Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

Naturevolume 505pages87–91 (2014)Cite this article

Subjects

Abstract

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians1,2,3, there is no consensus with regard to which specific Old World populations they are closest to4,5,6,7,8. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal’ta in south-central Siberia9, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers10,11,12, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages5. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians2,13. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago14, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample locations and MA-1 genetic affinities.
Figure 2: Admixture graph for MA-1 and 16 complete genomes.
Figure 3: Evidence of gene flow from a population related to MA-1 and western Eurasians into Native American ancestors.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Sequence Read Archive

Data deposits

Sequence data for MA-1 and AG-2, produced in this study, are available for download through NCBI SRA accession numberSRP029640. Data from the Illumina genotyping analysis generated in this study are available through GEO Series accession numberGSE50727; PLINK files can be accessed fromhttp://www.ebc.ee/free_data. In addition, the above data and alignments for the published modern genomes, Denisova genome, Tianyuan individual and the two ancient genomes are available athttp://www.cbs.dtu.dk/suppl/malta. Raw reads and alignments for the four modern genomes sequenced in this study are available for demographic research under data access agreement with E.W.

References

  1. Turner, C. G. Advances in the dental search for native american origins.Acta Anthropogenet.8, 23–78 (1984)

    PubMed  Google Scholar 

  2. Hubbe, M., Harvati, K. & Neves, W. Paleoamerican morphology in the context of European and East Asian Pleistocene variation: implications for human dispersion into the New World.Am. J. Phys. Anthropol.144, 442–453 (2011)

    Article PubMed  Google Scholar 

  3. Schurr, T. The peopling of the New World: perspectives from molecular anthropology.Annu. Rev. Anthropol.33, 551–583 (2004)

    Article  Google Scholar 

  4. O’Rourke, D. H. & Raff, J. A. The human genetic history of the Americas: the final frontier.Curr. Biol.20, R202–R207 (2010)

    Article PubMed CAS  Google Scholar 

  5. Lell, J. T. et al. The dual origin and siberian affinities of native american Y chromosomes.Am. J. Hum. Genet.70, 192–206 (2002)

    Article CAS PubMed  Google Scholar 

  6. Starikovskaya, E. B. et al. Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of Native American haplogroups.Ann. Hum. Genet.69, 67–89 (2005)

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Dulik, M. C. et al. Mitochondrial DNA and Y chromosome variation provides evidence for a recent common ancestry between Native American and Indigenous Altaians.Am. J. Hum. Genet.90, 229–246 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Regueiro, M., Alvarez, J., Rowold, D. & Herrera, R. J. On the origins, rapid expansion and genetic diversity of Native Americans from hunting-gatherers to agriculturalists.Am. J. Phys. Anthropol.150, 333–348 (2013)

    Article PubMed  Google Scholar 

  9. Gerasimov, M. M. inThe Archaeology and Geomorphology of Northern Asia: Selected Works 5–32 (University of Toronto Press, 1964)

    Google Scholar 

  10. Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers.Science326, 137–140 (2009)

    Article ADS CAS PubMed  Google Scholar 

  11. Malmström, H. et al. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians.Curr. Biol.19, 1758–1762 (2009)

    Article CAS PubMed  Google Scholar 

  12. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes.Curr. Biol.23, 553–559 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Owsley, D. W. & Jantz, R. L. inClaiming the Stones-Naming the Bones: Cultural Property and the Negotiation of National and Ethnic Identity (Getty Research Institute, 2002)

    Google Scholar 

  14. Astakhov, S. N.Paleolit Eniseia: Paleoliticheskie Stoianki Afontovoi Gore v G. Krasnoiarske (Evropaiskii Dom, 1999)

    Google Scholar 

  15. Gamble, C. Interaction and alliance in Palaeolithic society.Man (Lond)17, 92–107 (1982)

    Google Scholar 

  16. Abramova, Z.L’art Paléolithique d’Europe Orientale et de Sibérie (Jérôme Millon, 1995)

    Google Scholar 

  17. White, R. The women of Brassempouy: a century of research and interpretation.J. Archaeol. Method and Theory13, 250–303 (2006)

    Article ADS  Google Scholar 

  18. Hansen, A. J., Willerslev, E., Wiuf, C., Mourier, T. & Arctander, P. Statistical evidence for miscoding lesions in ancient DNA templates.Mol. Biol. Evol.18, 262–265 (2001)

    Article CAS PubMed  Google Scholar 

  19. Reich, D. et al. Reconstructing Native American population history.Nature488, 370–374 (2012)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  20. Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)

    Article PubMed PubMed Central  Google Scholar 

  21. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data.PLoS Genet.8, e1002967 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual.Science338, 222–226 (2012)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  23. Green, R. E. et al. A draft sequence of the Neandertal genome.Science328, 710–722 (2010)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  24. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data.PLoS Genet.5, e1000695 (2009)

    Article PubMed PubMed Central CAS  Google Scholar 

  25. Wall, J. D. et al. Genetic variation in Native Americans, inferred from latino SNP and resequencing data.Mol. Biol. Evol.28, 2231–2237 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.Proc. Natl Acad. Sci. USA110, 2223–2227 (2013)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  27. Lipson, M. et al. Efficient moment-based inference of admixture parameters and sources of gene flow.Mol. Biol. Evol. (2013)

  28. Goebel, T. Pleistocene human colonization of siberia and peopling of the Americas: an ecological approach.Evol. Anthropol.8, 208–227 (1999)

    Article  Google Scholar 

  29. Brown, M. D. et al. mtDNA haplogroup X: an ancient link between Europe/Western Asia and North America?Am. J. Hum. Genet.63, 1852–1861 (1998)

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Bradley, B. & Stanford, D. The North Atlantic ice-edge corridor: a possible Palaeolithic route to the New World.World Archaeol.36, 459–478 (2004)

    Article  Google Scholar 

  31. Stafford, T. W., Jr, Jull, A. J. T., Brendel, K., Duhamel, R. & Donahue, D. Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis.Radiocarbon29, 24–44 (1987)

    Article CAS  Google Scholar 

  32. Stafford, T. W., Jr, Brendel, K. & Duhamel, R. Radiocarbon,13C and15N analysis of fossil bone: removal of humates with XAD-2 resin.Geochim. Cosmochim. Acta52, 2257–2267 (1988)

    Article ADS CAS  Google Scholar 

  33. Stafford, T. W., Jr, Hare, P. E., Currie, L., Jull, A. J. T. & Donahue, D. Accelerator radiocarbon dating at the molecular level.J. Archaeol. Sci.18, 35–72 (1991)

    Article  Google Scholar 

  34. Ramsey, C. B. Bayesian analysis of radiocarbon dates.Radiocarbon51, 337–360 (2009)

    Article CAS  Google Scholar 

  35. Reimer, P. J. et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years calBP .Radiocarbon51, 1111–1150 (2009)

    Article CAS  Google Scholar 

  36. Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Sanders, S. R. Technical note: improved DNA extraction from ancient bones using silica-based spin columns.Am. J. Phys. Anthropol.105, 539–543 (1998)

    Article CAS PubMed  Google Scholar 

  37. Svensson, E. M. et al. Tracing genetic change over time using nuclear SNPs in ancient and modern cattle.Anim. Genet.38, 378–383 (2007)

    Article CAS PubMed  Google Scholar 

  38. Powell, R. & Gannon, F. Purification of DNA by phenol extraction and ethanol precipitation. Oxford Practical Approach Series.http://fds.oup.com/www.oup.co.uk/pdf/pas/9v1-7-3.pdf (2002)

  39. Orlando, L. et al. RecalibratingEquus evolution using the genome sequence of an early Middle Pleistocene horse.Nature499, 74–78 (2013)

    Article ADS CAS PubMed  Google Scholar 

  40. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia.Nature468, 1053–1060 (2010)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  41. Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads.BMC Res. Notes5, 337 (2012)

    Article PubMed PubMed Central  Google Scholar 

  42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009)

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes.BMC Genomics13, 178 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009)

    Article PubMed PubMed Central  Google Scholar 

  45. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data.Nature Genet.43, 491–498 (2011)

    Article CAS PubMed  Google Scholar 

  46. Krause, J. et al. A complete mtDNA genome of an early modern human from Kostenki, Russia.Curr. Biol.20, 231–236 (2010)

    Article CAS PubMed  Google Scholar 

  47. Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification in ancient human remains using DNA shotgun sequencing.J. Archaeol. Sci.40, 4477–4482 (2013)

    Article CAS  Google Scholar 

  48. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals in Asia.Science334, 94–98 (2011)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  49. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs.Nature449, 851–861 (2007)

    Article ADS CAS PubMed  Google Scholar 

  50. The 1000 Genomes Project Consortium An integrated map of genetic variation from 1,092 human genomes.Nature491, 56–65 (2012)

    Article PubMed Central CAS  Google Scholar 

  51. Van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation.Hum. Mutat.30, E386–E394 (2009)

    Article PubMed  Google Scholar 

  52. Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root.Am. J. Hum. Genet.90, 675–684 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays.Science327, 78–81 (2010)

    Article ADS CAS PubMed  Google Scholar 

  54. Wei, W. et al. A calibrated human Y-chromosomal phylogeny based on resequencing.Genome Res.23, 388–395 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Mol. Biol. Evol.28, 2731–2739 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  56. Hancock, A. M. et al. Adaptations to climate-mediated selective pressures in humans.PLoS Genet.7, e1001375 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo.Nature463, 757–762 (2010)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  58. International HapMap 3 Consortium Integrating common and rare genetic variation in diverse human populations.Nature467, 52–58 (2010)

    Article ADS CAS  Google Scholar 

  59. Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation.Science319, 1100–1104 (2008)

    Article ADS CAS PubMed  Google Scholar 

  60. Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia.Proc. Natl Acad. Sci. USA108, 18301–18306 (2011)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  61. Patterson, N., Price, A. L. & Reich, D. Population structure and Eigenanalysis.PLoS Genet.2, e190 (2006)

    Article PubMed PubMed Central CAS  Google Scholar 

  62. Skoglund, P. et al. Origins and Genetic legacy of Neolithic farmers and hunter-gatherers in Europe.Science336, 466–469 (2012)

    Article ADS CAS PubMed  Google Scholar 

  63. Surakka, I. et al. Founder population-specific HapMap panel increases power in GWA studies through improved imputation accuracy and CNV tagging.Genome Res.20, 1344–1351 (2010)

    Article CAS PubMed PubMed Central  Google Scholar 

  64. International HapMap3 Consortium Integrating common and rare genetic variation in diverse human populations.Nature467, 52–58 (2010)

    Article ADS CAS  Google Scholar 

  65. Busing, F. M. T. A., Meijer, E. & Van der Leeden, R. Delete-m Jackknife for Unequal m.Stat. Comput.9, 3–8 (1999)

    Article  Google Scholar 

  66. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations.Mol. Biol. Evol.28, 2239–2252 (2011)

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Hermitage State Museum for providing access to the Mal’ta and Afontova Gora-2 human remains. We also thank the Danish National High-Throughput DNA Sequencing Centre and T. Reisberg for technical assistance. This work was supported by the Danish National Research Foundation and the Lundbeck Foundation (E.W. and M.R.) and the Arctic Social Sciences Program, National Science Foundation (grant PLR-1003725 to K.E.G.). R.V., M.M., M.K., E.M., K.T., S.Ro. and R.M. were supported by the European Regional Development Fund (European Union) through the Centre of Excellence in Genomics to Estonian Biocentre and University of Tartu and Estonian Basic Research grant SF0270177As08. M.M. thanks the Estonian Science Foundation grant no. 8973 and Baltic-American Freedom Foundation Research Scholarship program and M.I.V. thanks the Government of Russian Federation grant no. 14.B25.31.0033 (to E. I. Rogaev). M.D. was supported by the US National Science Foundation (grant DBI-1103639). Computational analyses were carried out at the High Performance Computing Center, University of Tartu, and the Swedish National Infrastructure for Computing (SNIC-UPPMAX, project b2012063).

Author information

Author notes
  1. Maanasa Raghavan and Pontus Skoglund: These authors contributed equally to this work.

Authors and Affiliations

  1. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark ,

    Maanasa Raghavan, Thomas W. Stafford Jr, Ludovic Orlando, Paula F. Campos & Eske Willerslev

  2. Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden,

    Pontus Skoglund & Mattias Jakobsson

  3. Center for the Study of the First Americans, Texas A&M University, TAMU-4352, College Station, Texas 77845-4352, USA ,

    Kelly E. Graf

  4. Estonian Biocentre, Evolutionary Biology group, Tartu 51010, Estonia ,

    Mait Metspalu, Monika Karmin, Kristiina Tambets, Siiri Rootsi, Sergey Litvinov, Toomas Kivisild & Richard Villems

  5. Department of Integrative Biology, University of California, Berkeley, 94720, California, USA

    Mait Metspalu, Michael DeGiorgio & Rasmus Nielsen

  6. Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia,

    Mait Metspalu, Ene Metspalu, Monika Karmin & Richard Villems

  7. Department of Biology, The Bioinformatics Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark,

    Anders Albrechtsen & Ida Moltke

  8. Department of Human Genetics, The University of Chicago, Chicago, 60637, Illinois, USA

    Ida Moltke

  9. Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby 2800, Denmark ,

    Simon Rasmussen, Thomas Sicheritz-Ponten & Søren Brunak

  10. Department of Physics and Astronomy, AMS 14C Dating Centre, University of Aarhus, Ny Munkegade 120, Aarhus DK-8000, Denmark,

    Thomas W. Stafford Jr

  11. Estonian Genome Center, University of Tartu, Tartu 51010, Estonia ,

    Reedik Mägi

  12. Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moskvorechie Street 1, Moscow 115479, Russia ,

    Elena Balanovska & Oleg Balanovsky

  13. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, Moscow 119991, Russia ,

    Oleg Balanovsky

  14. Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Bashkorostan 450054, Russia ,

    Elza Khusnutdinova & Sergey Litvinov

  15. Biology Department, Bashkir State University, Ufa, Bashkorostan 450074, Russia,

    Elza Khusnutdinova

  16. The Institute of Cytology and Genetics, Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyeva Avenue, Novosibirsk 630090, Russia ,

    Ludmila P. Osipova & Mikhail I. Voevoda

  17. Department of Molecular Genetics, Yakut Research Center of Complex Medical Problems, Russian Academy of Medical Sciences and North-Eastern Federal University, Yakutsk, Sakha (Yakutia) 677010, Russia,

    Sardana A. Fedorova

  18. Institute of Internal Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Borisa Bogatkova 175/1, Novosibirsk 630089, Russia ,

    Mikhail I. Voevoda

  19. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark ,

    Thomas Sicheritz-Ponten & Søren Brunak

  20. The State Hermitage Museum, 2, Dvortsovaya Ploshchad, St. Petersberg 190000, Russia ,

    Svetlana Demeshchenko

  21. Department of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, UK,

    Toomas Kivisild

  22. Estonian Academy of Sciences, Tallinn 10130, Estonia ,

    Richard Villems

  23. Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden ,

    Mattias Jakobsson

Authors
  1. Maanasa Raghavan
  2. Pontus Skoglund
  3. Kelly E. Graf
  4. Mait Metspalu
  5. Anders Albrechtsen
  6. Ida Moltke
  7. Simon Rasmussen
  8. Thomas W. Stafford Jr
  9. Ludovic Orlando
  10. Ene Metspalu
  11. Monika Karmin
  12. Kristiina Tambets
  13. Siiri Rootsi
  14. Reedik Mägi
  15. Paula F. Campos
  16. Elena Balanovska
  17. Oleg Balanovsky
  18. Elza Khusnutdinova
  19. Sergey Litvinov
  20. Ludmila P. Osipova
  21. Sardana A. Fedorova
  22. Mikhail I. Voevoda
  23. Michael DeGiorgio
  24. Thomas Sicheritz-Ponten
  25. Søren Brunak
  26. Svetlana Demeshchenko
  27. Toomas Kivisild
  28. Richard Villems
  29. Rasmus Nielsen
  30. Mattias Jakobsson
  31. Eske Willerslev

Contributions

E.W. and K.E.G. conceived the project. E.W. headed the project. E.W. and M.R. designed the experimental research project setup. S.D. and K.E.G. provided access to the Mal’ta and Afontova Gora-2 samples, and K.E.G. provided archaeological context for the samples. T.W.S. Jr performed AMS dating. E.B. and O.B. (Tajik individual), E.K. and S.L. (Mari and Avar individuals) provided modern DNA extracts for complete genome sequencing. E.K. and S.L. (Kazakh, Kirghiz, Uzbek and Mari individuals), L.P.O. (Selkup individuals), S.A.F. (Even, Dolgan and Yakut individuals) and M.I.V. (Altai individuals) provided access to modern DNA extracts for genotyping. R.V. carried out Illumina chip analysis on modern samples. P.F.C. performed DNA extraction from the Indian individual. M.R. performed the ancient extractions and library constructions on the modern and ancient samples —the latter with input from L.O. M.R. coordinated the sequencing. M.R. and S.Ra. performed mapping of MA-1 and AG-2 data sets with input from L.O. S.Ra., T.S.-P. and S.B. provided super-computing resources, developed the next-generation sequencing pipeline and performed mapping and genotyping for all the modern genomes. M.R. performed DNA damage analysis with input from L.O. M.M. performed the admixture analysis. M.M., E.M., K.T. and R.V. performed the mtDNA analysis. M.M., M.K., S.Ro., T.K., R.V. and R.M. performed the Y-chromosome analysis. A.A. and I.M. performed the autosomal contamination estimates, error rate estimates,D-statistics tests based on sequence reads and ngsAdmix analyses. P.S. performed biological sexing, mtDNA contamination estimates, PCA, TreeMix, MixMapper,D-statistic tests based on allele frequencies,f3-statistics and phenotypic analyses, and analysis of AG-2 using nucleotide misincorporation patterns under the supervision of R.N. and M.J. M.R., P.S. and E.W. wrote the majority of the manuscript with critical input from R.N., M.J., M.M., K.E.G., A.A., I.M. and M.D. M.M., A.A. and I.M. contributed equally to this work.

Corresponding author

Correspondence toEske Willerslev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures, Supplementary Tables and additional references – see contents page for details. (PDF 13232 kb)

Rights and permissions

About this article

Cite this article

Raghavan, M., Skoglund, P., Graf, K.et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.Nature505, 87–91 (2014). https://doi.org/10.1038/nature12736

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Intertwining roots of the First Americans

Where did the First Americans come from, and who were they? On both counts the interpretation of the genetic and archaeological evidence causes controversy. The publication of the draft genome of a 24,000-year-old human specimen from Mal'ta in south-central Siberia — the earliest modern human genome sequence reported to date — may help to clarify matters. Eske Willerslev and colleagues find that the Mal'ta individual is genetically closely related to modern-day Native Americans and basal to modern-day western Eurasians, but has no close affinity to east Asians. This implies that populations related to modern-day western Eurasians had a more northeasterly distribution in the past than commonly thought. The authors estimate that between 14 and 38% of Native American ancestry originates from this ancient Mal'ta group and is therefore not of east Asian but rather of western Eurasian ancestry, which may explain why several First American crania have been reported as bearing non-east Asian features.

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2026 Movatter.jp