui Kwon Kim and Seonwoo Min: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea

    Hui Kwon Kim, Myungjae Song, Soobin Jung, Jae Woo Choi, Younggwang Kim, Sangeun Lee & Hyongbum (Henry) Kim

  2. Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea

    Hui Kwon Kim, Soobin Jung, Younggwang Kim, Sangeun Lee & Hyongbum (Henry) Kim

  3. Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea

    Seonwoo Min & Sungroh Yoon

  4. Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea

    Myungjae Song

  5. Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

    Jae Woo Choi & Hyongbum (Henry) Kim

  6. Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea

    Sungroh Yoon

  7. Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea

    Hyongbum (Henry) Kim

  8. Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea

    Hyongbum (Henry) Kim

Authors
  1. Hui Kwon Kim

    You can also search for this author inPubMed Google Scholar

  2. Seonwoo Min

    You can also search for this author inPubMed Google Scholar

  3. Myungjae Song

    You can also search for this author inPubMed Google Scholar

  4. Soobin Jung

    You can also search for this author inPubMed Google Scholar

  5. Jae Woo Choi

    You can also search for this author inPubMed Google Scholar

  6. Younggwang Kim

    You can also search for this author inPubMed Google Scholar

  7. Sangeun Lee

    You can also search for this author inPubMed Google Scholar

  8. Sungroh Yoon

    You can also search for this author inPubMed Google Scholar

  9. Hyongbum (Henry) Kim

    You can also search for this author inPubMed Google Scholar

Contributions

H.K.K., M.S., and S.J. performed experiments to build data sets of AsCpf1 indel frequencies. S.M. and S.Y. developed the framework, and carried out the model training and computational validation. J.W.C. performed bioinformatic analyses. Y.K. and S.L. made substantial contributions to the performance of the experiments including cell culture and deep-sequencing. H.H.K. conceived and designed the study. H.K.K., S.M., S.Y., and H.H.K. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence toSungroh Yoon orHyongbum (Henry) Kim.

Ethics declarations

Competing interests

Yonsei University and Seoul National University have filed a patent based on this work, in which H.K.K., S.M., M.S., S.J., S.Y., and H.K. are co-inventors.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Note (PDF 2816 kb)

Supplementary Tables

All tables that are included together, Supplementary tables 2, 4, and 6 (PDF 521 kb)

Supplementary Table 1

Source data used for this study. (XLSX 2463 kb)

Supplementary Table 3

Model selection results of Seq-deepCpf1 (XLSX 19 kb)

Supplementary Table 5

Oligonucleotides used in this study (XLSX 40 kb)

Supplementary Table 7

Confidence intervals for the result values (XLSX 15 kb)

Supplementary Code

The source code of Seq-deepCpf1 and DeepCpf1 (ZIP 750 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Min, S., Song, M.et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity.Nat Biotechnol36, 239–241 (2018). https://doi.org/10.1038/nbt.4061

Download citation

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2025 Movatter.jp