Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Biotechnology
  • Review Article
  • Published:

Detecting and characterizing circular RNAs

Nature Biotechnologyvolume 32pages453–461 (2014)Cite this article

Subjects

Abstract

Circular RNA transcripts were first identified in the early 1990s but knowledge of these species has remained limited, as their study through traditional methods of RNA analysis has been difficult. Now, novel bioinformatic approaches coupled with biochemical enrichment strategies and deep sequencing have allowed comprehensive studies of circular RNA species. Recent studies have revealed thousands of endogenous circular RNAs in mammalian cells, some of which are highly abundant and evolutionarily conserved. Evidence is emerging that some circRNAs might regulate microRNA (miRNA) function, and roles in transcriptional control have also been suggested. Therefore, study of this class of noncoding RNAs has potential implications for therapeutic and research applications. We believe the key future challenge for the field will be to understand the regulation and function of these unusual molecules.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Splicing products and methods for detection.
Figure 2: Sequencing-based methods for identification of exonic circRNAs.
Figure 3: Informatic approach to identifying false-positive backsplices.
Figure 4: A combined biochemical and informatic approach to identify exonic circRNAs in mammalian cells.
Figure 5: Comparison of circRNAs identified by genomic studies.
Figure 6: Possible mechanisms for formation of exonic circRNAs.
Figure 7: Genomic features of circRNAs.

Similar content being viewed by others

ArticleOpen access09 December 2022

References

  1. Nigro, J.M. et al. Scrambled exons.Cell64, 607–613 (1991).

    Article CAS PubMed  Google Scholar 

  2. Cocquerelle, C., Mascrez, B., Hétuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules.FASEB J7, 155–160 (1993).

    Article CAS PubMed  Google Scholar 

  3. Kos, A., Dijkema, R., Arnberg, A.C., van der Meide, P.H. & Schellekens, H. The hepatitis delta (delta) virus possesses a circular RNA.Nature323, 558–560 (1986).

    Article CAS PubMed  Google Scholar 

  4. Sanger, H.L., Klotz, G., Riesner, D., Gross, H.J. & Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures.Proc. Natl. Acad. Sci. USA73, 3852–3856 (1976).

    Article CAS PubMed PubMed Central  Google Scholar 

  5. Hansen, T.B. et al. Natural RNA circles function as efficient microRNA sponges.Nature495, 384–388 (2013).

    Article CAS PubMed  Google Scholar 

  6. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature495, 333–338 (2013).

    Article CAS PubMed  Google Scholar 

  7. Zhang, Y. et al. Circular intronic long noncoding RNAs.Mol. Cell51, 792–806 (2013).

    Article CAS PubMed  Google Scholar 

  8. Gilbert, W. Why genes in pieces?Nature271, 501 (1978).

    Article CAS PubMed  Google Scholar 

  9. Arnberg, A.C., van Ommen, G.J., Grivell, L.A., Van Bruggen, E.F. & Borst, P. Some yeast mitochondrial RNAs are circular.Cell19, 313–319 (1980).

    Article CAS PubMed  Google Scholar 

  10. van der Veen, R. et al. Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro.Cell44, 225–234 (1986).

    Article CAS PubMed  Google Scholar 

  11. Cocquerelle, C., Daubersies, P., Majérus, M.A., Kerckaert, J.P. & Bailleul, B. Splicing with inverted order of exons occurs proximal to large introns.EMBO J.11, 1095–1098 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis.Cell73, 1019–1030 (1993).

    Article CAS PubMed  Google Scholar 

  13. Zaphiropoulos, P.G. Differential expression of cytochrome P450 2C24 transcripts in rat kidney and prostate: evidence indicative of alternative and possibly trans splicing events.Biochem. Biophys. Res. Commun.192, 778–786 (1993).

    Article CAS PubMed  Google Scholar 

  14. Zaphiropoulos, P.G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping.Proc. Natl. Acad. Sci. USA93, 6536–6541 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  15. Caudevilla, C. et al. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver.Proc. Natl. Acad. Sci. USA95, 12185–12190 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Frantz, S.A. et al. Exon repetition in mRNA.Proc. Natl. Acad. Sci. USA96, 5400–5405 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Surono, A. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing.Hum. Mol. Genet.8, 493–500 (1999).

    Article CAS PubMed  Google Scholar 

  18. Rigatti, R. Exon repetition: a major pathway for processing mRNA of some genes is allele-specific.Nucleic Acids Res.32, 441–446 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Cocquet, J., Chong, A., Zhang, G. & Veitia, R.A. Reverse transcriptase template switching and false alternative transcripts.Genomics88, 127–131 (2006).

    Article CAS PubMed  Google Scholar 

  20. McManus, C.J., Duff, M.O., Eipper-Mains, J. & Graveley, B.R. Global analysis of trans-splicing inDrosophila.Proc. Natl. Acad. Sci. USA107, 12975–12979 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Tabak, H.F. et al. Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis.Nucleic Acids Res.16, 6597–6605 (1988).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Hurowitz, E.H. & Brown, P.O. Genome-wide analysis of mRNA lengths inSaccharomyces cerevisiae.Genome Biol.5, R2 (2003).

    Article PubMed PubMed Central  Google Scholar 

  23. Jeck, W.R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA19, 141–157 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Schindler, C.W., Krolewski, J.J. & Rush, M.G. Selective trapping of circular double-stranded DNA molecules in solidifying agarose.Plasmid7, 263–270 (1982).

    Article CAS PubMed  Google Scholar 

  25. Hansen, T.B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA.EMBO J.30, 4414–4422 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Suzuki, H. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing.Nucleic Acids Res.34, e63 (2006).

    Article PubMed PubMed Central  Google Scholar 

  27. Salzman, J., Gawad, C., Wang, P.L., Lacayo, N. & Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types.PLoS ONE7, e30733 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Gao, K., Masuda, A., Matsuura, T. & Ohno, K. Human branch point consensus sequence is yUnAy.Nucleic Acids Res.36, 2257–2267 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Salzman, J., Chen, R.E., Olsen, M.N., Wang, P.L. & Brown, P.O. Cell-type specific features of circular RNA expression.PLoS Genet.9, e1003777 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Fonseca, N.A., Rung, J., Brazma, A. & Marioni, J.C. Tools for mapping high-throughput sequencing data.Bioinformatics28, 3169–3177 (2012).

    Article CAS PubMed  Google Scholar 

  31. Danan, M., Schwartz, S., Edelheit, S. & Sorek, R. Transcriptome-wide discovery of circular RNAs in Archaea.Nucleic Acids Res.40, 3131–3142 (2012).

    Article CAS PubMed  Google Scholar 

  32. Wang, K. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery.Nucleic Acids Res.38, e178 (2010).

    Article PubMed PubMed Central  Google Scholar 

  33. Brown, J.A., Valenstein, M.L., Yario, T.A., Tycowski, K.T. & Steitz, J.A. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs.Proc. Natl. Acad. Sci. USA109, 19202–19207 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Wilusz, J.E. et al. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails.Genes Dev.26, 2392–2407 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control.Nature473, 337–342 (2011).

    Article PubMed  Google Scholar 

  36. Umekage, S., Uehara, T., Fujita, Y., Suzuki, H. & Kikuchi, Y. inInnovations in Biotechnology (ed. Agbo, E.C.) 75–90.http://cdn.intechopen.com/pdfs/28708/InTech-In_vivo_circular_rna_expression_by_the_permuted_intron_exon_method.pdf (InTech, 2012).

    Google Scholar 

  37. Haupenthal, J., Baehr, C., Kiermayer, S., Zeuzem, S. & Piiper, A. Inhibition of RNAse A family enzymes prevents degradation and loss of silencing activity of siRNAs in serum.Biochem. Pharmacol.71, 702–710 (2006).

    Article CAS PubMed  Google Scholar 

  38. Li, X.F. & Lytton, J. A circularized sodium-calcium exchanger exon 2 transcript.J. Biol. Chem.274, 8153–8160 (1999).

    Article CAS PubMed  Google Scholar 

  39. Dubin, R.A., Kazmi, M.A. & Ostrer, H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript.Gene167, 245–248 (1995).

    Article CAS PubMed  Google Scholar 

  40. Burd, C.E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk.PLoS Genet.6, e1001233 (2010).

    Article PubMed PubMed Central  Google Scholar 

  41. Pasman, Z., Been, M.D. & Garcia-Blanco, M.A. Exon circularization in mammalian nuclear extracts.RNA2, 603–610 (1996).

    CAS PubMed PubMed Central  Google Scholar 

  42. Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells.Nat. Methods4, 721–726 (2007).

    Article CAS PubMed  Google Scholar 

  43. Franco-Zorrilla, J.M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity.Nat. Genet.39, 1033–1037 (2007).

    Article CAS PubMed  Google Scholar 

  44. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.Nature465, 1033–1038 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Hansen, T.B., Kjems, J. & Damgaard, C.K. Circular RNA and miR-7 in Cancer.Cancer Res.73, 5609–5612 (2013).

    Article CAS PubMed  Google Scholar 

  46. Liu, Y. et al. Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells.Int. J. Biochem. Cell Biol.45, 2643–2650 (2013).

    Article CAS PubMed  Google Scholar 

  47. Chao, C.W., Chan, D.C., Kuo, A. & Leder, P. The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis.Mol. Med.4, 614–628 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Surono, A. et al. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing.Hum. Mol. Genet.8, 493–500 (1999).

    Article CAS PubMed  Google Scholar 

  49. Gualandi, F. Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion.J. Med. Genet.40, e100 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Spitali, P. & Aartsma-Rus, A. Splice modulating therapies for human disease.Cell148, 1085–1088 (2012).

    Article CAS PubMed  Google Scholar 

  51. Romeo, T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB.Mol. Microbiol.29, 1321–1330 (1998).

    Article CAS PubMed  Google Scholar 

  52. Chen, C.Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs.Science268, 415–417 (1995).

    Article CAS PubMed  Google Scholar 

  53. Zaphiropoulos, P.G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis.Mol. Cell. Biol.17, 2985–2993 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge W. Marzluff for his assistance in preparing this manuscript, as well as funding from the National Institute on Aging, grants F30 AG041567–3 and RO1 AG024379–11.

Author information

Authors and Affiliations

  1. Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

    William R Jeck & Norman E Sharpless

  2. Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

    Norman E Sharpless

  3. The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

    Norman E Sharpless

Authors
  1. William R Jeck

    You can also search for this author inPubMed Google Scholar

  2. Norman E Sharpless

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toNorman E Sharpless.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeck, W., Sharpless, N. Detecting and characterizing circular RNAs.Nat Biotechnol32, 453–461 (2014). https://doi.org/10.1038/nbt.2890

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp