- Letter
- Published:
The magic nature of132Sn explored through the single-particle states of133Sn
- K. L. Jones1,2,
- A. S. Adekola3,
- D. W. Bardayan4,
- J. C. Blackmon4,
- K. Y. Chae1,
- K. A. Chipps5,
- J. A. Cizewski2,
- L. Erikson5,
- C. Harlin6,
- R. Hatarik2,
- R. Kapler1,
- R. L. Kozub7,
- J. F. Liang4,
- R. Livesay5,
- Z. Ma1,
- B. H. Moazen1,
- C. D. Nesaraja4,
- F. M. Nunes8,
- S. D. Pain2,
- N. P. Patterson6,
- D. Shapira4,
- J. F. Shriner Jr7,
- M. S. Smith4,
- T. P. Swan2,6 &
- …
- J. S. Thomas6
Naturevolume 465, pages454–457 (2010)Cite this article
5017Accesses
203Citations
37Altmetric
Abstract
Atomic nuclei have a shell structure1 in which nuclei with ‘magic numbers’ of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2,3,4,5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in133Sn that lie outside the double shell closure present at the short-lived nucleus132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of132Sn.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Mayer, M. G. & Jensen, J. H. D.Theory of Nuclear Shell Structure (Wiley, 1955)
Barbieri, C. & Hjorth-Jensen, M. Quasiparticle and quasihole states of nuclei around56Ni.Phys. Rev. C79, 064313 (2009)
Kartamyshev, M. P., Engeland, T., Hjorth-Jensen, M. & Osnes, E. Effective Interactions and shell model studies of heavy tin isotopes.Phys. Rev. C76, 024313 (2007)
Sarkar, S. & Sarkar, M. S. Shell model study of neutron-rich nuclei near132Sn.Phys. Rev. C64, 014312 (2001)
Grawe, H., Langanke, K. & Martínez-Pinedo, G. Nuclear structure and astrophysics.Rep. Prog. Phys.70, 1525–1582 (2007)
Cowan, J. J., Thielemann, F.-K. & Truran, J. W. The r-process and nucleochronology.Phys. Rep.208, 267–394 (1991)
Coraggio, L., Covello, A., Gargano, A. & Itaco, N. Similarity of nuclear structure in the132Sn and208Pb regions: proton–neutron multiplets.Phys. Rev. C80, 021305(R) (2009)
Terasaki, J., Engel, J., Nazarewicz, W. & Stoitsov, M. Anomalous behavior of 2+ excitations around132Sn.Phys. Rev. C66, 054313 (2002)
Hoff, P. et al. Single-neutron states in133Sn.Phys. Rev. Lett.77, 1020–1023 (1996)
Urban, W. et al. Neutron single-particle energies in the132Sn region.Eur. Phys. J. A5, 239–241 (1999)
Kozub, R. L. et al. Neutron single particle strengths from the (d,p) reaction on18F.Phys. Rev. C73, 044307 (2006)
Thomas, J. S. et al. Single-neutron excitations in neutron-rich83Ge and85Se.Phys. Rev. C76, 044302 (2007)
Rehm, K. E. et al. Study of the56Ni(d,p)57Ni reaction and the astrophysical56Ni(p,γ)57Cu reaction rate.Phys. Rev. Lett.80, 676–679 (1998)
Stracener, D. W. Status of radioactive ion beams at the HRIBF.Nucl. Instrum. Methods A521, 126–135 (2004)
Pain, S. D. et al. Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics.Nucl. Instrum. Methods B261, 1122–1125 (2007)
Wiza, J. L. Microchannel plate detectors.Nucl. Instrum. Methods162, 587–601 (1979)
Thompson, I. J. Coupled reaction channels calculations in nuclear physics.Comput. Phys. Rep.7, 167–211 (1988)
Reid, R. V. Local phenomenological nucleon–nucleon potentials.Ann. Phys.50, 411–448 (1968)
Strömich, A. et al. (d,p) reactions on124Sn,130Te,138Ba,140Ce,142Nd, and208Pb below and near the Coulomb barrier.Phys. Rev. C16, 2193–2207 (1977)
Pang, D. Y., Nunes, F. M. & Mukhamedzhanov, A. M. Are spectroscopic factors from transfer reactions consistent with asymptotic normalization coefficients?Phys. Rev. C75, 024601 (2007)
Kramer, G. J., Blok, H. P. & Lapikás, L. A consistent analysis of (e,e′p) and (d,3He) experiments.Nucl. Phys. A679, 267–286 (2001)
Ellegaard, C., Kantele, J. & Vedelsby, P. Particle–vibration coupling in209Pb.Nucl. Phys. A129, 113–128 (1969)
Hirota, K., Aoki, Y., Okumura, N. & Tagishi, Y. Deuteron elastic scattering and (d,p) reactions on208Pb atEd = 22 MeV andj-dependence ofT 20 in (d,p) reaction.Nucl. Phys. A628, 547–579 (1998)
Acknowledgements
This work was supported by the US Department of Energy under contract numbers DEFG02-96ER40995 (Tennessee Technological University (TTU)), DE-FG52-03NA00143 (Rutgers, Oak Ridge Associated Universities), DE-AC05-00OR22725 (Oak Ridge National Laboratory), DE-FG02-96ER40990 (TTU), DE-FG03-93ER40789 (Colorado School of Mines), DE-FG02-96ER40983 (University of Tennessee, Knoxville), DE-FG52-08NA28552 (Michigan State University (MSU)), DE-AC02-06CH11357 (MSU), the National Science Foundation under contract numbers NSF-PHY0354870 and NSF-PHY0757678 (Rutgers) and NSF-PHY-0555893 (MSU), and the UK Science and Technology Funding Council under contract number PP/F000715/1.
Author information
Authors and Affiliations
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA,
K. L. Jones, K. Y. Chae, R. Kapler, Z. Ma & B. H. Moazen
Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA,
K. L. Jones, J. A. Cizewski, R. Hatarik, S. D. Pain & T. P. Swan
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA,
A. S. Adekola
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA,
D. W. Bardayan, J. C. Blackmon, J. F. Liang, C. D. Nesaraja, D. Shapira & M. S. Smith
Physics Department, Colorado School of Mines, Golden, Colorado 80401, USA,
K. A. Chipps, L. Erikson & R. Livesay
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK,
C. Harlin, N. P. Patterson, T. P. Swan & J. S. Thomas
Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505, USA,
R. L. Kozub & J. F. Shriner Jr
National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA,
F. M. Nunes
- K. L. Jones
Search author on:PubMed Google Scholar
- A. S. Adekola
Search author on:PubMed Google Scholar
- D. W. Bardayan
Search author on:PubMed Google Scholar
- J. C. Blackmon
Search author on:PubMed Google Scholar
- K. Y. Chae
Search author on:PubMed Google Scholar
- K. A. Chipps
Search author on:PubMed Google Scholar
- J. A. Cizewski
Search author on:PubMed Google Scholar
- L. Erikson
Search author on:PubMed Google Scholar
- C. Harlin
Search author on:PubMed Google Scholar
- R. Hatarik
Search author on:PubMed Google Scholar
- R. Kapler
Search author on:PubMed Google Scholar
- R. L. Kozub
Search author on:PubMed Google Scholar
- J. F. Liang
Search author on:PubMed Google Scholar
- R. Livesay
Search author on:PubMed Google Scholar
- Z. Ma
Search author on:PubMed Google Scholar
- B. H. Moazen
Search author on:PubMed Google Scholar
- C. D. Nesaraja
Search author on:PubMed Google Scholar
- F. M. Nunes
Search author on:PubMed Google Scholar
- S. D. Pain
Search author on:PubMed Google Scholar
- N. P. Patterson
Search author on:PubMed Google Scholar
- D. Shapira
Search author on:PubMed Google Scholar
- J. F. Shriner Jr
Search author on:PubMed Google Scholar
- M. S. Smith
Search author on:PubMed Google Scholar
- T. P. Swan
Search author on:PubMed Google Scholar
- J. S. Thomas
Search author on:PubMed Google Scholar
Contributions
K.L.J., D.W.B., J.C.B., J.A.C., R.L.K., J.F.L., C.D.N., S.D.P., D.S., M.S.S. and J.S.T. designed the experiment and developed the experimental tools and techniques. K.L.J., D.W.B., J.C.B., K.Y.C., R.H., R.L.K., J.F.L., B.H.M., S.D.P. and D.S. set up the experimental equipment, including new, unique detectors and associated electronics. K.L.J., D.W.B., J.C.B., K.Y.C., R.L.K., B.H.M., S.D.P., T.P.S. and J.S.T. developed online and offline analysis software routines and algorithms. K.L.J., A.S.A., D.W.B., J.C.B., K.Y.C., K.A.C., L.E., C.H., R.H., R.K., R.L.K., J.F.L., R.L., Z.M., B.H.M., C.D.N., S.D.P., N.P.P., D.S., J.F.S., M.S.S., T.P.S. and J.S.T. while running the experiment, assessed the quality and performed preliminary analyses of online data. K.L.J., K.Y.C., R.K., R.L.K., B.H.M., S.D.P. and T.P.S. analysed the data and calibrations. K.L.J., D.W.B., J.A.C., R.L.K., F.M.N. and S.D.P. interpreted the data, including theoretical calculations. K.L.J., J.A.C. and F.M.N. wrote the manuscript. K.L.J., D.W.B., J.C.B, K.A.C., J.A.C., R.L.K., J.F.L., F.M.N., S.D.P., J.F.S., M.S.S. and J.S.T. revised the manuscript.
Corresponding author
Correspondence toK. L. Jones.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
This file contains Supplementary Data, Supplementary Figures 4-5 with legends, Supplementary Tables 2-5 and References. (PDF 280 kb)
Rights and permissions
About this article
Cite this article
Jones, K., Adekola, A., Bardayan, D.et al. The magic nature of132Sn explored through the single-particle states of133Sn.Nature465, 454–457 (2010). https://doi.org/10.1038/nature09048
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Gamma-ray spectroscopy of fission fragments with state-of-the-art techniques
- S. Leoni
- C. Michelagnoli
- J. N. Wilson
La Rivista del Nuovo Cimento (2022)
Nuclear moments of indium isotopes reveal abrupt change at magic number 82
- A. R. Vernon
- R. F. Garcia Ruiz
- D. T. Yordanov
Nature (2022)
Mass measurements of 99–101In challenge ab initio nuclear theory of the nuclide 100Sn
- M. Mougeot
- D. Atanasov
- K. Zuber
Nature Physics (2021)
Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction
- Wei Liu
- Jian-Ling Lou
- Dan-Yang Pang
Nuclear Science and Techniques (2020)
A doubly magic nucleus that has two faces
- Gaute Hagen
- Thomas Papenbrock
Nature (2019)


