Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators

Naturevolume 438pages1172–1175 (2005)Cite this article

Abstract

Plants continuously maintain pools of totipotent stem cells in their apical meristems from which elaborate root and shoot systems are produced. InArabidopsis thaliana, stem cell fate in the shoot apical meristem is controlled by a regulatory network that includes the CLAVATA (CLV) ligand–receptor system and the homeodomain protein WUSCHEL (WUS)1,2. Phytohormones such as auxin and cytokinin are also important for meristem regulation3. Here we show a mechanistic link between the CLV/WUS network and hormonal control. WUS, a positive regulator of stem cells, directly represses the transcription of several two-componentARABIDOPSIS RESPONSE REGULATOR genes (ARR5,ARR6,ARR7 andARR15), which act in the negative-feedback loop of cytokinin signalling4,5. These data indicate thatARR genes might negatively influence meristem size and that their repression by WUS might be necessary for proper meristem function. Consistent with this hypothesis is our observation that a mutantARR7 allele, which mimics the active, phosphorylated form, causes the formation of aberrant shoot apical meristems. Conversely, a loss-of-function mutation in a maizeARR homologue was recently shown to cause enlarged meristems6.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Expression profiles ofARR5,ARR6,ARR7 andARR15.
Figure 2:Expression patterns ofARR7 andWUS in response to meristematic signals.
Figure 3:Direct interaction of WUS with regulatory sequences ofARR7.
Figure 4:Phenotypes of type-AARR mutant plants.

Similar content being viewed by others

References

  1. Schoof, H. et al. The stem cell population ofArabidopsis shoot meristems in maintained by a regulatory loop between theCLAVATA andWUSCHEL genes.Cell100, 635–644 (2000)

    Article CAS  Google Scholar 

  2. Brand, U., Fletcher, J. C., Hobe, M., Meyerowitz, E. M. & Simon, R. Dependence of stem cell fate inArabidopsis on a feedback loop regulated byCLV3 activity.Science289, 617–619 (2000)

    Article ADS CAS  Google Scholar 

  3. Leyser, O. Regulation of shoot branching by auxin.Trends Plant Sci.8, 541–545 (2003)

    Article CAS  Google Scholar 

  4. Kiba, T. et al. The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction inArabidopsis thaliana.Plant Cell Physiol.44, 868–874 (2003)

    Article CAS  Google Scholar 

  5. To, J. P. et al. Type-AArabidopsis response regulators are partially redundant negative regulators of cytokinin signalling.Plant Cell16, 658–671 (2004)

    Article CAS  Google Scholar 

  6. Giulini, A., Wang, J. & Jackson, D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1.Nature430, 1031–1034 (2004)

    Article ADS CAS  Google Scholar 

  7. Laux, T., Mayer, K. F., Berger, J. & Jurgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity inArabidopsis.Development122, 87–96 (1996)

    CAS PubMed  Google Scholar 

  8. Long, J. A., Moan, E. I., Medford, J. I. & Barton, M. K. A member of the KNOTTED class of homeodomain proteins encoded by theSTM geneArabidopsis.Nature379, 66–69 (1996)

    Article ADS CAS  Google Scholar 

  9. Clark, S. E., Running, M. P. & Meyerowitz, E. M.CLAVATA1, a regulator of meristem and flower development inArabidopsis.Development119, 397–418 (1993)

    CAS PubMed  Google Scholar 

  10. Clark, S. E., Running, M. P. & Meyerowitz, E. M.CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes aCLAVATA1.Development121, 2057–2067 (1995)

    CAS  Google Scholar 

  11. Kayes, J. M. & Clark, S. E.CLAVATA2, a regulator of meristem and organ development inArabidopsis.Development125, 3843–3851 (1998)

    CAS PubMed  Google Scholar 

  12. Mayer, K. F. X. et al. Role ofWUSCHEL in regulating stem cell fate in theArabidopsis shoot meristem.Cell95, 805–815 (1998)

    Article CAS  Google Scholar 

  13. Fletcher, J. C., Brand, U., Running, M. P., Simon, R. & Meyerowitz, E. M. Signaling of cell fate decisions byCLAVATA3 inArabidopsis shoot meristems.Science283, 1911–1914 (1999)

    Article ADS CAS  Google Scholar 

  14. Rojo, E., Sharma, V. K., Kovaleva, V., Raikhel, N. V. & Fletcher, J. C. CLV3 is localized to the extracellular space, where it activates theArabidopsis CLAVATA stem cell signalling pathway.Plant Cell14, 969–977 (2002)

    Article CAS  Google Scholar 

  15. Clark, S. E., Williams, R. W. & Meyerowitz, E. M. TheCLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size inArabidopsis.Cell89, 575–585 (1997)

    Article CAS  Google Scholar 

  16. Jeong, S., Trotochaud, A. E. & Clark, S. E. TheArabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase.Plant Cell11, 1925–1934 (1999)

    Article CAS  Google Scholar 

  17. Lohmann, J. U. et al. A molecular link between stem cell regulation and floral patterning inArabidopsis.Cell105, 793–803 (2001)

    Article CAS  Google Scholar 

  18. Roslan, H. A. et al. Characterization of the ethanol-inducible alc gene-expression system inArabidopsis thaliana.Plant J.28, 225–235 (2001)

    Article CAS  Google Scholar 

  19. Lenhard, M., Bohnert, A., Jürgens, G. & Laux, T. Termination of stem cell maintenance inArabidopsis floral meristems by interactions betweenWUSCHEL andAGAMOUS.Cell105, 805–814 (2001)

    Article CAS  Google Scholar 

  20. Lemon, W. J., Liyanarachchi, S. & You, M. A high performance test of differential gene expression for oligonucleotide arrays.Genome Biol.4, R67 (2003)

    Article  Google Scholar 

  21. D'Agostino, I. B., Deruere, J. & Kieber, J. J. Characterization of the response of theArabidopsis response regulator gene family to cytokinin.Plant Physiol.124, 1706–1717 (2000)

    Article CAS  Google Scholar 

  22. D'Agostino, I. B. & Kieber, J. J. Phosphorelay signal transduction: the emerging family of plant response regulators.Trends Biochem. Sci.24, 452–456 (1999)

    Article CAS  Google Scholar 

  23. Skoog, F. & Miller, C. O. Chemical regulation of growth and organ formation in plant tissues culturedin vitro.Symp. Soc. Exp. Biol.54, 118–130 (1957)

    Google Scholar 

  24. Hwang, I. & Sheen, J. Two-component circuitry inArabidopsis cytokinin signal transduction.Nature413, 383–389 (2001)

    Article ADS CAS  Google Scholar 

  25. Schmid, M. et al. A gene expression map ofArabidopsis thaliana development.Nature Genet.37, 501–506 (2005)

    Article MathSciNet CAS  Google Scholar 

  26. Brand, U., Grunewald, M., Hobe, M. & Simon, R. Regulation of CLV3 expression by two homeobox genes inArabidopsis.Plant Physiol.129, 565–575 (2002)

    Article CAS  Google Scholar 

  27. Lenhard, M., Jurgens, G. & Laux, T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles inArabidopsis shoot meristem regulation.Development129, 3195–3206 (2002)

    CAS PubMed  Google Scholar 

  28. Hass, C. et al. The response regulator 2 mediates ethylene signalling and hormone signal integration inArabidopsis.EMBO J.23, 3290–3302 (2004)

    Article CAS  Google Scholar 

  29. Schmid, M. et al. Dissection of floral induction pathways using global expression analysis.Development130, 6001–6012 (2003)

    Article CAS  Google Scholar 

  30. Wu, Z., Irizarry, R. A., Gentleman, R., Murillo, F. M. & Spencer, F. A. A model based background adjustment for oligonucleotide expression arrays. Working Paper 1 (Dept of Biostatistics Working Papers, Johns Hopkins Univ., Baltimore, Maryland, 2004).

Download references

Acknowledgements

We thank A. Greenland for providing theAlcA system, J. Palatnik for sharing unpublished results, R. Schwab for establishing thein situ protocol, R. Chen for preparing the WUS antiserum, K. Harter and D. Weigel for discussion, and K. Bomblies, I. Lohmann, M. Schmid, J. Palatnik and D. Weigel for reading the manuscript critically. This work was supported by a Career Development Award of the International Human Frontier Science Program (HFSP) Organization (J.U.L.), a Ph.D. fellowship of the Cusanuswerk (W.B.), grants from the NSF and the NIH (J.J.K.) and the Max Planck Society (J.U.L).Author Contributions A.L. performedin situ hybridizations and qRT–PCRs, constructed reporter genes, the mutated alleles ofARR7 and performed electron microscopy; J.P.C.T. and J.J.K. generated and analysed thearr double and septuple mutants; W.B. performed the ChIP experiments; S.S. generated constructs and transgenic lines ofARR genes; A.K. generatedAlcA::CLV3 plants; M.D. performed qRT–PCRs; and J.U.L. carried out the microarray experiment and analysis, performed gel-shifts and wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Author notes
  1. Wolfgang Busch and Sandra Stehling: These authors contributed equally to this work

Authors and Affiliations

  1. Max Planck Institute for Developmental Biology, AG Lohmann, D-72076, Tübingen, Germany

    Andrea Leibfried, Wolfgang Busch, Sandra Stehling, Andreas Kehle, Monika Demar & Jan U. Lohmann

  2. Department of Biology, University of North Carolina, North Carolina, 27599, Chapel Hill, USA

    Jennifer P. C. To & Joseph J. Kieber

Authors
  1. Andrea Leibfried
  2. Jennifer P. C. To
  3. Wolfgang Busch
  4. Sandra Stehling
  5. Andreas Kehle
  6. Monika Demar
  7. Joseph J. Kieber
  8. Jan U. Lohmann

Corresponding author

Correspondence toJan U. Lohmann.

Ethics declarations

Competing interests

Microarray data have been deposited at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) under accession number E-MEXP-432. Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Expression patterns ofARR7 RNA. (PDF 105 kb)

Supplementary Figure 2

Activity ofARR5, ARR6, ARR7 andARR15GUS reporter genes. (PDF 65 kb)

Supplementary Figure 3

Direct interaction of WUS with regulatory sequences ofARR7. (PDF 81 kb)

Supplementary Table 1

Genes responsive toWUSinduction. (PDF 57 kb)

Supplementary Table 2

Oligonucleotides used in Leibfriedet al. (PDF 60 kb)

Supplementary Methods

Additional information on mutants and ChIP. (PDF 68 kb)

Rights and permissions

About this article

Cite this article

Leibfried, A., To, J., Busch, W.et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators.Nature438, 1172–1175 (2005). https://doi.org/10.1038/nature04270

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Plant growth controls

In plants the apical meristem at the tip of each shoot contains a population of stem cells ready to proliferate and direct plant growth when they receive the command. Comparative microarray experiments inArabidopsis plants carrying inducible mutations of meristem regulators now show how plant hormones such as cytokinins can communicate with the meristem via a network of transcriptional activators and repressors. The homeobox protein WUSCHEL, known to control stem cell fate, has been found to act directly on a series of signalling proteins previously shown to participate in cytokinin signalling, thus providing a negative feedback loop for maintaining the size of the apical meristem.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp