- Review Article
- Published:
Transformation and diversification in early mammal evolution
Naturevolume 450, pages1011–1019 (2007)Cite this article
18kAccesses
479Citations
110Altmetric
Abstract
Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Kielan-Jaworowska, Z. et al.Mammals from the Age of Dinosaurs—Origins, Evolution, and Structure (Columbia Univ. Press, New York, 2004)
Kemp, T. S.The Origin And Evolution of Mammals (Oxford Univ. Press, Oxford, 2005)
Lillegraven, J. A., Kielan-Jaworowska, Z. & Clemens, W. A. (eds)Mesozoic Mammals: The First Two-thirds of Mammalian History (Univ. Calif. Press, Berkeley, 1979)
McKenna, M. C. & Bell, S. K.Classification of Mammals Above the Species Level (Columbia Univ. Press, New York, 1997)
Wang, C. S. & Dodson, P. Estimating the diversity of dinosaurs.Proc. Natl Acad. Sci. USA103, 13601–13605 (2006)
Hopson, J. A. & Kitching, J. W. A probainognathian cynodont from South Africa and the phylogeny of nonmammalian cynodonts.Bull. Mus. Comp. Zool. (Harvard)156, 5–35 (2001)
Rowe, T. B. Definition, diagnosis, and origin of Mammalia.J. Vertebr. Paleontol.8, 241–264 (1988)
Sidor, C. A. Simplification as a trend in synapsid cranial evolution.Evolution Int. J. Org. Evolution55, 1419–1442 (2001)
Sidor, C. A. & Hopson, J. A. Ghost lineages and “mammalness”: assessing the temporal pattern of character acquisition in the Synapsida.Paleobiology24, 254–273 (1998)
Rougier, G. W. et al. Implications ofDeltatheridium specimens for early marsupial history.Nature396, 459–463 (1998)
Luo, Z.-X. et al. An Early Cretaceous tribosphenic mammal and metatherian evolution.Science302, 1934–1940 (2003)
Asher, R. J. et al. First combined cladistic analysis of marsupial mammal interrelationships.Mol. Phylogenet. Evol.33, 240–250 (2004)
Asher, R. J. et al. Stem Lagomorpha and the antiquity of Glires.Science307, 1091–1094 (2005)
Wible, J. R. et al. Cretaceous eutherians and Laurasian origin for placental mammals near the K-T boundary.Nature442, 1003–1006 (2007)
Archibald, J. D. et al. Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals.Nature414, 62–65 (2001)
Simpson, G. G.A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum (British Museum, London, 1928)
Kemp, T. S. The relationships of mammals.Zool. J. Linn. Soc.77, 353–384 (1983)
Wible, J. R. & Hopson, J. A. inMammal Phylogeny Vol. 1 (eds F. S. Szalay et al.) 45–62 (Springer-Verlag, New York, 1993)
Luo, Z.-X. et al. In quest for a phylogeny of Mesozoic mammals.Acta Palaeontol. Polonica47, 1–78 (2002)
Luo, Z.-X. & Wible, J. R. A new Late Jurassic digging mammal and early mammalian diversification.Science308, 103–107 (2005)
Luo, Z.-X. et al. A new eutriconodont mammal and evolutionary development of early mammals.Nature446, 288–293 (2007)
Cifelli, R. L. Early mammalian radiations.J. Paleontol.75, 1214–1226 (2001)
Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics.Science294, 2348–2351 (2001)
Springer, M. S. et al. Placental mammal diversification and the Cretaceous-Tertiary boundary.Proc. Natl Acad. Sci. USA100, 1056–1061 (2003)
Nilsson, M. A. et al. Marsupial relationships and a timeline for marsupial radiation in South Gondwana.Gene340, 189–196 (2004)
Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals.Nature446, 507–512 (2007)
Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life.Mol. Biol. Evol.24, 26–53 (2007)
Archibald, J. D. & Deutschman, D. H. Quantitative analysis of the timing of the origin and diversification of extant placental orders.J. Mamm. Evol.8, 107–124 (2001)
Foote, M. et al. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals.Science283, 1310–1314 (1999)
Hunter, J. P. & Janis, C. M. Spiny Norman in the Garden of Eden? Dispersal and early biogeography of Placentalia.J. Mamm. Evol.13, 89–123 (2006)
Easteal, S. Molecular evidence for the early divergence of placental mammals.BioEssays21, 1052–1058 (1999)
Bromham, L. et al. Growing up with dinosaurs: molecular dates and the mammalian radiation.Trends Ecol. Evol.14, 113–118 (1999)
Wesley-Hunt, G. D. The morphological diversification of carnivores in North America.Paleobiology31, 35–55 (2005)
Zhou, Z.-H. et al. An exceptionally preserved Lower Cretaceous ecosystem.Nature421, 807–814 (2003)
Jenkins, F. A. & Parrington, F. R. The postcranial skeletons of the Triassic mammalsEozostrodon, Megazostrodon andErythrotherium .Phil. Trans. R. Soc. Lond. B273, 387–431 (1976)
Damiani, R. et al. Earliest evidence of cynodont burrowing.Proc. R. Soc. Lond. B270, 1747–1751 (2003)
Kielan-Jaworowska, Z. & Gambaryan, P. P. Postcranial anatomy and habits of Asian multituberculate mammals.Fossils Strata36, 1–92 (1994)
Ji, Q. et al. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals.Science311, 1123–1127 (2006)
Martin, T. Postcranial anatomy ofHaldanodon exspectatus (Mammalia, Docodonta) from the Late Jurasssic (Kimmeridgian) of Portugal and its bearing for mammalian evolution.Zool. J. Linn. Soc.145, 219–248 (2005)
Martin, T. Paleontology: early mammalian evolutionary experiments.Science311, 1109–1110 (2006)
Luo, Z.-X. et al. A new mammaliaform from the Early Jurassic of China and evolution of mammalian characteristics.Science292, 1535–1540 (2001)
Hu, Y.-M. et al. Large Mesozoic mammals fed on young dinosaurs.Nature433, 149–153 (2005)
Szalay, F. S. & Sargis, E. J. Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria.Geodiversitas23, 139–302 (2001)
Muizon, C. de.Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications.Geodiversitas20, 19–142 (1998)
Argot, C. Functional–adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupialsMayulestes ferox andPucadelphys andinus .J. Morphol.247, 51–79 (2001)
Krause, D. W. & Jenkins, F. A. The postcranial skeleton of North American multituberculates.Bull. Mus. Comp. Zool. Harv.150, 199–246 (1983)
Krebs, B. Das Skelett vonHenkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal.Berliner Geowissensch. Abh.A133, 1–110 (1991)
Ji, Q. et al. The earliest-known eutherian mammal.Nature416, 816–822 (2002)
Meng, J. et al. A Mesozoic gliding mammal from northeastern China.Nature444, 889–893 (2006)
Luo, Z.-X. inIn the Shadow of the Dinosaurs—Early Mesozoic Tetrapods (eds N. C. Fraser & H.-D. Sues) 98–128 (Cambridge Univ. Press, Cambridge, 1994)
Luo, Z.-X. & Crompton, A. W. Transformation of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals.J. Vertebr. Paleontol.14, 341–374 (1994)
Crompton, A. W. inStudies in Vertebrate Evolution (eds K. A. Joysey & T. S. Kemp) 231–253 (Oliver & Boyd, Edinburgh, 1972)
Kermack, K. A. et al. The lower jaw ofMorganucodon .Zool. J. Linn. Soc.53, 87–175 (1973)
Kermack, K. A. et al. The skull ofMorganucodon .Zool. J. Linn. Soc.71, 1–158 (1981)
Allin, E. F. & Hopson, J. A. inThe Evolutionary Biology of Hearing (eds Webster, D. B. et al.) 587–614 (Springer, New York, 1992)
Rowe, T. B. Coevolution of the mammalian middle ear and neocortex.Science273, 651–654 (1996)
Bonaparte, J. F. et al. New information onBrasilodon andBrasilitherium (Cynodontia, Probainognathia) from the Late Triassic, southern Brazil.Revist. Brasil. Paleontol.8, 25–56 (2005)
Gaupp, E. Die Reichertsche Theorie (Hammer-, Amboss- und Kieferfrage).Archiv. Anatomie Entwick.1912, 1–426 (1913)
Zeller, U. Die Entwicklung und Morphologie des Schädels vonOrnithorhynchus anatinus (Mammalia: Prototheria: Monotremata).Abh. Senckenberg. Naturforsch. Ges.545, 1–188 (1989)
Maier, W. Phylogeny and ontogeny of mammalian middle ear structures.Nether. J. Zool.40, 55–75 (1990)
Maier, W. inMammal Phylogeny Vol. 1 (eds Szalay, F. S. et al.) 165–181 (Springer, New York, 1993)
Sánchez-Villagra, M. R. et al. Ontogenetic and phylogenetic transformations of the ear ossicles in marsupial mammals.J. Morphol.251, 219–238 (2002)
Bever, G. et al. Comment on “Independent origins of middle ear bones in monotremes and therians.”.Science309, 1492a (2005)
Rougier G. W, Forasiepi, A. M. & Martinelli, A. G. Comment on “Independent origins of middle ear bones in monotremes and therians.”.Science309, 1492b (2005)
Rich, T. H. et al. Independent origins of middle ear bones in monotremes and therians.Science307, 910–914 (2005)
Martin, T. & Luo, Z.-X. Paleontology: homoplasy in the mammalian ear.Science307, 861–862 (2005)
Wang, Y.-Q. et al. An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear.Science294, 357–361 (2001)
Li, C.-K. et al. A new species ofGobiconodon (Triconodonta, Mammalia) and its implication for the age of Jehol Biota.Chin. Sci. Bull. [English].48, 1129–1134 (2003)
Meng, J. et al. The ossified Meckel’s cartilage and internal groove in Mesozoic mammaliaforms: implications to origin of the definitive mammalian middle ear.Zool. J. Linn. Soc.138, 431–448 (2003)
Patterson, B. Early Cretaceous mammals and the evolution of mammalian molar teeth.Fieldiana. Geology13, 1–105 (1956)
Crompton, A. W. inEarly Mammals (eds Kermack, D. M. & Kermack, K. A.) 65–87 (Zool. J. Linn. Soc., London, 1971)
McKenna, M. C. inPhylogeny of the Primates (eds Luckett, W. P. & Szalay, F. S.) 21–46 (Plenum Publ. Corp., New York, 1975)
Prothero, D. R. New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria.Bull. Am. Mus. Nat. Hist.167, 277–326 (1981)
Lopatin, A. V. & Averianov, A. O. An aegialodontid upper molar and the evolution of mammal dentition.Science313, 1092 (2006)
Chow, M. & Rich, T. H.Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China.Austral. Mamm.5, 127–142 (1982)
Sigogneau-Russell, D. Discovery of a Late Jurassic Chinese mammal in the upper Bathonian of England.C. R. Acad. Sci. II327, 571–576 (1998)
Wang, Y.-Q. et al. A probable pseudo-tribosphenic upper molar from the Late Jurassic of China and the early radiation of the Holotheria.J. Vertebr. Paleontol.18, 777–787 (1998)
Luo, Z. X. et al. Convergent dental evolution in pseudotribosphenic and tribosphenic mammals.Nature450, 93–97 (2007)
Rich, T. H. et al. A tribosphenic mammal from the Mesozoic of Australia.Science278, 1438–1442 (1997)
Rich, T. H. et al. An advanced ausktribosphenid from the Early Cretaceous of Australia.Rec. Queen Victoria Mus.110, 1–9 (2001)
Flynn, J. J. et al. A Middle Jurassic mammal from Madagascar.Nature401, 57–60 (1999)
Rauhut, O. W. M. et al. A Jurassic mammal from South America.Nature416, 165–168 (2002)
Martin, T. & Rauhut, O. W. M. Mandible and dentition ofAsfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth.J. Vertebr. Paleontol.25, 414–425 (2005)
Rougier, G. W. et al. New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationship.Am. Mus. Novitates3566, 1–54 (2007)
Luo, Z.-X. et al. Dual origin of tribosphenic mammals.Nature409, 53–57 (2001)
Rich, T. H. et al. Evidence that monotremes and ausktribosphenids are not sistergroups.J. Vertebr. Paleontol.22, 466–469 (2002)
Woodburne, M. O. Monotremes as pretribosphenic mammals.J. Mamm. Evol.10, 195–248 (2003)
Musser, A. M.Investigations into the Evolution of Australian Mammals with a Focus on Monotremata PhD thesis, Univ. of New South Wales. (2006)
Sigogneau-Russell, D. et al. The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the “dual origin” of Tribosphenida.Comptes. Rend. Acad. Sci.333, 141–147 (2001)
Sigogneau-Russell, D. Docodonts from the British Mesozoic.Acta Palaeontol. Polonica48, 357–374 (2003)
Evans, A. R. & Sanson, G. D. The tooth of perfection: functional and spatial constraints on mammalian tooth shape.Biol. J. Linn. Soc.78, 173–191 (2003)
Kangas, A. T. et al. Nonindependence of mammalian dental characters.Nature432, 211–214 (2004)
Kassai, Y. et al. Regulation of mammalian tooth cusp patterning by ectodin.Science309, 2067–2070 (2005)
Jenkins, F. A. The postcranial skeleton of African cynodonts.Peabody Mus. Nat. Hist. Bull.36, 1–216 (1971)
Filler, A. G.Axial Character Seriation in Mammals: an Historical and Morphological Exploration of the Origin, Development, Use and Current Collapse of the Homology Paradigm PhD thesis, Harvard Univ. (1986)
Narita, Y. & Kuratani, S. Evolution of vertebral formulae in mammals: a perspective on developmental constraints.J. Exp. Zool.304B, 91–106 (2005)
Wellik, D. M. & Capecchi, M. R.Hox10 andHox11 genes are required to globally pattern the mammalian skeleton.Science301, 363–367 (2003)
Li, G. & Luo, Z.-X. A Cretaceous symmetrodont therian with some monotreme-like postcranial features.Nature439, 195–200 (2006)
Acknowledgements
I benefited from years of stimulating discussion about early mammal evolution with R. Cifelli, T. Martin, J. Wible, Z. Kielan-Jaworowska, T. Rowe, H. Sues, M. Dawson, K. C. Beard, G. Wilson, G. Rougier, J. Bonaparte, W. Maier, P.-J. Chen and Q. Ji, and discussion on diversification pattern with D. Erwin and M. Benton. Many helped my research: A. Tabrum, X.-N. Yang, Q. Yang, P.-J. Chen, Z.-M. Dong, K.-Q. Gao. I thank Q. Ji and J. R. Wible for access to comparative collections; M. R. Dawson, T. Martin and J. R. Wible for improving the manuscript; M. Klingler for assistance with graphics. Support was from the National Science Foundation (USA), National Natural Science Foundation of China, National Geographic Society and the Carnegie Museum.
Author information
Authors and Affiliations
Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, USA ,
Zhe-Xi Luo
- Zhe-Xi Luo
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toZhe-Xi Luo.
Rights and permissions
About this article
Cite this article
Luo, ZX. Transformation and diversification in early mammal evolution.Nature450, 1011–1019 (2007). https://doi.org/10.1038/nature06277
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Fossils document evolutionary changes of jaw joint to mammalian middle ear
- Fangyuan Mao
- Chi Zhang
- Jin Meng
Nature (2024)
Sensing and Imaging Molecular Oxygen in Mammals with Spin Lattice Relaxation Electron Paramagnetic Resonance
- Howard J. Halpern
Molecular Imaging and Biology (2024)
Putative Triassic stem mammal Tikitherium copei is a Neogene shrew
- Alexander O. Averianov
- Leonid L. Voyta
Journal of Mammalian Evolution (2024)
Middle ear innovation in Early Cretaceous eutherian mammals
- Haibing Wang
- Yuanqing Wang
Nature Communications (2023)
First monotreme from the Late Cretaceous of South America
- Nicolás R. Chimento
- Federico L. Agnolín
- Fernando E. Novas
Communications Biology (2023)


