Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

Naturevolume 440pages315–318 (2006)Cite this article

Abstract

Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction1,2 of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics3,4,5,6,7,8. However, the observation of Efimov quantum states has remained an elusive goal3,5. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss9,10 when the strength of the two-body interaction is varied. We also detect a minimum9,11,12 in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems7. While Feshbach resonances13,14 have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter15 to the world of few-body quantum phenomena.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Efimov's scenario.
Figure 2:Observation of the Efimov resonance in measurements of three-body recombination.
Figure 3:Atom loss for small scattering lengths.

Similar content being viewed by others

References

  1. Efimov, V. Energy levels arising from resonant two-body forces in a three-body system.Phys. Lett. B.33, 563–564 (1970)

    Article ADS CAS  Google Scholar 

  2. Efimov, V. Weakly-bound states of three resonantly-interacting particles.Sov. J. Nucl. Phys.12, 589–595 (1971)

    Google Scholar 

  3. Jensen, A. S., Riisager, K., Fedorov, D. V. & Garrido, E. Structure and reactions of quantum halos.Rev. Mod. Phys.76, 215–261 (2004)

    Article ADS CAS  Google Scholar 

  4. Lim, T. K., Duffy, K. & Damer, W. C. Efimov state in the4He trimer.Phys. Rev. Lett.38, 341–343 (1977)

    Article ADS CAS  Google Scholar 

  5. Brühl, R. et al. Matter wave diffraction from an inclined transmission grating: Searching for the elusive4He trimer Efimov state.Phys. Rev. Lett.95, 063002 (2005)

    Article ADS PubMed  Google Scholar 

  6. Braaten, E., Hammer, H.-W. & Kusunoki, M. Efimov states in a Bose-Einstein condensate near a Feshbach resonance.Phys. Rev. Lett.90, 170402 (2003)

    Article ADS PubMed  Google Scholar 

  7. Braaten, E. & Hammer, H.-W. Universality in few-body systems with large scattering length. Preprint athttp://arXiv.org/abs/cond-mat/0410417 (2004).

  8. Stoll, M. & Köhler, T. Production of three-body Efimov molecules in an optical lattice.Phys. Rev. A72, 022714 (2005)

    Article ADS  Google Scholar 

  9. Esry, B. D., Greene, C. H. & Burke, J. P. Jr Recombination of three atoms in the ultracold limit.Phys. Rev. Lett.83, 1751–1754 (1999)

    Article ADS CAS  Google Scholar 

  10. Braaten, E. & Hammer, H.-W. Three-body recombination into deep bound states in a Bose gas with large scattering length.Phys. Rev. Lett.87, 160407 (2001)

    Article ADS CAS PubMed  Google Scholar 

  11. Nielsen, E. & Macek, J. H. Low-energy recombination of identical bosons by three-body collisions.Phys. Rev. Lett.83, 1566–1569 (1999)

    Article ADS CAS  Google Scholar 

  12. Bedaque, P. F., Braaten, E. & Hammer, H.-W. Three-body recombination in Bose gases with large scattering length.Phys. Rev. Lett.85, 908–911 (2000)

    Article ADS CAS PubMed  Google Scholar 

  13. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions.Phys. Rev. A47, 4114–4122 (1993)

    Article ADS CAS PubMed  Google Scholar 

  14. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate.Nature392, 151–154 (1998)

    Article ADS CAS  Google Scholar 

  15. Southwell, K. (ed.)Ultracold matter Nature (Insight)416, 205–246 (2002).

  16. Efimov, V. Low-energy properties of three resonantly interacting particles.Sov. J. Nucl. Phys.29, 546–553 (1979)

    Google Scholar 

  17. Bringas, F., Yamashita, M. T. & Frederico, T. Triatomic continuum resonances for large negative scattering lengths.Phys. Rev. A69, 040702(R) (2004)

    Article ADS  Google Scholar 

  18. Nielsen, E., Suno, H. & Esry, B. D. Efimov resonances in atom-diatom scattering.Phys. Rev. A66, 012705 (2002)

    Article ADS  Google Scholar 

  19. D'Incao, J. P., Suno, H. & Esry, B. D. Limits on universality in ultracold three-boson recombination.Phys. Rev. Lett.93, 123201 (2004)

    Article ADS CAS PubMed  Google Scholar 

  20. Weber, T., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Three-body recombination at large scattering lengths in an ultracold atomic gas.Phys. Rev. Lett.91, 123201 (2003)

    Article ADS PubMed  Google Scholar 

  21. Fedichev, P. O., Reynolds, M. W. & Shlyapnikov, G. V. Three-body recombination of ultracold atoms to a weakly bounds level.Phys. Rev. Lett.77, 2921–2924 (1996)

    Article ADS CAS PubMed  Google Scholar 

  22. Chin, C. et al. Precision Feshbach spectroscopy of ultracold Cs2 .Phys. Rev. A70, 032701 (2004)

    Article ADS  Google Scholar 

  23. Bolda, E. L., Tiesinga, E. & Julienne, P. S. Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps.Phys. Rev. A66, 013403 (2002)

    Article ADS  Google Scholar 

  24. Kraemer, T. et al. Optimized production of a cesium Bose-Einstein condensate.Appl. Phys. B79, 1013–1019 (2004)

    Article ADS CAS  Google Scholar 

  25. Köhler, T., Goral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Preprint athttp://arxiv.org/abs/cond-mat/0601420 (2006).

  26. Kartavtsev, O. I. & Macek, J. H. Low-energy three-body recombination near a Feshbach resonance.Few-Body Syst.31, 249–254 (2002)

    Article ADS  Google Scholar 

  27. Petrov, D. S. Three-boson problem near a narrow Feshbach resonance.Phys. Rev. Lett.93, 143201 (2004)

    Article ADS CAS PubMed  Google Scholar 

  28. Rychtarik, D., Engeser, B., Nägerl, H.-C. & Grimm, R. Two-dimensional Bose-Einstein condensate in an optical surface trap.Phys. Rev. Lett.92, 173003 (2004)

    Article ADS CAS PubMed  Google Scholar 

  29. Donley, E. A. et al. Dynamics of collapsing and exploding Bose–Einstein condensates.Nature412, 295–299 (2001)

    Article ADS CAS PubMed  Google Scholar 

  30. Thomas, L. H. The interaction between a neutron and a proton and the structure of H3.Phys. Rev.47, 903–909 (1935)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Braaten, C. Greene, B. Esry, H. Hammer and T. Köhler for many discussions and E. Kneringer for support regarding the data analysis. We acknowledge support by the Austrian Science Fund (FWF) within Spezialforschungsbereich 15 and within the Lise Meitner programme, and by the European Union in the frame of the TMR networks ‘Cold Molecules’ and ‘FASTNet’. M.M. is supported within the Doktorandenprogramm of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

  1. Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A–6020, Innsbruck, Austria

    T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl & R. Grimm

  2. James Franck Institute, Physics Department of the University of Chicago, 5640 S. Ellis Avenue, Illinois, 60637, Chicago, USA

    C. Chin

  3. Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A–6020, Innsbruck, Austria

    R. Grimm

Authors
  1. T. Kraemer

    You can also search for this author inPubMed Google Scholar

  2. M. Mark

    You can also search for this author inPubMed Google Scholar

  3. P. Waldburger

    You can also search for this author inPubMed Google Scholar

  4. J. G. Danzl

    You can also search for this author inPubMed Google Scholar

  5. C. Chin

    You can also search for this author inPubMed Google Scholar

  6. B. Engeser

    You can also search for this author inPubMed Google Scholar

  7. A. D. Lange

    You can also search for this author inPubMed Google Scholar

  8. K. Pilch

    You can also search for this author inPubMed Google Scholar

  9. A. Jaakkola

    You can also search for this author inPubMed Google Scholar

  10. H.-C. Nägerl

    You can also search for this author inPubMed Google Scholar

  11. R. Grimm

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toH.-C. Nägerl.

Ethics declarations

Competing interests

Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Kraemer, T., Mark, M., Waldburger, P.et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms.Nature440, 315–318 (2006). https://doi.org/10.1038/nature04626

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Three Into One Does Go

In the bizarre world of quantum physics, three interacting particles can form a loosely bound system even if the two-particle attraction is too weak to allow for the binding of a pair. This exotic trimer state was predicted 35 years ago by Russian physicist Vitali Efimov, who found a remarkable and counterintuitive solution to the notoriously difficult quantum-mechanical three-body problem. Efimov's well known result was a landmark in theoretical few-body physics, but until now these exotic states had not been demonstrated experimentally. Now that has been achieved, in an ultracold gas of caesium atoms. The existence of this gas confirms key predictions and opens up few-body quantum systems to further experiment.

Associated content

Aménage à trois laid bare

  • Brett D. Esry
  • Chris H. Greene
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp