Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

A global map of travel time to cities to assess inequalities in accessibility in 2015

Naturevolume 553pages333–336 (2018)Cite this article

Subjects

Abstract

The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of ‘leaving no one behind’ established by the Sustainable Development Goals of the United Nations1. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago2, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global map of travel time to cities for 2015.
Figure 2: Global disparities in accessibility.
Figure 3: Relating accessibility to human wellbeing.

Similar content being viewed by others

References

  1. United Nations.Transforming our World: The 2030 Agenda for Sustainable Development. (United Nations Department of Economic and Social Affairs, 2015)

  2. Nelson, A. Travel time to major cities: a global map of accessibility.http://forobs.jrc.ec.europa.eu/products/gam/ (Global Environment Monitoring Unit, Joint Research Centre of the European Commission, 2008)

  3. Young, A. Inequality, the urban–rural gap and migration.Q. J. Econ.128, 1727–1785 (2013)

    Article  Google Scholar 

  4. Fotso, J.-C. Urban–rural differentials in child malnutrition: trends and socioeconomic correlates in sub-Saharan Africa.Health Place13, 205–223 (2007)

    Article  Google Scholar 

  5. Bloom, D. E., Canning, D. & Fink, G. Urbanization and the wealth of nations.Science319, 772–775 (2008)

    Article CAS ADS  Google Scholar 

  6. Frelat, R. et al. Drivers of household food availability in sub-Saharan Africa based on big data from small farms.Proc. Natl Acad. Sci. USA113, 458–463 (2016)

    Article CAS ADS  Google Scholar 

  7. Pesaresi, M. & Freire, S. GHS settlement grid following the REGIO model 2014 in application to GHSL landsat and CIESIN GPW v4-multitemporal (1975–1990–2000–2015) Data Sets.http://data.europa.eu/89h/jrc-ghsl-ghs_smod_pop_globe_r2016a (Joint Research Centre of the European Commission, 2016)

  8. Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods.PLoS ONE6, e22722 (2011)

    Article CAS ADS  Google Scholar 

  9. Schmitz, C. et al. Trading more food: implications for land use, greenhouse gas emissions, and the food system.Glob. Environ. Change22, 189–209 (2012)

    Article  Google Scholar 

  10. Gilbert, M. et al. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia.Nat. Commun.5, 4116 (2014)

    Article CAS ADS  Google Scholar 

  11. Bhatt, S. et al. The effect of malaria control onPlasmodium falciparum in Africa between 2000 and 2015.Nature526, 207–211 (2015)

    Article CAS ADS  Google Scholar 

  12. Dijkstra, E. W. A note on two problems in connexion with graphs.Numer. Math.1, 269–271 (1959)

    Article MathSciNet  Google Scholar 

  13. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone.Remote Sens. Environ.202, 18–27 (2017)

    Article ADS  Google Scholar 

  14. Gaughan, A. E., Stevens, F. R., Linard, C., Jia, P. & Tatem, A. J. High resolution population distribution maps for Southeast Asia in 2010 and 2015.PLoS ONE8, e55882 (2013)

    Article CAS ADS  Google Scholar 

  15. Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population distribution, settlement patterns and accessibility across Africa in 2010.PLoS ONE7, e31743 (2012)

    Article CAS ADS  Google Scholar 

  16. Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020.Sci. Data2, 150045 (2015)

    Article  Google Scholar 

  17. Center for International Earth Science Information Network and Centro Internacional de Agricultura Tropical. Gridded Population of the World, Version 3 (GPWv3): Population Density Grids.http://dx.doi.org/10.7927/H4ST7MRB (NASA Socioeconomic Data and Applications Center, 2005)

  18. World Bank. GDP (current US$).http://data.worldbank.org/indicator/NY.GDP.MKTP.CD (2016)

  19. Center for International Earth Science Information Network, Columbia University Institute for Demographic Research, International Food Policy Research Institute, The World Bank & Centro Internacional de Agricultura Tropical. Global Rural–Urban Mapping Project, Version 1 (GRUMPv1): Settlement Points Revision 01.https://doi.org/10.7927/H4BC3WG1 (NASA Socioeconomic Data and Applications Center, 2016)

  20. United Nations.World Urbanization Prospects: The 2014 Revision, Highlights (United Nations Department of Economic and Social Affairs, 2014)

  21. Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many Natural World Heritage Sites.Biol. Conserv.206, 47–55 (2017)

    Article  Google Scholar 

  22. Ibisch, P. L. et al. A global map of roadless areas and their conservation status.Science354, 1423–1427 (2016)

    Article CAS ADS  Google Scholar 

  23. Laurance, W. F. et al. A global strategy for road building.Nature513, 229–232 (2014)

    Article CAS ADS  Google Scholar 

  24. Laurance, W. F. & Arrea, I. B. Roads to riches or ruin?Science358, 442–444 (2017)

    Article CAS ADS  Google Scholar 

  25. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change.Science342, 850–853 (2013)

    Article CAS ADS  Google Scholar 

  26. Central Intelligence Agency, Office of Geographic and Cartographic Research. World Data Bank II: North America, South America, Europe, Africa, Asia.https://doi.org/10.3886/ICPSR08376.v1 (Inter-university Consortium for Political and Social Research, 2000)

  27. Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data.Eos (Washington DC)89, 93–94 (2008)

    ADS  Google Scholar 

  28. National Imagery and Mapping Agency. Vector Map Level 0 (VMAP0).http://www.mapability.com/info/vmap0_download.html (mapAbility, 1997)

  29. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes.Nature540, 418–422 (2016)

    Article CAS ADS  Google Scholar 

  30. Walbridge, S.Assessing Ship Movements using Volunteered Geographic Information, MA Thesis, Univ. California, Santa Barbara, (2013)

  31. Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets.Remote Sens. Environ.114, 168–182 (2010)

    Article ADS  Google Scholar 

  32. Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010).https://explorer.earthengine.google.com/#detail/USGS%2FGMTED2010 (US Geological Survey, 2011)

  33. Wehrlin, J. P. & Hallén, J. Linear decrease in. VO2max and performance with increasing altitude in endurance athletes. Eur.J. Appl. Physiol.96, 404–412 (2006)

    Article  Google Scholar 

  34. Tobler, W.Three Presentations on Geographical Analysis and Modeling: Non- Isotropic Geographic Modeling; Speculations on the Geometry of Geography; and Global Spatial Analysis. Technical Report 93-1. (National Center for Geographic Information and Analysis, 1993)

  35. Google Earth Engine Developers. Cumulative Cost Mapping.https://developers.google.com/earth-engine/image_cumulative_cost (2017)

  36. van Etten, J. R package gdistance: distances and routes on geographical grids.J. Stat. Softw.76, 1–21 (2017)

    Article ADS  Google Scholar 

  37. Chambers, J. M ., Cleveland, W. S ., Kleiner, B. & Tukey, P. A.Graphical Methods for Data Analysis (Wadsworth International Group, 1983)

Download references

Acknowledgements

We thank J. C. Alonso, G. Pacheco, E. Brett, A. Arenzana, and B. A. Laken for the development ofhttp://roadlessforest.eu/map.html and D. Pfeffer and K. Twohig for formatting of the figures and references. Funding was provided by a Google Earth Engine Research Award entitled “Developing and validating an online accessibility mapping tool powered by Google Earth Engine” and the “Roadless Forest” project “Making efficient use of EU climate finance: Using roads as an early performance indicator for REDD+ projects” (European Parliament/European Commission Directorate General for Climate Action).

Author information

Authors and Affiliations

  1. Nuffield Department of Medicine, Malaria Atlas Project, Big Data Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK

    D. J. Weiss, H. S. Gibson, U. Dalrymple, J. Rozier, T. C. D. Lucas, R. E. Howes, L. S. Tusting, S. Y. Kang, E. Cameron, D. Bisanzio, K. E. Battle & P. W. Gething

  2. Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands

    A. Nelson

  3. European Commission, Joint Research Centre, Unit D6 Knowledge for Sustainable Development and Food Security, Via Fermi 2749, Ispra, 21027, Varese, Italy

    W. Temperley & S. Peedell

  4. Google Inc., 1600 Amphitheatre Parkway, Mountain View, California, 94043, USA

    A. Lieber, M. Hancher & E. Poyart

  5. Vizzuality, Office D, Dales Brewery, Gwydir Street, Cambridge, CB1 2LJ, UK

    S. Belchior

  6. Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Avenue, Suite 600, Seattle, 98121, Washington, USA

    N. Fullman

  7. Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St Lucia, 4072, Queensland, Australia

    B. Mappin

  8. Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK

    S. Bhatt

Authors
  1. D. J. Weiss

    You can also search for this author inPubMed Google Scholar

  2. A. Nelson

    You can also search for this author inPubMed Google Scholar

  3. H. S. Gibson

    You can also search for this author inPubMed Google Scholar

  4. W. Temperley

    You can also search for this author inPubMed Google Scholar

  5. S. Peedell

    You can also search for this author inPubMed Google Scholar

  6. A. Lieber

    You can also search for this author inPubMed Google Scholar

  7. M. Hancher

    You can also search for this author inPubMed Google Scholar

  8. E. Poyart

    You can also search for this author inPubMed Google Scholar

  9. S. Belchior

    You can also search for this author inPubMed Google Scholar

  10. N. Fullman

    You can also search for this author inPubMed Google Scholar

  11. B. Mappin

    You can also search for this author inPubMed Google Scholar

  12. U. Dalrymple

    You can also search for this author inPubMed Google Scholar

  13. J. Rozier

    You can also search for this author inPubMed Google Scholar

  14. T. C. D. Lucas

    You can also search for this author inPubMed Google Scholar

  15. R. E. Howes

    You can also search for this author inPubMed Google Scholar

  16. L. S. Tusting

    You can also search for this author inPubMed Google Scholar

  17. S. Y. Kang

    You can also search for this author inPubMed Google Scholar

  18. E. Cameron

    You can also search for this author inPubMed Google Scholar

  19. D. Bisanzio

    You can also search for this author inPubMed Google Scholar

  20. K. E. Battle

    You can also search for this author inPubMed Google Scholar

  21. S. Bhatt

    You can also search for this author inPubMed Google Scholar

  22. P. W. Gething

    You can also search for this author inPubMed Google Scholar

Contributions

D.J.W., A.N., S.P. and P.W.G. came up with the research concept and designed experiments. D.J.W. drafted the manuscript. D.J.W., A.N., H.S.G., W.T., A.L., B.M. and U.D. prepared and supplied data. D.J.W. conducted the analyses. M.H. and E.P. implemented algorithms. D.J.W. and A.L. coordinated the project. A.N., H.S.G., N.F., T.C.D.L., R.E.H., K.E.B. and S.Bh. supported the analyses and interpretations. J.R. and S.Be. produced visualizations. All authors discussed the results and revised the final manuscript.

Corresponding author

Correspondence toD. J. Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer InformationNature thanks J. Birkmann and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Accessibility and forest loss in Brazil.

a,b, Maps of travel time to urban centres (a) and forest loss (b) from 2000 to 2015. Forest loss is defined as the fraction of land area identified as forest in 2000 that experienced any loss in forest density (but not necessarily total removal) by 2015.

Extended Data Figure 2 Accessibility and forest loss in Indonesia.

a,b, Maps of travel time to urban centres (a) and forest loss (b) from 2000 to 2015. Forest loss is defined as the fraction of land area identified as forest in 2000 that experienced any loss in forest density (but not necessarily total removal) by 2015.

Extended Data Figure 3 Forest loss relative to accessibility.

a,b, The distribution of the population and land area by accessibility category in Brazil (a) and Indonesia (b).c, The percentage of area that experienced any loss in forest density since 2000 for each country and the global average.

Extended Data Figure 4 Travel time relative to percentage of urban population.

Mean national accessibility for countries with populations over ten million relative to the percentage of urban population as estimated by the UN, colour-coded by World Bank income category.

Supplementary information

Supplementary Tables

This file contains Supplementary Tables 1-2. Supplementary Table 1, national travel times by population, shows cumulative proportion of national population by travel time, binned in 30-minute increments. Supplementary Table 2, national travel times by area, shows cumulative proportion of national land area by travel time, binned in 30-minute increments. (XLS 239 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, D., Nelson, A., Gibson, H.et al. A global map of travel time to cities to assess inequalities in accessibility in 2015.Nature553, 333–336 (2018). https://doi.org/10.1038/nature25181

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

The roads to equality

Resources that sustain human wellbeing, such as education, jobs and health services, are distributed unequally, with higher concentrations in dense urban areas. Increasing access to such opportunities and services is a key factor in the advancement of fair and sustainable development. Integrating multiple large data sources for road and city geography, Daniel Weiss and colleagues have created a high-resolution global map that quantifies travel time to cities in the year 2015. This map provides a detailed view of the heterogeneity in accessibility to cities around the world, serving not just as a potential indicator for development but also as an input for future models in areas such as conservation biology.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp