Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Rsx is a metatherian RNA withXist-like properties in X-chromosome inactivation

Naturevolume 487pages254–258 (2012)Cite this article

Subjects

Abstract

In female (XX) mammals, one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY)1. X-chromosome inactivation in eutherian mammals is mediated by the non-coding RNAXist2.Xist is not found in metatherians3 (marsupials), and how X-chromosome inactivation is initiated in these mammals has been the subject of speculation for decades4. Using the marsupialMonodelphis domestica, here we identifyRsx (RNA-on-the-silent X), an RNA that has properties consistent with a role in X-chromosome inactivation.Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, in which both X chromosomes are active,Rsx is silenced, linkingRsx expression to X-chromosome inactivation and reactivation. Integration of anRsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing incis. Our findings permit comparative studies of X-chromosome inactivation in mammals and pose questions about the mechanisms by which X-chromosome inactivation is achieved in eutherians.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Discovery of a candidate X-inactivating RNA in the opossum.
Figure 2:Characterization ofRsx RNA.
Figure 3:Links betweenRsx RNA expression and X-chromosome inactivation and reactivation.
Figure 4:Autosomal gene silencing in mouse ES cells by anRsx transgene.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

RNA-seq data is available from the Gene Expression Omnibus under accession numberGSE36861; Rsx accession number JQ937282.

References

  1. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.).Nature190, 372–373 (1961)

    Article CAS ADS  Google Scholar 

  2. Penny, G. D. et al. Requirement forXist in X chromosome inactivation.Nature379, 131–137 (1996)

    Article CAS ADS  Google Scholar 

  3. Duret, L. et al. TheXist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene.Science312, 1653–1655 (2006)

    Article CAS ADS  Google Scholar 

  4. Deakin, J. E., Chaumeil, J., Hore, T. A. & Marshall Graves, J. A. Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes.Chromosome Res.17, 671–675 (2009)

    Article CAS  Google Scholar 

  5. Straub, T. & Becker, P. B. Dosage compensation: the beginning and end of generalization.Nature Rev. Genet.8, 47–57 (2007)

    Article CAS  Google Scholar 

  6. Sharman, G. B. Late DNA replication in the paternally derived X chromosome of female kangaroos.Nature230, 231–232 (1971)

    Article CAS ADS  Google Scholar 

  7. Mahadevaiah, S. K. et al. Key features of the X inactivation process are conserved between marsupials and eutherians.Curr. Biol.19, 1478–1484 (2009)

    Article CAS  Google Scholar 

  8. Rens, W. et al. Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation.Proc. Natl Acad. Sci. USA107, 17657–17662 (2010)

    Article CAS ADS  Google Scholar 

  9. Chaumeil, J. et al. Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals.PLoS ONE6, e19040 (2011)

    Article CAS ADS  Google Scholar 

  10. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation.Science300, 131–135 (2003)

    Article CAS ADS  Google Scholar 

  11. Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation.PLoS Biol.7, 991–1003 (2004)

    Google Scholar 

  12. Brockdorff, N. et al. Conservation of position and exclusive expression of mouseXist from the inactive X chromosome.Nature351, 329–331 (1991)

    Article CAS ADS  Google Scholar 

  13. Borsani, G. et al. Characterization of a murine gene expressed from the inactive X chromosome.Nature351, 325–329 (1991)

    Article CAS ADS  Google Scholar 

  14. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome.Nature349, 38–44 (1991)

    Article CAS ADS  Google Scholar 

  15. Brown, C. J. et al. The humanXIST gene: Analysis of a 17kb inactive X-specific RNA that contains conserved repeats and is highly localised within the nucleus.Cell71, 527–542 (1992)

    Article CAS  Google Scholar 

  16. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics.Nature Rev. Genet.10, 57–63 (2009)

    Article CAS  Google Scholar 

  17. de Napoles, M., Nesterova, T. & Brockdorff, N. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells.PLoS ONE2, e860 (2007)

    Article ADS  Google Scholar 

  18. Sugimoto, M. & Abe, K. X chromosome reactivation initiates in nascent primordial germ cells in mice.PLoS Genet.3, e116 (2007)

    Article  Google Scholar 

  19. Chuva de Sousa Lopes, S. M. et al. X chromosome activity in mouse XX primordial germ cells.PLoS Genet.4, e30 (2008)

    Article  Google Scholar 

  20. Wojtasz, L. et al. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase.PLoS Genet.5, e1000702 (2009)

    Article  Google Scholar 

  21. Lee, J. T., Strauss, W. M., Dausman, J. A. & Jaenisch, R. A 450kb transgene displays properties of the mammalian X-inactivation center.Cell86, 83–94 (1996)

    Article CAS  Google Scholar 

  22. Herzing, L. B. K., Romer, J. T., Horn, J. M. & Ashworth, A.Xist has properties of the X-inactivation centre.Nature386, 272–275 (1997)

    Article CAS ADS  Google Scholar 

  23. Augui, S., Nora, E. P. & Heard, E. Regulation of X-chromosome inactivation by the X-inactivation centre.Nature Rev. Genet.12, 429–442 (2011)

    Article CAS  Google Scholar 

  24. Lyon, M. F. Do LINEs have a role in X-chromosome inactivation?J. Biomed. Biotechnol.2006, 59746 (2006)

    Article  Google Scholar 

  25. Mikkelsen, T. S. et al. Genome of the marsupialMonodelphis domestica reveals innovation in non-coding sequences.Nature447, 167–177 (2007)

    Article CAS ADS  Google Scholar 

  26. Hasegawa, Y. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA.Dev. Cell19, 469–476 (2010)

    Article CAS  Google Scholar 

  27. Kalantry, S., Purushothaman, S., Bowen, R. B., Starmer, S. & Magnuson, T. Evidence ofXist RNA-independent initiation of mouse imprinted X-chromosome inactivation.Nature460, 647–651 (2009)

    Article CAS ADS  Google Scholar 

  28. Namekawa, S. H., Payer, B., Huynh, K. D., Jaenisch, R. & Lee, J. T. Two-step imprinted X inactivation: repeat versus genic silencing in the mouse.Mol. Cell. Biol.30, 3187–3125 (2010)

    Article CAS  Google Scholar 

  29. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell126, 663–676 (2006)

    Article CAS  Google Scholar 

  30. Turner, J. M., Mahadevaiah, S. K., Ellis, P. J. I., Mitchell, M. J. & Burgoyne, P. S. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids.Dev. Cell10, 521–529 (2006)

    Article CAS  Google Scholar 

  31. Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of complementary DNA.Nucleic Acids Res.37, e123 (2009)

    Article  Google Scholar 

  32. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760 (2009)

    Article CAS  Google Scholar 

  33. Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009)

    Article  Google Scholar 

  34. Robinson, J. T. et al. Integrative genomics viewer.Nature Biotechnol.29, 24–26 (2011)

    Article CAS  Google Scholar 

  35. Sharov, A. A. & Ko, M. S. Exhaustive search for over-represented DNA sequence motifs with CisFinder.DNA Res.16, 261–273 (2009)

    Article CAS  Google Scholar 

  36. Royo, H. et al. Evidence that meiotic sex chromosome inactivation is essential for male fertility.Curr. Biol.20, 2117–2123 (2010)

    Article CAS  Google Scholar 

  37. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal.Nature453, 519–523 (2008)

    Article CAS ADS  Google Scholar 

  38. Chaumeil, J., Okamoto, I. & Heard E X chromosome inactivation in embryonic stem cells: analysis of histone modifications and transcriptional activity using immunofluorescence and FISH.Methods Enzymol.376, 405–419 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Bell and R. Lovell-Badge for advice on the characterisation ofRsx, J. Cloutier and G. Polikiewicz for help with germ-cell preparations and quantitative PCR, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Genomics core (National Institutes of Health, NIH) for RNA sequencing, A. Toth for the HORMAD1 antibody, the Biological and Procedural Services units at the National Institute for Medical Research (NIMR) for animal husbandry andRsx transgenesis, and J. Cocquet, L. Reynard, H. Byers and members of the Turner and P. Burgoyne laboratories for reading of the manuscript. This work was supported by the Medical Research Council (MRC) (U117588498, U117597141, U117581331, U117597137), the NIH (HD60858), the Robert J. Kleberg Jr and Helen C. Kleberg Foundation, the New Zealand Foundation for Research, Science and Technology, Possum Biocontrol (C10X0501), the Australian National Health and Medical Research Council (1010453) and the NIDDK (NIH) Intramural Research Program.

Author information

Authors and Affiliations

  1. MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK ,

    Jennifer Grant, Shantha K. Mahadevaiah, Mahesh N. Sangrithi, Hélène Royo, Willie Taylor, Greg Elgar, Mike J. Gilchrist & James M. A. Turner

  2. National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA ,

    Pavel Khil & R. Daniel Camerini-Otero

  3. Landcare Research - Manaaki Whenua, Pest Control Technology Group, Lincoln, 7640, New Zealand

    Janine Duckworth

  4. University of Texas at San Antonio, San Antonio, 78249, Texas, USA

    John R. McCarrey

  5. Texas Biomedical Research Institute, San Antonio, 78227, Texas, USA

    John L. VandeBerg

  6. Department of Zoology, University of Melbourne, Victoria, 3010, Australia

    Marilyn B. Renfree

Authors
  1. Jennifer Grant

    You can also search for this author inPubMed Google Scholar

  2. Shantha K. Mahadevaiah

    You can also search for this author inPubMed Google Scholar

  3. Pavel Khil

    You can also search for this author inPubMed Google Scholar

  4. Mahesh N. Sangrithi

    You can also search for this author inPubMed Google Scholar

  5. Hélène Royo

    You can also search for this author inPubMed Google Scholar

  6. Janine Duckworth

    You can also search for this author inPubMed Google Scholar

  7. John R. McCarrey

    You can also search for this author inPubMed Google Scholar

  8. John L. VandeBerg

    You can also search for this author inPubMed Google Scholar

  9. Marilyn B. Renfree

    You can also search for this author inPubMed Google Scholar

  10. Willie Taylor

    You can also search for this author inPubMed Google Scholar

  11. Greg Elgar

    You can also search for this author inPubMed Google Scholar

  12. R. Daniel Camerini-Otero

    You can also search for this author inPubMed Google Scholar

  13. Mike J. Gilchrist

    You can also search for this author inPubMed Google Scholar

  14. James M. A. Turner

    You can also search for this author inPubMed Google Scholar

Contributions

J.G. and J.M.A.T. conceived and designed the experiments, performed RNA FISH and RT–PCR and wrote the manuscript. P.K., R.D.C.-O. and M.J.G. generated and analysed RNA-seq data. J.G., G.E. and W.T. performed repeat analysis. J.M.A.T. and S.K.M. performed northern blots. M.N.S. generated the transgenic ES cell line, and H.R. determined the ES cell transgene copy number. J.D., J.R.M., J.L.V. and M.B.R. provided animals and tissues.

Corresponding author

Correspondence toJames M. A. Turner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4, a Supplementary Discussion and additional references. (PDF 6431 kb)

Supplementary Table

This file contains the probe and primer sequences used in this study. (XLS 46 kb)

Supplementary Table 2

This file contains the female:male ratios for X-encoded transcripts derived from RNA-seq data. (XLS 135 kb)

Supplementary Table 3

This file contains the Australasian marsupial Rsx EST identifiers. (XLS 13 kb)

Rights and permissions

About this article

Cite this article

Grant, J., Mahadevaiah, S., Khil, P.et al.Rsx is a metatherian RNA withXist-like properties in X-chromosome inactivation.Nature487, 254–258 (2012). https://doi.org/10.1038/nature11171

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Marsupial X-chromosome inactivation

In both eutherian (placental) and metatherian (marsupial) mammals, XX females undergo X-chromosome inactivation to ensure that they have the same dose of X-linked gene products as XY males. In eutherians, X-inactivation is initiated by the non-coding RNAXist, butXist is not conserved in metatherians, so the mechanism underlying X-inactivation in these mammals has been unclear. Here, a non-coding RNA termedRsx that has properties consistent with a role in X-inactivation is identified in a marsupial —the grey, short-tailed opossum (Monodelphis domestica).Rsx is expressed only in females, is transcribed from and coats the inactive X chromosome, and is associated with gene silencing.Rsx andXist lack significant sequence homology, which suggests that aspects of the X-chromosome inactivation pathway have evolved convergently.

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2025 Movatter.jp