- Letter
- Published:
Evidence for Efimov quantum states in an ultracold gas of caesium atoms
- T. Kraemer1,
- M. Mark1,
- P. Waldburger1,
- J. G. Danzl1,
- C. Chin1,2,
- B. Engeser1,
- A. D. Lange1,
- K. Pilch1,
- A. Jaakkola1,
- H.-C. Nägerl1 &
- …
- R. Grimm1,3
Naturevolume 440, pages315–318 (2006)Cite this article
7456Accesses
51Altmetric
Abstract
Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction1,2 of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics3,4,5,6,7,8. However, the observation of Efimov quantum states has remained an elusive goal3,5. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss9,10 when the strength of the two-body interaction is varied. We also detect a minimum9,11,12 in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems7. While Feshbach resonances13,14 have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter15 to the world of few-body quantum phenomena.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Efimov, V. Energy levels arising from resonant two-body forces in a three-body system.Phys. Lett. B.33, 563–564 (1970)
Efimov, V. Weakly-bound states of three resonantly-interacting particles.Sov. J. Nucl. Phys.12, 589–595 (1971)
Jensen, A. S., Riisager, K., Fedorov, D. V. & Garrido, E. Structure and reactions of quantum halos.Rev. Mod. Phys.76, 215–261 (2004)
Lim, T. K., Duffy, K. & Damer, W. C. Efimov state in the4He trimer.Phys. Rev. Lett.38, 341–343 (1977)
Brühl, R. et al. Matter wave diffraction from an inclined transmission grating: Searching for the elusive4He trimer Efimov state.Phys. Rev. Lett.95, 063002 (2005)
Braaten, E., Hammer, H.-W. & Kusunoki, M. Efimov states in a Bose-Einstein condensate near a Feshbach resonance.Phys. Rev. Lett.90, 170402 (2003)
Braaten, E. & Hammer, H.-W. Universality in few-body systems with large scattering length. Preprint athttp://arXiv.org/abs/cond-mat/0410417 (2004).
Stoll, M. & Köhler, T. Production of three-body Efimov molecules in an optical lattice.Phys. Rev. A72, 022714 (2005)
Esry, B. D., Greene, C. H. & Burke, J. P. Jr Recombination of three atoms in the ultracold limit.Phys. Rev. Lett.83, 1751–1754 (1999)
Braaten, E. & Hammer, H.-W. Three-body recombination into deep bound states in a Bose gas with large scattering length.Phys. Rev. Lett.87, 160407 (2001)
Nielsen, E. & Macek, J. H. Low-energy recombination of identical bosons by three-body collisions.Phys. Rev. Lett.83, 1566–1569 (1999)
Bedaque, P. F., Braaten, E. & Hammer, H.-W. Three-body recombination in Bose gases with large scattering length.Phys. Rev. Lett.85, 908–911 (2000)
Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions.Phys. Rev. A47, 4114–4122 (1993)
Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate.Nature392, 151–154 (1998)
Southwell, K. (ed.)Ultracold matter Nature (Insight)416, 205–246 (2002).
Efimov, V. Low-energy properties of three resonantly interacting particles.Sov. J. Nucl. Phys.29, 546–553 (1979)
Bringas, F., Yamashita, M. T. & Frederico, T. Triatomic continuum resonances for large negative scattering lengths.Phys. Rev. A69, 040702(R) (2004)
Nielsen, E., Suno, H. & Esry, B. D. Efimov resonances in atom-diatom scattering.Phys. Rev. A66, 012705 (2002)
D'Incao, J. P., Suno, H. & Esry, B. D. Limits on universality in ultracold three-boson recombination.Phys. Rev. Lett.93, 123201 (2004)
Weber, T., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Three-body recombination at large scattering lengths in an ultracold atomic gas.Phys. Rev. Lett.91, 123201 (2003)
Fedichev, P. O., Reynolds, M. W. & Shlyapnikov, G. V. Three-body recombination of ultracold atoms to a weakly bounds level.Phys. Rev. Lett.77, 2921–2924 (1996)
Chin, C. et al. Precision Feshbach spectroscopy of ultracold Cs2 .Phys. Rev. A70, 032701 (2004)
Bolda, E. L., Tiesinga, E. & Julienne, P. S. Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps.Phys. Rev. A66, 013403 (2002)
Kraemer, T. et al. Optimized production of a cesium Bose-Einstein condensate.Appl. Phys. B79, 1013–1019 (2004)
Köhler, T., Goral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Preprint athttp://arxiv.org/abs/cond-mat/0601420 (2006).
Kartavtsev, O. I. & Macek, J. H. Low-energy three-body recombination near a Feshbach resonance.Few-Body Syst.31, 249–254 (2002)
Petrov, D. S. Three-boson problem near a narrow Feshbach resonance.Phys. Rev. Lett.93, 143201 (2004)
Rychtarik, D., Engeser, B., Nägerl, H.-C. & Grimm, R. Two-dimensional Bose-Einstein condensate in an optical surface trap.Phys. Rev. Lett.92, 173003 (2004)
Donley, E. A. et al. Dynamics of collapsing and exploding Bose–Einstein condensates.Nature412, 295–299 (2001)
Thomas, L. H. The interaction between a neutron and a proton and the structure of H3.Phys. Rev.47, 903–909 (1935)
Acknowledgements
We thank E. Braaten, C. Greene, B. Esry, H. Hammer and T. Köhler for many discussions and E. Kneringer for support regarding the data analysis. We acknowledge support by the Austrian Science Fund (FWF) within Spezialforschungsbereich 15 and within the Lise Meitner programme, and by the European Union in the frame of the TMR networks ‘Cold Molecules’ and ‘FASTNet’. M.M. is supported within the Doktorandenprogramm of the Austrian Academy of Sciences.
Author information
Authors and Affiliations
Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A–6020, Innsbruck, Austria
T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl & R. Grimm
James Franck Institute, Physics Department of the University of Chicago, 5640 S. Ellis Avenue, Illinois, 60637, Chicago, USA
C. Chin
Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A–6020, Innsbruck, Austria
R. Grimm
- T. Kraemer
You can also search for this author inPubMed Google Scholar
- M. Mark
You can also search for this author inPubMed Google Scholar
- P. Waldburger
You can also search for this author inPubMed Google Scholar
- J. G. Danzl
You can also search for this author inPubMed Google Scholar
- C. Chin
You can also search for this author inPubMed Google Scholar
- B. Engeser
You can also search for this author inPubMed Google Scholar
- A. D. Lange
You can also search for this author inPubMed Google Scholar
- K. Pilch
You can also search for this author inPubMed Google Scholar
- A. Jaakkola
You can also search for this author inPubMed Google Scholar
- H.-C. Nägerl
You can also search for this author inPubMed Google Scholar
- R. Grimm
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toH.-C. Nägerl.
Ethics declarations
Competing interests
Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Kraemer, T., Mark, M., Waldburger, P.et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms.Nature440, 315–318 (2006). https://doi.org/10.1038/nature04626
Received:
Accepted:
Published:
Issue Date: