Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Biotechnology
  • Brief Communication
  • Published:

DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins

Nature Biotechnologyvolume 33pages1162–1164 (2015)Cite this article

Subjects

Abstract

Editing plant genomes without introducing foreign DNA into cells may alleviate regulatory concerns related to genetically modified plants. We transfected preassembled complexes of purified Cas9 protein and guide RNA into plant protoplasts ofArabidopsis thaliana, tobacco, lettuce and rice and achieved targeted mutagenesis in regenerated plants at frequencies of up to 46%. The targeted sites contained germline-transmissible small insertions or deletions that are indistinguishable from naturally occurring genetic variation.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RGEN RNP-mediated gene disruption in plant protoplastsof Nicotiana attenuata, Arabidopsis thaliana andOryza sativa.
Figure 2: Targeted gene knockout in lettuce using an RGEN RNP.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Li, J.F. et al.Nat. Biotechnol.31, 688–691 (2013).

    Article CAS  Google Scholar 

  2. Shan, Q. et al.Nat. Biotechnol.31, 686–688 (2013).

    Article CAS  Google Scholar 

  3. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D. & Kamoun, S.Nat. Biotechnol.31, 691–693 (2013).

    Article CAS  Google Scholar 

  4. Kim, H. & Kim, J.S.Nat. Rev. Genet.15, 321–334 (2014).

    Article CAS  Google Scholar 

  5. Jones, H.D.Nat. Plants1, 14011 (2015).

    Article  Google Scholar 

  6. Kim, S., Kim, D., Cho, S.W., Kim, J. & Kim, J.S.Genome Res.24, 1012–1019 (2014).

    Article CAS  Google Scholar 

  7. Cho, S.W., Lee, J., Carroll, D., Kim, J.S. & Lee, J.Genetics195, 1177–1180 (2013).

    Article CAS  Google Scholar 

  8. Sung, Y.H. et al.Genome Res.24, 125–131 (2014).

    Article CAS  Google Scholar 

  9. Kim, J.M., Kim, D., Kim, S. & Kim, J.S.Nat. Commun.5, 3157 (2014).

    Article  Google Scholar 

  10. Kim, H.J., Lee, H.J., Kim, H., Cho, S.W. & Kim, J.S.Genome Res.19, 1279–1288 (2009).

    Article CAS  Google Scholar 

  11. Lee, H.J., Kim, E. & Kim, J.S.Genome Res.20, 81–89 (2010).

    Article CAS  Google Scholar 

  12. Bae, S., Park, J. & Kim, J.S.Bioinformatics30, 1473–1475 (2014).

    Article CAS  Google Scholar 

  13. Cho, S.W. et al.Genome Res.24, 132–141 (2014).

    Article CAS  Google Scholar 

  14. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S.Nat. Biotechnol.31, 230–232 (2013).

    Article CAS  Google Scholar 

  15. Choe, S. et al.Plant Physiol.130, 1506–1515 (2002).

    Article CAS  Google Scholar 

  16. Kim, D. et al.Nat. Methods12, 237–243 (2015).

    Article CAS  Google Scholar 

  17. Kanchiswamy, C.N., Malnoy, M., Velasco, R., Kim, J.S. & Viola, R.Trends Biotechnol.33, 489–491 (2015).

    Article CAS  Google Scholar 

  18. Yoo, S.D., Cho, Y.H. & Sheen, J.Nat. Protoc.2, 1565–1572 (2007).

    Article CAS  Google Scholar 

  19. Zhang, Y. et al.Plant Methods7, 30 (2011).

    Article CAS  Google Scholar 

  20. Lelivelt, C.L. et al.Plant Mol. Biol.58, 763–774 (2005).

    Article CAS  Google Scholar 

  21. Frearson, E.M., Power, J.B. & Cocking, E.C.Dev. Biol.33, 130–137 (1973).

    Article CAS  Google Scholar 

  22. Menczel, L., Nagy, F., Kiss, Z.R. & Maliga, P.Theor. Appl. Genet.59, 191–195 (1981).

    Article CAS  Google Scholar 

  23. Gamborg, O.L., Miller, R.A. & Ojima, K.Exp. Cell Res.50, 151–158 (1968).

    Article CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Institute for Basic Science (IBS-R021-D1) and the Next-Generation BioGreen21 Program (PJ01104501 to S.C. and PJ01104502 to S.I.K.).

Author information

Author notes
  1. Seung Woo Cho

    Present address: Present address: Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.,

  2. Je Wook Woo and Jungeun Kim: These authors contributed equally to this work.

Authors and Affiliations

  1. Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

    Je Wook Woo, Soon Il Kwon & Sunghwa Choe

  2. Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea

    Jungeun Kim, Hyeran Kim, Sang-Gyu Kim, Sang-Tae Kim & Jin-Soo Kim

  3. Department of Chemistry, Seoul National University, Seoul, South Korea

    Jungeun Kim, Seung Woo Cho & Jin-Soo Kim

  4. School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea

    Claudia Corvalán & Sunghwa Choe

  5. Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea

    Sunghwa Choe

Authors
  1. Je Wook Woo
  2. Jungeun Kim
  3. Soon Il Kwon
  4. Claudia Corvalán
  5. Seung Woo Cho
  6. Hyeran Kim
  7. Sang-Gyu Kim
  8. Sang-Tae Kim
  9. Sunghwa Choe
  10. Jin-Soo Kim

Contributions

J.-S.K. and S.C. supervised the research. J.W.W., S.I.K. and C.C. carried out plant regeneration. J.K., S.W.C. H.K., S.-G.K. and S.-T.K. performed mutation analysis.

Corresponding authors

Correspondence toSunghwa Choe orJin-Soo Kim.

Ethics declarations

Competing interests

J.-S.K. and S.C. are co-inventors on a patent application covering the genome editing method described in this manuscript.

Integrated supplementary information

Supplementary Figure 1 Analysis of off-target effects.

Mutation frequencies at on-target and potential off-target sites of the PHYB and BRI1 gene-specific sgRNAs were measured by targeted deep sequencing. About ~80,000 paired-end reads per site were obtained to calculate the indel rate.

Supplementary Figure 2 Partial nucleotide and amino acid sequences of LsBIN2.

Underscored and boxed letters represent the sequences corresponding to degenerate primers and sgRNA, respectively.

Supplementary Figure 3 Regeneration of plantlets from RGEN RNP-transfected protoplast inL. sativa.

Protoplast division, callus formation and shoot regeneration from RGEN RNP-transfected protoplasts in the lettuce. (a) Cell division after 5 days of protoplast culture (Bar = 100 μm). (b) A multicellular colony of protoplast (Bar = 100 μm). (c) Agarose-embedded colonies after 4 weeks of protoplast culture. (d) Callus formation from protoplast-derived colonies (e,f) Organogenesis and regenerated shoots from protoplast-derived calli (bar = 5 mm).

Supplementary Figure 4 Targeted deep sequencing of mutant calli.

Genotypes of the mutant calli were confirmed by Illumina Miseq. Sequence of each allele and the number of sequencing reads were analyzed. (A1), allele1. (A2), allele2.

Supplementary Figure 5 Plant regeneration from RGEN RNP-transfected protoplasts inL. sativa.

(a-c) Organogenesis and shoot formation from protoplast-derived calli; wild type (#28), bi-allelic/heterozygote (#24), bi-allelic/homozygote (#30). (d) In vitro shoot proliferation and development. (e) Elongation and growth of shoots in MS culture medium free of PGR. (f) Root induction onto elongated shoots. (g) Acclimatization of plantlets. (h,i) Regenerated whole plants.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 1173 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, J., Kim, J., Kwon, S.et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins.Nat Biotechnol33, 1162–1164 (2015). https://doi.org/10.1038/nbt.3389

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp