- Review Article
- Published:
The life of diatoms in the world's oceans
Naturevolume 459, pages185–192 (2009)Cite this article
19kAccesses
87Altmetric
Abstract
Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea. They exist in a dilute world where compounds essential for growth are recycled and shared, and they greatly influence global climate, atmospheric carbon dioxide concentration and marine ecosystem function. How these essential organisms will respond to the rapidly changing conditions in today's oceans is critical for the health of the environment and is being uncovered by studies of their genomes.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation.Glob. Biogeochem. Cycles9, 359–372 (1995).
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components.Science281, 237–240 (1998).
Sarthou, G., Timmermans, K. R., Blain, S. & Treguer, P. Growth physiology and fate of diatoms in the ocean: a review.J. Sea Res.53, 25–42 (2005).
Denman, K. L. Climate change, ocean processes and ocean iron fertilization.Mar. Ecol. Prog. Ser.364, 219–225 (2008).
Armbrust, E. V. et al. The genome of the diatomThalassiosira pseudonana: ecology, evolution, and metabolism.Science306, 79–86 (2004).This paper describes results from the first diatom genome-sequencing project.
Bowler, C. et al. ThePhaeodactylum reveals the evolutionary history of diatom genomes.Nature456, 239–244 (2008).This paper provides the first whole-genome comparison of two diatoms and identifies the presence in the genome of numerous bacterial genes.
Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K. & Mann, D. G. inEvolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 207–249 (Elsevier, 2007).
Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace elements in the oceans.Science300, 944–947 (2003).
Villareal, T. A. et al. Upward transport of oceanic nitrate by migrating diatom mats.Nature397, 423–425 (1999).
Vardi, A. et al. A diatom gene regulating nitric-oxide signalling and susceptibility to diatom-derived aldehydes.Curr. Biol.18, 895–899 (2008).
Ianora, A. et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom.Nature429, 403–407 (2004).
Parker, M. S., Mock, T. & Armbrust, E. V. Genomic insights into marine microalgae.Annu. Rev. Genet.42, 619–645 (2008).
Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattachrya, D. A molecular timeline for the origin of photosynthetic eukaryotes.Mol. Biol. Evol.21, 809–818 (2004).
Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F. & Bhattacharya, D. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.Curr. Biol.16, 2320–2325 (2006).
Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?Genome Biol.8, R99 (2007).
Becker, B., Hoef-Emden, K. & Melkonian, M. Chlamydial genes shed light on the evolution of phototrophic eukaryotes.BMC Evol. Biol.8, 203 (2008).
Allen, A. E., Vardi, A. & Bowler, C. An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms.Curr. Opin. Plant Biol.9, 264–273 (2006).
Montsant, A. et al. Identification and comparative genomic analysis of signaling and regulatory components in the diatomThalassiosira pseudonana .J. Phycol.43, 585–604 (2007).
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria.Nature438, 90–93 (2005).
Droop, M. R. Vitamins, phytoplankton and bacteria: symbiosis or scavenging.J. Plankton Res.29, 107–113 (2007).
Reimann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom.Appl. Environ. Microbiol.66, 578–587 (2000).
Lau, W. W. Y., Keil, R. G. & Armbrust, E. V. Succession and diel transcriptional response of the glycolate-utilizing component of the bacterial community during a spring phytoplankton bloom.Appl. Environ. Microbiol.73, 2440–2450 (2007).
Kaczmarska, I. et al. Diversity and distribution of epibiotic bacteria onPseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater.Harmful Algae4, 725–741 (2005).
Foster, R. A. & Zehr, J. P. Characterization of diatom–cyanobacteria symbioses on the basis ofnifH,hetR and 16S rRNA sequences.Environ. Microbiol.8, 1913–1925 (2006).
Schmid, A.-M. M. Endobacteria in the diatomPinnularia (Bacillariophyceae). I. 'Scattered ct-nucleoids' explained: DAPI–DNA complexes stem from exoplastidial bacteria boring into the chloroplasts.J. Phycol.39, 122–138 (2003).
Sorhannus, U. A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution.Mar. Micropaleontol.65, 1–12 (2007).
Sims, P. A., Mann, D. G. & Medlin, L. K. Evolution of the diatoms: insights from fossil, biological and molecular data.Phycologia45, 361–402 (2006).This paper provides detailed information that couples geological data with diatom morphology and palaeological distributions.
Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton.Science305, 354–360 (2004).
Katz, M. E. et al. Biological overprint of the geological carbon cycle.Mar. Geol.217, 323–338 (2005).
Falkowski, P. G. et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals.Science309, 2202–2204 (2005).
Guidry, M. W., Arvidson, R. S. & MacKenzie, F. T. inEvolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 377–403 (Elsevier, 2007).
Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton.NatureRev. Microbiol.5, 813–819 (2007).
Rabosky, D. L. & Sorhannus, U. Diversity dynamics of marine planktonic diatoms across the Cenozoic.Nature457, 183–187 (2009).
Zielinski, U. & Gersonde, R. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paloeenvironmental reconstructions.Palaeogeogr. Palaeoclimat. Palaeoecol.129, 213–250 (1997).
Kroth, P. G. et al. A model for carbohydrate metabolism in the diatomPhaeodactylum tricornutum deduced from comparative whole genome analysis.PLoS ONE3, e1426 (2008).
Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean.Deep-Sea Res. II49, 463–507 (2002).
Marchetti, A., Maldonado, M. T., Lane, E. S. & Harrison, P. J. Iron requirements of the pennate diatomPseudo-nitzschia: comparison of oceanic (HNLC) and coastal species.Limnol. Oceanogr.51, 2092–2101 (2006).
Sunda, W. G., Swift, D. G. & Huntsman, S. A. Low iron requirement for growth in oceanic phytoplankton.Nature351, 55–57 (1991).
Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms.Nature431, 689–692 (2004).This paper provides the first molecular-based description of photosynthetic differences between coastal and open-ocean diatoms.
Peers, G. & Price, N. M. Copper-containing plastocyanin used for electron transport by an oceanic diatom.Nature441, 341–344 (2006).
Kustka, A. B., Allen, A. E. & Morel, F. M. M. Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms.J. Phycol.43, 715–729 (2007).
Allen, A. E. et al. Whole-cell response of the pennate diatomPhaeodactylum tricornutum to iron starvation.Proc. Natl Acad. Sci. USA105, 10438–10443 (2008).
Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate.Science308, 67–71 (2005).
Marchetti, A. et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms.Nature457, 467–470 (2008).This was the first molecular description of an iron-storage protein in diatoms and discusses the potential selective advantages conveyed by this protein.
Drum, R. W. & Gordon, R. Star Trek replicators and diatom nanotechnology.Trends Biotechnol.21, 325–328 (2003).
Tréguer, P. et al. The silica balance in the world ocean: a reestimate.Science268, 375–379 (1995).
Vrieling, E. G. et al. Salinity-dependent diatom biosilicification implies an important role of external ionic strength.Proc. Natl Acad. Sci. USA104, 10441–10446 (2007).
Bidle, K. D., Maganelli, M. & Azam, F. Regulation of oceanic silicon and carbon preservation by temperature control on bacteria.Science298, 1980–1984 (2002).
Kroger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis.Science298, 584–586 (2002).This paper describes the isolation of native silaffins from the cell wall and the function of these proteins during silica precipitation.
Kroger, N., Deutzmann, R., Bergsdorf, C. & Sumper, M. Species-specific polyamines from diatoms control silica morphology.Proc. Natl Acad. Sci. USA97, 14133–14138 (2000).
Wenzel, S., Hett, R., Richthamer, P. & Sumper, M. Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitationin vitro .Angew. Chem. Int. Edn Engl.120, 1753–1756 (2008).
Mock, T. et al. Whole-genome expression profiling of the marine diatomThalassiosira pseudonana identifies genes involved in silicon bioproceses.Proc. Natl Acad. Sci. USA105, 1579–1584 (2008).
Siegenthaler, U. et al. Stable carbon cycle–climate relationship during the late Pleistocene.Science310, 1313–1317 (2005).
Matsumoto, K. & Sarmiento, J. L. A corollary to the silicic acid leakage hypothesis.Paleoceanography23, PA2203 (2008).
Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions.Science315, 612–617 (2007).
Bates, S. S. & Trainer, V. L. inEcology of Harmful Algae (eds Graneli, E. & Turner, J. T.) Ch. 7 (Springer, 2006).
Goldstein, T. et al. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health.Proc. R. Soc. B275, 267–276 (2008).
de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment.J. Geophys. Res.110, C09S16 (2005).
Marchetti, A. et al. Identification and assessment of domoic acid production in oceanicPseudo-nitzschia (Bacillariophyceae) from iron-limited waters in the northeast subarcticPacific. J. Phycol.44, 650–661 (2008).
McDougald, D., Rice, S. A. & Kjelleberg, S. Bacterial quorum sensing and interference by naturally occurring biomimics.Anal. Bioanal. Chem.387, 445–453 (2007).
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive 'acidified' water onto the continental shelf.Science320, 1490–1492 (2008).
McNeil, B. I. & Matear, R. J. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2 .Proc. Natl Acad. Sci. USA105, 18860–18864 (2008).
Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean.Science287, 2225–2229 (2000).
Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate.Nature451, 286–288 (2008).
Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean's least productive waters are expanding.Geophys. Res. Lett.35, L03618 (2008).
Boning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. U. The response of the Antarctic Circumpolar Current to recent climate change.Nature Geosci.1, 864–869 (2008).
Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean.Proc. Natl Acad. Sci. USA105, 11458–11465 (2008).
Cloern, J. E., Jassby, A. D., Thompson, J. K. & Hieb, K. A. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay.Proc. Natl Acad. Sci. USA104, 18561–18565 (2007).
Richardson, A. J. & Poloczanska, E. S. Under-resourced, under threat.Science320, 1294–1295 (2008).
Smetacek, V. & Cloern, J. E. On phytoplankton trends.Science319, 1346–1348 (2008).
Cermeno, P. et al. The role of nutricline depth in regulating the ocean carbon cycle.Proc. Natl Acad. Sci. USA205, 20344–20349 (2008).This paper predicts phytoplankton community structure in oceans of the future and the resultant effects on the carbon cycle.
Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R. & Karl, D. M. Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: historical perspective and recent observations.Prog. Oceanogr.76, 2–38 (2008).
Sedwick, P. N., Sholkovitz, E. R. & Church, T. M. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea.Geochem. Geophys. Geosyst.8, Q10Q06 (2007).
Acknowledgements
I am grateful to members of my laboratory and to G. Rocap and S. Francis for discussion and edits of the manuscript. Support was provided by funding from the Gordon and Betty Moore Foundation Marine Microbiology Initiative, the US National Science Foundation and the National Institute of Environmental Health Sciences.
Author information
Authors and Affiliations
School of Oceanography, University of Washington, Seattle, 98195, Washington, USA
E. Virginia Armbrust
- E. Virginia Armbrust
You can also search for this author inPubMed Google Scholar
Ethics declarations
Competing interests
The author declares no competing financial interests.
Additional information
Reprints and permissions information is available athttp://www.nature.com/reprints.
Correspondence should be addressed to the author (armbrust@ocean.washington.edu).
Rights and permissions
About this article
Cite this article
Armbrust, E. The life of diatoms in the world's oceans.Nature459, 185–192 (2009). https://doi.org/10.1038/nature08057
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative