Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Review Article
  • Published:

Ecological networks and their fragility

Naturevolume 442pages259–264 (2006)Cite this article

Abstract

Darwin used the metaphor of a ‘tangled bank’ to describe the complex interactions between species. Those interactions are varied: they can be antagonistic ones involving predation, herbivory and parasitism, or mutualistic ones, such as those involving the pollination of flowers by insects. Moreover, the metaphor hints that the interactions may be complex to the point of being impossible to understand. All interactions can be visualized as ecological networks, in which species are linked together, either directly or indirectly through intermediate species. Ecological networks, although complex, have well defined patterns that both illuminate the ecological mechanisms underlying them and promise a better understanding of the relationship between complexity and ecological stability.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Shortest paths in a complex food web.
Figure 2:Distribution of linkage density in ecological networks.

Similar content being viewed by others

References

  1. Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences.Nature350, 669–674 (1991)

    Article ADS  Google Scholar 

  2. Cohen, J. E., Briand, F. & Newman, C. M.Community Food Webs: Data and Theory (Springer, Berlin, 1990)

    Book  Google Scholar 

  3. Pimm, S. L.Food Webs (Univ. Chicago Press, Chicago, 2003)

    Google Scholar 

  4. Thompson, J. N.The Coevolutionary Process (Univ. Chicago Press, Chicago, 1994)

    Book  Google Scholar 

  5. Jordano, P., Bascompte, J. & Olesen, J. M. inPlant-Pollinator Interactions: From Specialization to Generalization (eds Waser, N. M. & Ollerton, J.) (Univ. Chicago Press, Chicago, 2005)

    Google Scholar 

  6. Montoya, J. M. & Solé, R. V. Small world patterns in food webs.J. Theor. Biol.214, 405–412 (2002)

    Article PubMed  Google Scholar 

  7. Williams, R. J., Berlow, E. L., Dunne, J. A., Barabàsi, A.-L. & Martinez, N. D. Two degrees of separation in complex food webs.Proc. Natl Acad. Sci. USA99, 12913–12916 (2002)

    Article ADS CAS PubMed  Google Scholar 

  8. Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. The nested assembly of plant–animal mutualistic networks.Proc. Natl Acad. Sci. USA100, 9383–9387 (2003)

    Article ADS CAS PubMed  Google Scholar 

  9. Woodward, G. et al. Body-size in ecological networks.Trends Ecol. Evol.20, 402–409 (2005)

    Article PubMed  Google Scholar 

  10. Dunne, J. E., Williams, R. J. & Martinez, N. D. Food web structure and network theory: the role of connectance and size.Proc. Natl Acad. Sci. USA99, 12917–12922 (2002)

    Article ADS CAS PubMed  Google Scholar 

  11. Strogatz, S. Exploring complex networks.Nature410, 268–276 (2001)

    Article ADS CAS  Google Scholar 

  12. Álbert, R. & Barabàsi, A.-L. Statistical mechanics of complex networks.Rev. Mod. Phys.74, 47–97 (2002)

    Article ADS MathSciNet  Google Scholar 

  13. Solé, R. V., Ferrer, R., Montoya, J. M. & Valverde, S. Selection, tinkering and emergence in complex networks.Complexity8, 20–33 (2002)

    Article MathSciNet  Google Scholar 

  14. Pimm, S. L. The complexity and stability of ecosystems.Nature307, 321–326 (1984)

    Article ADS  Google Scholar 

  15. Pimm, S. L.The Balance of Nature? Ecological Issues in the Conservation of Species and Communities (Univ. Chicago Press, Chicago, 1991)

    Google Scholar 

  16. Solé, R. V. & Bascompte, J.Self-organization in Complex Ecosystems (Princeton Univ. Press, Princeton, 2006)

    Google Scholar 

  17. Warren, P. H. inAspects of the Genesis and Maintenance of Biological Diversity (eds Hochberg, M. E. et al.) 142–161 (Oxford Univ. Press, Oxford, 1996)

    Google Scholar 

  18. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs.Nature404, 180–183 (2000)

    Article ADS CAS PubMed  Google Scholar 

  19. Williams, R. J. & Martinez, N. D. Limits to trophic levels and omnivory in complex food webs: theory and data.Am. Nat.163, 458–468 (2004)

    Article PubMed  Google Scholar 

  20. Pimm, S. L. & Lawton, J. H. Are food webs compartmented?J. Anim. Ecol.49, 879–898 (1980)

    Article  Google Scholar 

  21. Thomas, J. D. Mutualistic interactions in freshwater modular systems with molluscan components.Adv. Ecol. Res.20, 125–178 (1990)

    Article  Google Scholar 

  22. Fonseca, C. R. & Ganade, G. Asymmetries, compartments and null interactions in an Amazonian ant-plant community.J. Anim. Ecol.65, 339–347 (1996)

    Article  Google Scholar 

  23. Memmott, J., Godfray, H. C. J. & Gould, I. D. The structure of a tropical host-parasitoid community.J. Anim. Ecol.63, 521–540 (1994)

    Article  Google Scholar 

  24. Raffaelli, D. G. & Hall, S. J. Compartments and predation in estuarine food web.J. Anim. Ecol.61, 551–560 (1992)

    Article  Google Scholar 

  25. Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure.Nature426, 282–285 (2003)

    Article ADS CAS PubMed  Google Scholar 

  26. Pimm, S. L. & Rice, J. A. The dynamics of multispecies, multi-life-stage models of aquatic food webs.Theor. Popul. Biol.32, 303–325 (1987)

    Article MathSciNet  Google Scholar 

  27. Askew, R. R. On the biology of inhabitants of oak galls of Cynipidae (Hymenoptera) in Britain.Trans. Soc. Br. Entomol.14, 237–269 (1961)

    Google Scholar 

  28. Strong, D. R., Lawton, J. H. & Southwood, R.Insects on Plants (Harvard Univ. Press, New York, 1984)

    Google Scholar 

  29. Amaral, L. A. N., Scala, A., Barthélemy, M. & Stanley, H. E. Classes of behavior of small-world networks.Proc. Natl Acad. Sci. USA97, 11149–11152 (2000)

    Article ADS CAS PubMed  Google Scholar 

  30. Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant-animal interactions.Ecol. Lett.6, 69–81 (2003)

    Article  Google Scholar 

  31. Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models.Oikos102, 614–622 (2003)

    Article  Google Scholar 

  32. Stouffer, D. B., Camacho, J., Guimera, R., Ng, C. A. & Nunes Amaral, L. A. Quantitative patterns in the structure of model and empirical food webs.Ecology86, 1301–1311 (2005)

    Article  Google Scholar 

  33. Garlaschelli, D., Caldarelli, G. & Pietronero, L. Universal scaling relations in food webs.Nature423, 165–168 (2003)

    Article ADS CAS PubMed  Google Scholar 

  34. Vázquez, D. P. & Aizen, M. A. Null model analyses of specialization in plant-pollinator interactions.Ecology84, 2493–2501 (2003)

    Article  Google Scholar 

  35. Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size.Proc. Natl Acad. Sci. USA100, 1781–1786 (2003)

    Article ADS CAS PubMed  Google Scholar 

  36. Sugihara, G., Bersier, L.-F., Southwood, T. R. E., Pimm, S. L. & May, R. M. Predicted correspondence between species abundances and dendrograms of niche similarities.Proc. Natl Acad. Sci. USA100, 5246–5251 (2003)

    Article ADS CAS PubMed  Google Scholar 

  37. Cattin, M. F., Bersier, L.-F., Banasek-Richter, C., Baltensperger, M. & Gabriel, J.-P. Phylogenetic constraints and adaptation explain food-webs structure.Nature427, 835–839 (2004)

    Article ADS CAS PubMed  Google Scholar 

  38. Jonsson, T., Cohen, J. E. & Carpenter, S. R. Food webs, body size and species abundance in ecological community description.Adv. Ecol. Res.36, 1–84 (2005)

    Article  Google Scholar 

  39. Hawkins, B. A.Pattern and Process in Host-Parasitoid Communities (Cambridge Univ. Press, Cambridge, UK, 1994)

    Book  Google Scholar 

  40. Rana, J. S., Dixon, A. F. G. & Jarosik, V. Costs and benefits of prey specialization in a generalist insect predator.J. Anim. Ecol.71, 15–22 (2002)

    Article  Google Scholar 

  41. Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey.Trends Ecol. Evol.13, 350–355 (1998)

    Article CAS PubMed  Google Scholar 

  42. Temeles, E. J. & Kress, W. J. Adaptation in a plant-hummingbird association.Science300, 630–633 (2003)

    Article ADS CAS PubMed  Google Scholar 

  43. Sanderson, J. G. Testing ecological patterns.Am. Sci.80, 332–339 (2000)

    Article ADS  Google Scholar 

  44. Froese, R. & Pauly, D. (eds)FishBase.http://www.fishbase.org (2005)

  45. Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance.Science312, 431–433 (2006)

    Article ADS CAS PubMed  Google Scholar 

  46. May, R. M.Stability and Complexity in Model Ecosystems (Princeton Univ. Press, Princeton, 1974)

    Google Scholar 

  47. Yodzis, P. Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem.J. Anim. Ecol.67, 635–658 (1998)

    Article  Google Scholar 

  48. McCann, K. S. The diversity-stability debate.Nature405, 228–233 (2000)

    Article CAS PubMed  Google Scholar 

  49. Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops.Science296, 1120–1223 (2002)

    Article ADS CAS PubMed  Google Scholar 

  50. Emmerson, M. & Raffaelli, D. Body size, patterns of interaction strength and the stability of a real food web.J. Anim. Ecol.73, 399–409 (2004)

    Article  Google Scholar 

  51. Abrams, P., Menge, B. A., Mittelbach, G. G., Spiller, D. & Yodzis, P. inFood Webs: Integration of Patterns and Dynamics (eds Polis, G. A. & Winemiller, K. O.) 371–395 (Chapman & Hall, New York, 1996)

    Book  Google Scholar 

  52. Berlow, E. et al. Interaction strengths in food webs: issues and opportunities.J. Anim. Ecol.73, 585–598 (2004)

    Article  Google Scholar 

  53. Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution.Am. Nat.129, 657–677 (1987)

    Article  Google Scholar 

  54. Berlow, E. L. Strong effects of weak interactions.Nature398, 330–334 (1999)

    Article ADS CAS  Google Scholar 

  55. McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature.Nature395, 794–798 (1998)

    Article ADS CAS  Google Scholar 

  56. Wootton, J. T. Indirect effects in complex ecosystems: recent progress and future challenges.J. Sea Res.48, 157–172 (2002)

    Article ADS  Google Scholar 

  57. Menge, B. A. Indirect effects in marine rocky intertidal interaction webs: patterns and importance.Ecol. Monogr.65, 21–74 (1995)

    Article  Google Scholar 

  58. Pimm, S. L.World According to Pimm: a Scientist Audits the Earth (McGraw-Hill, New York, 2001)

    Google Scholar 

  59. MacArthur, R. H. Fluctuations of animal populations and a measure of community stability.Ecology36, 533–536 (1955)

    Article  Google Scholar 

  60. Paine, R. T. A note on trophic complexity and community stability.Am. Nat.103, 91–93 (1969)

    Article  Google Scholar 

  61. Álbert, R., Jeong, H. & Barabàsi, A.-L. Error and attack tolerance of complex networks.Nature406, 378–382 (2000)

    Article ADS PubMed  Google Scholar 

  62. Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks.Proc. R. Soc. Lond. B268, 2039–2045 (2001)

    Article  Google Scholar 

  63. Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance.Ecol. Lett.5, 558–567 (2002)

    Article  Google Scholar 

  64. Memmot, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions.Proc. R. Soc. Lond. B271, 2605–2611 (2004)

    Article  Google Scholar 

  65. Watts, D. J. & Strogatz, S. H. Collective dynamics in ‘small-world’ networks.Nature393, 440–442 (1998)

    Article ADS CAS PubMed  Google Scholar 

  66. Hall, S. J. & Raffaelli, D. Food web patterns: lessons from a species-rich web.J. Anim. Ecol.60, 823–842 (1991)

    Article  Google Scholar 

  67. Polis, G. A. & Strong, D. R. Food web complexity and community dynamics.Am. Nat.147, 813–846 (1996)

    Article  Google Scholar 

  68. Root, R. B. The niche exploitation pattern of the blue-gray gnatcatcher.Ecol. Monogr.37, 317–350 (1967)

    Article  Google Scholar 

  69. Kitching, R. L. inPhytotelmata: Terrestrial Plants as Hosts of Aquatic Insect Communities (eds Frank, H. & Lounibos, P.) 205–222 (Plexus, New Jersey, 1983)

    Google Scholar 

  70. Kitching, R. L.Food Webs and Container Habitats (Cambridge Univ. Press, Cambridge, UK, 2000)

    Book  Google Scholar 

  71. Polis, G. A. Complex desert food webs: an empirical critique of food web theory.Am. Nat.138, 123–155 (1991)

    Article  Google Scholar 

  72. Cohen, J. E. et al. Improving food webs.Ecology74, 252–258 (1993)

    Article  Google Scholar 

  73. Raffaelli, D. G. & Hall, S. J. inFood Webs: Integration of Patterns and Dynamics (eds Polis, G. A. & Winemiller, K. O.) 185–191 (Chapman & Hall, New York, 1996)

    Book  Google Scholar 

  74. Emmerson, M. E., Montoya, J. M. & Woodward, G. inDynamic Food Webs (eds de Ruiter, P. C., Wolters, V. & Moore, J. C.) 179–197 (Academic, San Diego, 2005)

    Google Scholar 

  75. Melian, C. J. & Bascompte, J. Food web cohesion.Ecology85, 352–358 (2004)

    Article  Google Scholar 

  76. Wheelwright, N. T., Haber, W. A., Murray, K. G. & Guindon, C. Tropical fruit eating birds and their food plants: a survey of a Costa Rican lower montane forest.Biotropica16, 173–192 (1984)

    Article  Google Scholar 

  77. Inoue, T., Kato, M., Kakutani, T., Suka, T. & Itino, T. Insect-flower relationship in the temperate deciduous forest of Kibune, Kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits.Contrib. Biol. Lab. Kyoto Univ.27, 377–463 (1990)

    Google Scholar 

  78. Reagan, D. P. & Waide, R. B.The Food Web of a Tropical Rain Forest (Univ. Chicago Press, Chicago, 1996)

    Google Scholar 

Download references

Acknowledgements

We thank J. Dunne, D. Rafaelli, M. Emmerson and G. Woodward for comments; P. Jordano and R. Waide for the pictures and data forFig. 2; and S. Valverde for assistance with the figures. This work was supported by an NERC Fellowship (J.M.M.) and the Santa Fe Institute (grant to R.V.S.).

Author information

Authors and Affiliations

  1. School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, UK

    José M. Montoya

  2. ICREA-Complex Systems Laboratory, IMIM-UPF, Dr Aiguader 80, 08003, Barcelona, Spain

    José M. Montoya & Ricard V. Solé

  3. Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, 27708, USA

    Stuart L. Pimm

  4. Santa Fe Institute, 1399 Hyde Park Road, New Mexico, 87501, USA

    Ricard V. Solé

Authors
  1. José M. Montoya

    You can also search for this author inPubMed Google Scholar

  2. Stuart L. Pimm

    You can also search for this author inPubMed Google Scholar

  3. Ricard V. Solé

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toStuart L. Pimm.

Ethics declarations

Competing interests

Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Access through your institution
Buy or subscribe

Editorial Summary

Ecological complexity untangled

Food webs map which organisms eat which other organisms, and help to visualize community organization. They are complex, as Darwin recognized in his metaphor of a “tangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth”. The cover (by Sergi Valverde using Netlab software) illustrates complexity in an empirical food web — here it's species associated with Scotch broom at Silwood Park, UK. Montoyaet al. review recent work on ecological networks and consider a paradox: theory predicts that complex networks will be fragile, yet complexity evolves and persists. Yes, these networks are complex, they conclude, but not so complex that we can't understand them. There are simplifying patterns in maps of feeding relationships, and parts of the 'tangled bank' are less tangled than others. As simulations grow more realistic, factors influencing ecological fragility should become clearer, with benefits for work on ecological impact and conservation. Ecology features elsewhere this week. In a contribution to the debate on ecosystem biodiversity, Rooneyet al. identify a recurring pattern in real food webs: the top predators couple distinct 'fast' and 'slow' energy channels that differ in both productivity and turnover rate. Theory suggests that such coupling is critical to food-web stability. Alarmingly, human actions that reduce biodiversity also erode structures that provide that stability. So it may be time to stop focusing exclusively on ecosystem biodiversity, and to look more closely at the factors that create food-web stability. All agree: matters ecological are complex. But policymakers do not have a recognized international body of experts to turn to. Climate change has the IPCC. Now ecologists present the case for IMoSEB, the International Mechanism of Scientific Expertise on Biodiversity.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp