Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

The magic nature of132Sn explored through the single-particle states of133Sn

Naturevolume 465pages454–457 (2010)Cite this article

Subjects

Abstract

Atomic nuclei have a shell structure1 in which nuclei with ‘magic numbers’ of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2,3,4,5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in133Sn that lie outside the double shell closure present at the short-lived nucleus132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of132Sn.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Signs of magic nature: comparisons of Pb and Sn isotopes.
Figure 2:Q-value spectrum for the132Sn(d,p)133Sn reaction at 54° in the centre of mass.
Figure 3:Angular distributions, expressed as differential cross sections (dσ/dΩ), of protons in the centre of mass resulting from the132Sn(d,p)133Sn reaction for the two lowest states populated and cross-section measurements, also expressed as differential cross sections, for the two highest states.

Similar content being viewed by others

Article25 November 2024

References

  1. Mayer, M. G. & Jensen, J. H. D.Theory of Nuclear Shell Structure (Wiley, 1955)

    MATH  Google Scholar 

  2. Barbieri, C. & Hjorth-Jensen, M. Quasiparticle and quasihole states of nuclei around56Ni.Phys. Rev. C79, 064313 (2009)

    Article ADS  Google Scholar 

  3. Kartamyshev, M. P., Engeland, T., Hjorth-Jensen, M. & Osnes, E. Effective Interactions and shell model studies of heavy tin isotopes.Phys. Rev. C76, 024313 (2007)

    Article ADS  Google Scholar 

  4. Sarkar, S. & Sarkar, M. S. Shell model study of neutron-rich nuclei near132Sn.Phys. Rev. C64, 014312 (2001)

    Article ADS  Google Scholar 

  5. Grawe, H., Langanke, K. & Martínez-Pinedo, G. Nuclear structure and astrophysics.Rep. Prog. Phys.70, 1525–1582 (2007)

    Article ADS CAS  Google Scholar 

  6. Cowan, J. J., Thielemann, F.-K. & Truran, J. W. The r-process and nucleochronology.Phys. Rep.208, 267–394 (1991)

    Article ADS CAS  Google Scholar 

  7. Coraggio, L., Covello, A., Gargano, A. & Itaco, N. Similarity of nuclear structure in the132Sn and208Pb regions: proton–neutron multiplets.Phys. Rev. C80, 021305(R) (2009)

    Article ADS  Google Scholar 

  8. Terasaki, J., Engel, J., Nazarewicz, W. & Stoitsov, M. Anomalous behavior of 2+ excitations around132Sn.Phys. Rev. C66, 054313 (2002)

    Article ADS  Google Scholar 

  9. Hoff, P. et al. Single-neutron states in133Sn.Phys. Rev. Lett.77, 1020–1023 (1996)

    Article ADS CAS  Google Scholar 

  10. Urban, W. et al. Neutron single-particle energies in the132Sn region.Eur. Phys. J. A5, 239–241 (1999)

    Article ADS CAS  Google Scholar 

  11. Kozub, R. L. et al. Neutron single particle strengths from the (d,p) reaction on18F.Phys. Rev. C73, 044307 (2006)

    Article ADS  Google Scholar 

  12. Thomas, J. S. et al. Single-neutron excitations in neutron-rich83Ge and85Se.Phys. Rev. C76, 044302 (2007)

    Article ADS  Google Scholar 

  13. Rehm, K. E. et al. Study of the56Ni(d,p)57Ni reaction and the astrophysical56Ni(p,γ)57Cu reaction rate.Phys. Rev. Lett.80, 676–679 (1998)

    Article ADS CAS  Google Scholar 

  14. Stracener, D. W. Status of radioactive ion beams at the HRIBF.Nucl. Instrum. Methods A521, 126–135 (2004)

    Article ADS CAS  Google Scholar 

  15. Pain, S. D. et al. Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics.Nucl. Instrum. Methods B261, 1122–1125 (2007)

    Article ADS CAS  Google Scholar 

  16. Wiza, J. L. Microchannel plate detectors.Nucl. Instrum. Methods162, 587–601 (1979)

    Article ADS CAS  Google Scholar 

  17. Thompson, I. J. Coupled reaction channels calculations in nuclear physics.Comput. Phys. Rep.7, 167–211 (1988)

    Article ADS CAS  Google Scholar 

  18. Reid, R. V. Local phenomenological nucleon–nucleon potentials.Ann. Phys.50, 411–448 (1968)

    Article ADS  Google Scholar 

  19. Strömich, A. et al. (d,p) reactions on124Sn,130Te,138Ba,140Ce,142Nd, and208Pb below and near the Coulomb barrier.Phys. Rev. C16, 2193–2207 (1977)

    Article ADS  Google Scholar 

  20. Pang, D. Y., Nunes, F. M. & Mukhamedzhanov, A. M. Are spectroscopic factors from transfer reactions consistent with asymptotic normalization coefficients?Phys. Rev. C75, 024601 (2007)

    Article ADS  Google Scholar 

  21. Kramer, G. J., Blok, H. P. & Lapikás, L. A consistent analysis of (e,e′p) and (d,3He) experiments.Nucl. Phys. A679, 267–286 (2001)

    Article ADS  Google Scholar 

  22. Ellegaard, C., Kantele, J. & Vedelsby, P. Particle–vibration coupling in209Pb.Nucl. Phys. A129, 113–128 (1969)

    Article ADS CAS  Google Scholar 

  23. Hirota, K., Aoki, Y., Okumura, N. & Tagishi, Y. Deuteron elastic scattering and (d,p) reactions on208Pb atEd = 22 MeV andj-dependence ofT 20 in (d,p) reaction.Nucl. Phys. A628, 547–579 (1998)

    Article ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under contract numbers DEFG02-96ER40995 (Tennessee Technological University (TTU)), DE-FG52-03NA00143 (Rutgers, Oak Ridge Associated Universities), DE-AC05-00OR22725 (Oak Ridge National Laboratory), DE-FG02-96ER40990 (TTU), DE-FG03-93ER40789 (Colorado School of Mines), DE-FG02-96ER40983 (University of Tennessee, Knoxville), DE-FG52-08NA28552 (Michigan State University (MSU)), DE-AC02-06CH11357 (MSU), the National Science Foundation under contract numbers NSF-PHY0354870 and NSF-PHY0757678 (Rutgers) and NSF-PHY-0555893 (MSU), and the UK Science and Technology Funding Council under contract number PP/F000715/1.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA,

    K. L. Jones, K. Y. Chae, R. Kapler, Z. Ma & B. H. Moazen

  2. Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA,

    K. L. Jones, J. A. Cizewski, R. Hatarik, S. D. Pain & T. P. Swan

  3. Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA,

    A. S. Adekola

  4. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA,

    D. W. Bardayan, J. C. Blackmon, J. F. Liang, C. D. Nesaraja, D. Shapira & M. S. Smith

  5. Physics Department, Colorado School of Mines, Golden, Colorado 80401, USA,

    K. A. Chipps, L. Erikson & R. Livesay

  6. Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK,

    C. Harlin, N. P. Patterson, T. P. Swan & J. S. Thomas

  7. Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505, USA,

    R. L. Kozub & J. F. Shriner Jr

  8. National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA,

    F. M. Nunes

Authors
  1. K. L. Jones
  2. A. S. Adekola
  3. D. W. Bardayan
  4. J. C. Blackmon
  5. K. Y. Chae
  6. K. A. Chipps
  7. J. A. Cizewski
  8. L. Erikson
  9. C. Harlin
  10. R. Hatarik
  11. R. Kapler
  12. R. L. Kozub
  13. J. F. Liang
  14. R. Livesay
  15. Z. Ma
  16. B. H. Moazen
  17. C. D. Nesaraja
  18. F. M. Nunes
  19. S. D. Pain
  20. N. P. Patterson
  21. D. Shapira
  22. J. F. Shriner Jr
  23. M. S. Smith
  24. T. P. Swan
  25. J. S. Thomas

Contributions

K.L.J., D.W.B., J.C.B., J.A.C., R.L.K., J.F.L., C.D.N., S.D.P., D.S., M.S.S. and J.S.T. designed the experiment and developed the experimental tools and techniques. K.L.J., D.W.B., J.C.B., K.Y.C., R.H., R.L.K., J.F.L., B.H.M., S.D.P. and D.S. set up the experimental equipment, including new, unique detectors and associated electronics. K.L.J., D.W.B., J.C.B., K.Y.C., R.L.K., B.H.M., S.D.P., T.P.S. and J.S.T. developed online and offline analysis software routines and algorithms. K.L.J., A.S.A., D.W.B., J.C.B., K.Y.C., K.A.C., L.E., C.H., R.H., R.K., R.L.K., J.F.L., R.L., Z.M., B.H.M., C.D.N., S.D.P., N.P.P., D.S., J.F.S., M.S.S., T.P.S. and J.S.T. while running the experiment, assessed the quality and performed preliminary analyses of online data. K.L.J., K.Y.C., R.K., R.L.K., B.H.M., S.D.P. and T.P.S. analysed the data and calibrations. K.L.J., D.W.B., J.A.C., R.L.K., F.M.N. and S.D.P. interpreted the data, including theoretical calculations. K.L.J., J.A.C. and F.M.N. wrote the manuscript. K.L.J., D.W.B., J.C.B, K.A.C., J.A.C., R.L.K., J.F.L., F.M.N., S.D.P., J.F.S., M.S.S. and J.S.T. revised the manuscript.

Corresponding author

Correspondence toK. L. Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Data, Supplementary Figures 4-5 with legends, Supplementary Tables 2-5 and References. (PDF 280 kb)

Rights and permissions

About this article

Cite this article

Jones, K., Adekola, A., Bardayan, D.et al. The magic nature of132Sn explored through the single-particle states of133Sn.Nature465, 454–457 (2010). https://doi.org/10.1038/nature09048

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Nuclear magic

Atomic nuclei have a shell structure that allows for 'magic' numbers of neutrons and protons, analogous to the noble gases in atomic physics. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for fundamental understanding of nuclear structure and nucleosynthesis. Using a nucleon transfer technique to add single neutrons to the short-lived tin isotope132Sn, to create the even-shorter-lived133Sn, Joneset al. have been able to confirm the closed-shell 'doubly magic' nature of132Sn. Measurements of the spectrum of quantum states available to the added neutron show that the characteristics of the133Sn nucleus are determined almost completely by this single neutron. This finding extends the validity of the shell model to neutron-rich nuclei, and provides a benchmark for predicting the properties of nuclei even farther from stability, including those involved in neutron-capture reactions in supernovae.

Associated content

Doubly magic tin

  • Paul Cottle
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp