- Review Article
- Published:
TRP channels as cellular sensors
Naturevolume 426, pages517–524 (2003)Cite this article
23kAccesses
2434Citations
39Altmetric
Abstract
TRP channels are the vanguard of our sensory systems, responding to temperature, touch, pain, osmolarity, pheromones, taste and other stimuli. But their role is much broader than classical sensory transduction. They are an ancient sensory apparatus for the cell, not just the multicellular organism, and they have been adapted to respond to all manner of stimuli, from both within and outside the cell.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Hille, B.Ion Channels of Excitable Membranes 3rd edn, 663–723 (Sinauer, Sunderland, MA, 2001)
Minke, B.Drosophila mutant with a transducer defect.Biophys. Struct. Mech.3, 59–64 (1977)
Montell, C., Jones, K., Hafen, E. & Rubin, G. Rescue of theDrosophila phototransduction mutation trp by germline transformation.Science230, 1040–1043 (1985)
Denis, V. & Cyert, M. S. Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue.J. Cell Biol.156, 29–34 (2002)
Zhou, X. L. et al. The transient receptor potential channel on the yeast vacuole is mechanosensitive.Proc. Natl Acad. Sci. USA100, 7105–7110 (2003)
de Bono, M., Tobin, D. M., Davis, M. W., Avery, L. & Bargmann, C. I. Social feeding inCaenorhabditis elegans is induced by neurons that detect aversive stimuli.Nature419, 899–903 (2002)
Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male–male aggression in mice deficient for TRP2.Science295, 1493–1500 (2002)
Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways.Cell112, 293–301 (2003)
Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels.Trends Neurosci.23, 159–166 (2000)
Clapham, D. E., Runnels, L. W. & Struebing, C. The TRP ion channel family.Nature Rev. Neurosci.2, 387–396 (2001)
Minke, B. & Cook, B. TRP channel proteins and signal transduction.Physiol. Rev.82, 429–472 (2002)
Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family.Cell108, 595–598 (2002)
Birnbaumer, L., Yidirim, E. & Abramowitz, J. A comparison of the genes coding for canonical TRP channels and their M, V and P relatives.Cell Calcium33, 419–432 (2003)
Nilius, B. TRP Channels: facts, fiction, challenges.Cell Calcium14, 33–34 (2003)
Corey, D. New TRP channels in hearing and mechanosensation.Neuron39, 585–588 (2003)
Wes, P. D. et al. TRPC1, a human homolog of aDrosophila store-operated channel.Proc. Natl Acad. Sci. USA92, 9652–9656 (1995)
Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D. E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology.Nature Neurosci.6, 837–845 (2003)
Freichel, M. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice.Nature Cell Biol.3, 121–127 (2001)
Tiruppathi, C. et al. Impairment of store-operated Ca2+ entry in TRPC4-/- mice interferes with increase in lung microvascular permeability.Circ. Res.91, 70–76 (2002)
Zitt, C. et al. Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion.J. Cell Biol.138, 1333–1341 (1997)
Trebak, M., Vazquez, G., Bird, G. S. & Putney, J. W. The TRPC3/6/7 subfamily of cation channels.Cell Calcium33, 451–461 (2003)
Inoue, R. et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel.Circ. Res.88, 325–332 (2001)
Liman, E. R., Corey, D. P. & Dulac, C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling.Proc. Natl Acad. Sci. USA96, 5791–5796 (1999)
Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway.Nature389, 816–824 (1997)
Jordt, S. E. & Julius, D. Molecular basis for species-specific sensitivity to “hot” chili peppers.Cell108, 421–430 (2002)
Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.Nature411, 957–962 (2001)
Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor.Science288, 306–313 (2000)
Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1.Nature Neurosci.5, 856–860 (2002)
Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat.Nature398, 436–441 (1999)
Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I.Nature Cell Biol.1, 165–170 (1999)
Iwata, Y. et al. A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel.J. Cell Biol.161, 957–967 (2003)
Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein.Nature418, 186–190 (2002)
Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel.Nature418, 181–186 (2002)
Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes.Science296, 2046–2049 (2002)
Guler, A. D. et al. Heat-evoked activation of the ion channel, TRPV4.J. Neurosci.22, 6408–6414 (2002)
Benham, C. D., Gunthorpe, M. J. & Davis, J. B. TRPV channels as temperature sensors.Cell Calcium33, 479–487 (2003)
Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity.Nature Cell Biol.2, 695–702 (2000)
Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor.Cell103, 525–535 (2000)
Mizuno, A., Matsumoto, N., Imai, M. & Suzuki, M. Impaired osmotic sensation in mice lacking TRPV4.Am. J. Physiol. Cell Physiol.285, C96–C101 (2003)
Alessandri-Haber, N. et al. Hypotonicity induces TRPV4-mediated nociception in rat.Neuron39, 497–511 (2003)
Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels.Nature424, 434–438 (2003)
Yue, L., Peng, J. B., Hediger, M. A. & Clapham, D. E. CaT1 manifests the pore properties of the calcium-release-activated calcium channel.Nature410, 705–709 (2001)
den Dekker, E., Hoenderop, J. G., Nilius, B. & Bindels, R. J. The epithelial calcium channels, TRPV5 and TRPV6: from identification towards regulation.Cell Calcium33, 497–507 (2003)
Hoenderop, J. G. et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6.EMBO J.22, 776–785 (2003)
Voets, T., Janssens, A., Prenen, J., Droogmans, G. & Nilius, B. Mg2+-dependent gating and strong inward rectification of the cation channel TRPV6.J. Gen. Physiol.121, 245–260 (2003)
Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis.Cancer Res.58, 1515–1520 (1998)
Nagamine, K. et al. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain.Genomics54, 124–131 (1998)
Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology.Nature411, 595–599 (2001)
Sano, Y. et al. Immunocyte Ca2+ influx system mediated by LTRPC2.Science293, 1327–1330 (2001)
Rafty, L. A., Schmidt, M. T., Perraud, A. L., Scharenberg, A. M. & Denu, J. M. Analysis ofO-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases.J. Biol. Chem.277, 47114–47122 (2002)
Perraud, A. L., Schmitz, C. & Scharenberg, A. M. TRPM2 Ca2+ permeable cation channels: from gene to biological function.Cell Calcium33, 519–531 (2003)
Hara, Y. et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death.Mol. Cell9, 163–173 (2002)
Heiner, I., Eisfeld, J. & Luckhoff, A. Role and regulation of TRP channels in neutrophil granulocytes.Cell Calcium33, 533–540 (2003)
Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G. & Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3.J. Biol. Chem.278, 21493–21501 (2003)
Lee, N. et al. Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3).J. Biol. Chem.278, 20890–20897 (2003)
Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization.Cell109, 397–407 (2002)
Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel.Curr. Biol.13, 1153–1158 (2003)
Nilius, B. et al. Voltage dependence of the Ca2+ activated cation channel TRPM4.J. Biol. Chem.33, 30813–30820 (2003)
Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells.Nature Neurosci.5, 1169–1176 (2002)
Runnels, L. W., Yue, L. & Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities.Science291, 1043–1047 (2001)
Nadler, M. J. et al. LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability.Nature411, 590–595 (2001)
Runnels, L. W., Yue, L. & Clapham, D. E. The TRPM7 channel is inactivated by PIP2 hydrolysis.Nature Cell Biol.4, 329–336 (2002)
Schmitz, C. et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7.Cell114, 191–200 (2003)
Yamaguchi, H., Matsushita, M., Nairn, A. C. & Kuriyan, J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity.Mol. Cell7, 1047–1057 (2001)
McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation.Nature416, 52–58 (2002)
Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol.Cell108, 705–715 (2002)
Tracey, W. D. Jr, Wilson, R. I., Laurent, G. & Benzer, S.painless, aDrosophila gene essential for nociception.Cell113, 261–273 (2003)
Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.Cell112, 819–829 (2003)
Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse.Nature423, 822–823 (2003)
Hanaoka, K. et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents.Nature408, 990–994 (2000)
Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease.Cell93, 177–188 (1998)
Boulter, C. et al. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of thePkd1 gene.Proc. Natl Acad. Sci. USA98, 12174–12179 (2001)
Nomura, H. et al. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects.J. Biol. Chem.273, 25967–25973 (1998)
Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Determination of left–right patterning of the mouse embryo by artificial nodal flow.Nature418, 96–99 (2002)
Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells.Nature Genet.33, 129–137 (2003)
Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel.Hum. Mol. Genet.9, 2471–2478 (2000)
Hersh, B. M., Hartwieg, E. & Horvitz, H. R. TheCaenorhabditis elegans mucolipin-like genecup-5 is essential for viability and regulates lysosomes in multiple cell types.Proc. Natl Acad. Sci. USA99, 4355–4360 (2002)
Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice.Proc. Natl Acad. Sci. USA99, 14994–14999 (2002)
Hilgemann, D. W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters.Sci. STKE2001, RE19 (2001)
Hardie, R. C. Regulation of TRP channels via lipid second messengers.Annu. Rev. Physiol.65, 735–759 (2003)
Prescott, E. D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity.Science300, 1284–1288 (2003)
McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow.Annu. Rev. Biophys. Biomol. Struct.31, 151–175 (2002)
Putney, J. W. Jr & McKay, R. R. Capacitative calcium entry channels.Bioessays21, 38–46 (1999)
Putney, J. W. Jr TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry.Proc. Natl Acad. Sci. USA96, 14669–14671 (1999)
Prakriya, M. & Lewis, R. S. CRAC channels: activation, permeation, and the search for a molecular identity.Cell Calcium33, 311–321 (2003)
Cui, J., Bian, J. S., Kagan, A. & McDonald, T. V. CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes.J. Biol. Chem.277, 47175–47183 (2002)
Voets, T. et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties.J. Biol. Chem.276, 47767–47770 (2001)
Vaca, L. & Sampieri, A. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels.J. Biol. Chem.277, 42178–42187 (2002)
Patterson, R. L., van Rossum, D. B. & Gill, D. L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model.Cell98, 487–499 (1999)
Yao, Y., Ferrer-Montiel, A. V., Montal, M. & Tsien, R. Y. Activation of store-operated Ca2+ current inXenopus oocytes requires SNAP-25 but not a diffusible messenger.Cell98, 475–485 (1999)
Goel, M., Sinkins, W. G. & Schilling, W. P. Selective association of TRPC channel subunits in rat brain synaptosomes.J. Biol. Chem.277, 48303–48310 (2002)
Xu, X. Z. & Sternberg, P. W. AC. elegans sperm TRP protein required for sperm–egg interactions during fertilization.Cell114, 285–297 (2003)
Block, S. M. Biophysical principles of sensory transduction.Soc. Gen. Physiol. Ser.47, 1–17 (1992)
Sukharev, S. I., Sigurdson, W. J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL.J. Gen. Physiol.113, 525–540 (1999)
Howard, J., Roberts, W. M. & Hudspeth, A. J. Mechanoelectrical transduction by hair cells.Annu. Rev. Biophys. Biophys. Chem.17, 99–124 (1988)
Kim, J. et al. A TRPV family ion channel required for hearing inDrosophila.Nature424, 81–84 (2003)
Yellen, G. The voltage-gated potassium channels and their relatives.Nature419, 35–42 (2002)
Hardie, R. C. et al. Molecular basis of amplification inDrosophila phototransduction: roles for G protein, phospholipase C, and diacylglycerol kinase.Neuron36, 689–701 (2002)
Acknowledgements
I thank the members of the Clapham laboratory (especially H. Xu), S. McLaughlin, R. Lewis, D. Corey and C. Miller for helpful discussions, and S. Kaczmarek for artwork.
Author information
Authors and Affiliations
Howard Hughes Medical Institute, Pediatric Cardiology, Children's Hospital of Boston, Department of Neurobiology, Harvard Medical School, Enders 1309, 320 Longwood Avenue, Children's Hospital, Boston, Massachusetts, 02115, USA
David E. Clapham
- David E. Clapham
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toDavid E. Clapham.
Ethics declarations
Competing interests
The author declares that he has no competing financial interests.
Rights and permissions
About this article
Cite this article
Clapham, D. TRP channels as cellular sensors.Nature426, 517–524 (2003). https://doi.org/10.1038/nature02196
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Trpv6 channel targeting using monoclonal antibody induces prostate cancer cell apoptosis and tumor regression
- Aurélien Haustrate
- Clément Cordier
- V’yacheslav Lehen’kyi
Cell Death & Disease (2024)
Mechanisms of oxidative stress in interstitial cystitis/bladder pain syndrome
- Ashu Mohammad
- Mallory A. Laboulaye
- Amy D. Dobberfuhl
Nature Reviews Urology (2024)
Research focus and thematic trends of transient receptor potential vanilloid member 1 research: a bibliometric analysis of the global publications (1990–2023)
- Xin Liu
- Mengying Zhang
- Mingyi Zhao
Naunyn-Schmiedeberg's Archives of Pharmacology (2024)
Transient Receptor Potential Channels: Multiple Modulators of Peripheral Neuropathic Pain in Several Rodent Models
- Songchao Xu
- Yun Wang
Neurochemical Research (2024)
High-throughput screening of transient receptor potential (TRP) channels in pterygium
- Yusuf Tuylu
- Seydi Okumus
- Ibrahim Erbagci
International Ophthalmology (2024)


