Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

A luminal epithelial stem cell that is a cell of origin for prostate cancer

Naturevolume 461pages495–500 (2009)Cite this article

Abstract

In epithelial tissues, the lineage relationship between normal progenitor cells and cell type(s) of origin for cancer has been poorly understood. Here we show that a known regulator of prostate epithelial differentiation, the homeobox geneNkx3-1, marks a stem cell population that functions during prostate regeneration. Genetic lineage-marking demonstrates that rare luminal cells that express Nkx3-1 in the absence of testicular androgens (castration-resistant Nkx3-1-expressing cells, CARNs) are bipotential and can self-renewin vivo, and single-cell transplantation assays show that CARNs can reconstitute prostate ducts in renal grafts. Functional assays ofNkx3-1 mutant mice in serial prostate regeneration suggest thatNkx3-1 is required for stem cell maintenance. Furthermore, targeted deletion of thePten tumour suppressor gene in CARNs results in rapid carcinoma formation after androgen-mediated regeneration. These observations indicate that CARNs represent a new luminal stem cell population that is an efficient target for oncogenic transformation in prostate cancer.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Expression ofNkx3-1 in epithelial cells of the intact, regressed and regenerated anterior prostate.
Figure 2:Bipotentiality and self-renewal of CARNsin vivo.
Figure 3:Generation of prostatic ducts in renal grafts by single lineage-marked CARNs.
Figure 4:Nkx3-1 mutants display prostate epithelial defects in a serial regeneration assay.
Figure 5:The CARN population contains a cell type of origin for prostate cancer.
Figure 6:Possible lineage relationships in the prostate epithelium.

Similar content being viewed by others

References

  1. Abate-Shen, C. & Shen, M. M. Molecular genetics of prostate cancer.Genes Dev.14, 2410–2434 (2000)

    Article CAS  Google Scholar 

  2. English, H. F., Santen, R. J. & Isaacs, J. T. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement.Prostate11, 229–242 (1987)

    Article CAS  Google Scholar 

  3. Evans, G. S. & Chandler, J. A. Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation.Prostate11, 339–351 (1987)

    Article CAS  Google Scholar 

  4. Sugimura, Y., Cunha, G. R. & Donjacour, A. A. Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate.Biol. Reprod.34, 973–983 (1986)

    Article CAS  Google Scholar 

  5. Isaacs, J. T. inBenign Prostatic Hyperplasia (eds Rodgers C. H. et al.) 85–94 (Department of Health and Human Services, 1985)

    Google Scholar 

  6. Tsujimura, A. et al. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis.J. Cell Biol.157, 1257–1265 (2002)

    Article CAS  Google Scholar 

  7. Lawson, D. A. & Witte, O. N. Stem cells in prostate cancer initiation and progression.J. Clin. Invest.117, 2044–2050 (2007)

    Article CAS  Google Scholar 

  8. Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia.Cell129, 523–536 (2007)

    Article CAS  Google Scholar 

  9. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells.Proc. Natl Acad. Sci. USA104, 181–186 (2007)

    Article ADS CAS  Google Scholar 

  10. Richardson, G. D. et al. CD133, a novel marker for human prostatic epithelial stem cells.J. Cell Sci.117, 3539–3545 (2004)

    Article CAS  Google Scholar 

  11. Burger, P. E. et al. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue.Proc. Natl Acad. Sci. USA102, 7180–7185 (2005)

    Article ADS CAS  Google Scholar 

  12. Xin, L., Lawson, D. A. & Witte, O. N. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis.Proc. Natl Acad. Sci. USA102, 6942–6947 (2005)

    Article ADS CAS  Google Scholar 

  13. Goldstein, A. S. et al. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics.Proc. Natl Acad. Sci. USA105, 20882–20887 (2008)

    Article ADS CAS  Google Scholar 

  14. Leong, K. G., Wang, B. E., Johnson, L. & Gao, W. Q. Generation of a prostate from a single adult stem cell.Nature456, 804–808 (2008)

    Article ADS CAS  Google Scholar 

  15. Kurita, T., Medina, R. T., Mills, A. A. & Cunha, G. R. Role of p63 and basal cells in the prostate.Development131, 4955–4964 (2004)

    Article CAS  Google Scholar 

  16. Kasper, S. Stem cells: the root of prostate cancer?J. Cell. Physiol.216, 332–336 (2008)

    Article ADS CAS  Google Scholar 

  17. Wang, S. et al. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation.Proc. Natl Acad. Sci. USA103, 1480–1485 (2006)

    Article ADS CAS  Google Scholar 

  18. Grisanzio, C. & Signoretti, S. p63 in prostate biology and pathology.J. Cell. Biochem.103, 1354–1368 (2008)

    Article CAS  Google Scholar 

  19. Humphrey, P. A. Diagnosis of adenocarcinoma in prostate needle biopsy tissue.J. Clin. Pathol.60, 35–42 (2007)

    Article CAS  Google Scholar 

  20. Abate-Shen, C., Shen, M. M. & Gelmann, E. Integrating differentiation and cancer: theNkx3.1 homeobox gene in prostate organogenesis and carcinogenesis.Differentiation76, 717–727 (2008)

    Article CAS  Google Scholar 

  21. Bhatia-Gaur, R. et al. Roles forNkx3.1 in prostate development and cancer.Genes Dev.13, 966–977 (1999)

    Article CAS  Google Scholar 

  22. Abdulkadir, S. A. et al. Conditional loss ofNkx3.1 in adult mice induces prostatic intraepithelial neoplasia.Mol. Cell. Biol.22, 1495–1503 (2002)

    Article CAS  Google Scholar 

  23. Kim, M. J. et al.Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis.Cancer Res.62, 2999–3004 (2002)

    CAS PubMed  Google Scholar 

  24. Chen, H., Mutton, L. N., Prins, G. S. & Bieberich, C. J. Distinct regulatory elements mediate the dynamic expression pattern ofNkx3.1 .Dev. Dyn.234, 961–973 (2005)

    Article CAS  Google Scholar 

  25. Sciavolino, P. J. et al. Tissue-specific expression of murineNkx3.1 in the male urogenital system.Dev. Dyn.209, 127–138 (1997)

    Article CAS  Google Scholar 

  26. Bieberich, C. J., Fujita, K., He, W.-W. & Jay, G. Prostate-specific and androgen-dependent expression of a novel homeobox gene.J. Biol. Chem.271, 31779–31782 (1996)

    Article CAS  Google Scholar 

  27. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains.Biochem. Biophys. Res. Commun.237, 752–757 (1997)

    Article CAS  Google Scholar 

  28. Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases.Nucleic Acids Res.27, 4324–4327 (1999)

    Article CAS  Google Scholar 

  29. Srinivas, S. et al. Cre reporter strains produced by targeted insertion ofEYFP andECFP into theROSA26 locus.BMC Dev. Biol.1, 4 (2001)

    Article CAS  Google Scholar 

  30. Soriano, P. GeneralizedlacZ expression with the ROSA26 Cre reporter strain.Nature Genet.21, 70–71 (1999)

    Article CAS  Google Scholar 

  31. Cunha, G. R. & Vanderslice, K. D. Identification in histological sections of species origin of cells from mouse, rat and human.Stain Technol.59, 7–12 (1984)

    Article CAS  Google Scholar 

  32. Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU.Nature449, 238–242 (2007)

    Article ADS CAS  Google Scholar 

  33. Bickenbach, J. R. & Holbrook, K. A. Label-retaining cells in human embryonic and fetal epidermis.J. Invest. Dermatol.88, 42–46 (1987)

    Article CAS  Google Scholar 

  34. Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T. & Lavker, R. M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells.Cell57, 201–209 (1989)

    Article CAS  Google Scholar 

  35. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor genein vivo .Science294, 2186–2189 (2001)

    Article ADS CAS  Google Scholar 

  36. Nakagawa, T., Nabeshima, Y. & Yoshida, S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis.Dev. Cell12, 195–206 (2007)

    Article CAS  Google Scholar 

  37. Xu, X. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas.Cell132, 197–207 (2008)

    Article CAS  Google Scholar 

  38. Barroca, V. et al. Mouse differentiating spermatogonia can generate germinal stem cellsin vivo .Nature Cell Biol.11, 190–196 (2009)

    Article CAS  Google Scholar 

  39. Weaver, M. & Krasnow, M. A. Dual origin of tissue-specific progenitor cells inDrosophila tracheal remodeling.Science321, 1496–1499 (2008)

    Article ADS CAS  Google Scholar 

  40. Magee, J. A., Abdulkadir, S. A. & Milbrandt, J. Haploinsufficiency at theNkx3.1 locus: a paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation.Cancer Cell3, 273–283 (2003)

    Article CAS  Google Scholar 

  41. Lei, Q. et al. NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss.Cancer Cell9, 367–378 (2006)

    Article CAS  Google Scholar 

  42. Ouyang, X., DeWeese, T. L., Nelson, W. G. & Abate-Shen, C. Loss-of-function ofNkx3.1 promotes increased oxidative damage in prostate carcinogenesis.Cancer Res.65, 6773–6779 (2005)

    Article CAS  Google Scholar 

  43. Kim, C. F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer.Cell121, 823–835 (2005)

    Article CAS  Google Scholar 

  44. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer.Nature457, 608–611 (2009)

    Article ADS CAS  Google Scholar 

  45. Banach-Petrosky, W. et al. Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression inNkx3.1; Pten mutant mice.Cancer Res.67, 9089–9096 (2007)

    Article CAS  Google Scholar 

  46. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R.Manipulating the Mouse Embryo: A Laboratory Manual Chs 8–11 359–506 (Cold Spring Harbor Laboratory Press, 2003)

    Google Scholar 

  47. Bunting, M., Bernstein, K. E., Greer, J. M., Capecchi, M. R. & Thomas, K. R. Targeting genes for self-excision in the germ line.Genes Dev.13, 1524–1528 (1999)

    Article CAS  Google Scholar 

  48. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of thec-abl proto-oncogene.Cell65, 1153–1163 (1991)

    Article CAS  Google Scholar 

  49. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth.Cell84, 911–921 (1996)

    Article CAS  Google Scholar 

  50. Gao, H., Ouyang, X., Banach-Petrosky, W. A., Shen, M. M. & Abate-Shen, C. Emergence of androgen independence at early stages of prostate cancer progression inNkx3.1; Pten mice.Cancer Res.66, 7929–7933 (2006)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kim for her initial observations onNkx3-1 expression in the regressed prostate, and C. Cordon-Cardo, E. Gelmann, C. Mendelsohn and B. Reizis for comments on the manuscript. We are also grateful to C. Bieberich, M. Capecchi, P. Chambon and F. Costantini for providing mice and reagents. This work was supported by grants from the NIH (C.A.-S. and M.M.S.), DOD Prostate Cancer Research Program (K.D.E., C.A.-S. and M.M.S.), and the NCI Mouse Models of Human Cancer Consortium.

Author Contributions X.W., M.K.-D., K.D.E., C.A.-S. and M.M.S. designed experiments, Y.P.-H. and S.M.P. generated mouse reagents, X.W., M.K.-D., K.D.E., D.W., H.Y. and M.V.H. performed experiments, and X.W., M.K.-D., C.A.-S. and M.M.S. wrote the manuscript.

Author information

Author notes
  1. Kyriakos D. Economides, David Walker, Hailong Yu, M. Vivienne Halili & Ya-Ping Hu

    Present address: Present addresses: Department of Biological Sciences, Sanofi-Aventis, Bridgewater, New Jersey 08807, USA (K.D.E.); Department of Molecular Biology, Bristol-Myers Squibb Research Institute, Princeton, New Jersey 08543, USA (D.W.); Department of Food Science, Rutgers University, Piscataway, New Jersey 08901, USA (H.Y.); Cardiovascular Diseases Group, Merck Research Laboratories, Rahway, New Jersey 07065, USA (M.V.H.); Johnson and Johnson Skin Research Center, Skillman, New Jersey 08558, USA (Y.-P.H.); Department of Medical Oncology, Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA (S.M.P.).,

Authors and Affiliations

  1. Department of Medicine,,

    Xi Wang, Marianna Kruithof-de Julio & Michael M. Shen

  2. Department of Genetics and Development,,

    Xi Wang, Marianna Kruithof-de Julio & Michael M. Shen

  3. Department of Urology, and,

    Cory Abate-Shen

  4. Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA,

    Cory Abate-Shen

  5. Center for Advanced Biotechnology and Medicine,,

    Xi Wang, Kyriakos D. Economides, David Walker, Hailong Yu, M. Vivienne Halili, Ya-Ping Hu, Sandy M. Price, Cory Abate-Shen & Michael M. Shen

  6. Department of Pediatrics, and,

    Xi Wang, David Walker, Hailong Yu, M. Vivienne Halili, Ya-Ping Hu, Sandy M. Price & Michael M. Shen

  7. Department of Medicine, UMDNJ–Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA,

    Kyriakos D. Economides & Cory Abate-Shen

Authors
  1. Xi Wang

    You can also search for this author inPubMed Google Scholar

  2. Marianna Kruithof-de Julio

    You can also search for this author inPubMed Google Scholar

  3. Kyriakos D. Economides

    You can also search for this author inPubMed Google Scholar

  4. David Walker

    You can also search for this author inPubMed Google Scholar

  5. Hailong Yu

    You can also search for this author inPubMed Google Scholar

  6. M. Vivienne Halili

    You can also search for this author inPubMed Google Scholar

  7. Ya-Ping Hu

    You can also search for this author inPubMed Google Scholar

  8. Sandy M. Price

    You can also search for this author inPubMed Google Scholar

  9. Cory Abate-Shen

    You can also search for this author inPubMed Google Scholar

  10. Michael M. Shen

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMichael M. Shen.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-5, Supplementary References and Supplementary Figures 1- 9 with Legends. (PDF 2647 kb)

Rights and permissions

About this article

Cite this article

Wang, X., Julio, Md., Economides, K.et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer.Nature461, 495–500 (2009). https://doi.org/10.1038/nature08361

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Oncogenic potential in prostate cells

A rare luminal stem cell population, termed CARN cells, has been identified in the mouse prostate. CARN cells give rise to both luminal and basal cells during prostate tissue regeneration induced by androgen depletion. As well as providing self-renewal potential, these cells act as a target for oncogenic transformation: deletion of the tumour suppressor genePten in CARN cells leads to tumour development in the regenerating prostate. The ability of these cells to survive in the absence of androgens raises the possibility that androgen-independent cancer can arise from this population and that CARN cells might provide a route to therapeutic targeting of cells conferring the malignant features of aggressive prostate cancer.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp