Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Molecular Psychiatry
  • Original Article
  • Published:

The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis

Molecular Psychiatryvolume 20pages500–508 (2015)Cite this article

Subjects

Abstract

Augmenting hippocampal neurogenesis represents a potential new strategy for treating depression. Here we test this possibility by comparing hippocampal neurogenesis in depression-prone ghrelin receptor (Ghsr)-null mice to that in wild-type littermates and by determining the antidepressant efficacy of the P7C3 class of neuroprotective compounds. Exposure ofGhsr-null mice to chronic social defeat stress (CSDS) elicits more severe depressive-like behavior than in CSDS-exposed wild-type littermates, and exposure ofGhsr-null mice to 60% caloric restriction fails to elicit antidepressant-like behavior. CSDS resulted in more severely reduced cell proliferation and survival in the ventral dentate gyrus (DG) subgranular zone ofGhsr-null mice than in that of wild-type littermates. Also, caloric restriction increased apoptosis of DG subgranular zone cells inGhsr-null mice, although it had the opposite effect in wild-type littermates. Systemic treatment with P7C3 during CSDS increased survival of proliferating DG cells, which ultimately developed into mature (NeuN+) neurons. Notably, P7C3 exerted a potent antidepressant-like effect inGhsr-null mice exposed to either CSDS or caloric restriction, while the more highly active analog P7C3-A20 also exerted an antidepressant-like effect in wild-type littermates. Focal ablation of hippocampal stem cells with radiation eliminated this antidepressant effect, further attributing the P7C3 class antidepressant effect to its neuroprotective properties and resultant augmentation of hippocampal neurogenesis. Finally, P7C3-A20 demonstrated greater proneurogenic efficacy than a wide spectrum of currently marketed antidepressant drugs. Taken together, our data confirm the role of aberrant hippocampal neurogenesis in the etiology of depression and suggest that the neuroprotective P7C3-compounds represent a novel strategy for treating patients with this disease.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscribe to this journal

Receive 12 print issues and online access

¥40,000 per year

only ¥3,333 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K . Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature 1999;402: 656–660.

    Article CAS  Google Scholar 

  2. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa Ket al. A role for ghrelin in the central regulation of feeding.Nature 2001;409: 194–198.

    Article CAS  Google Scholar 

  3. Faulconbridge LF, Cummings DE, Kaplan JM, Grill HJ . Hyperphagic effects of brainstem ghrelin administration.Diabetes 2003;52: 2260–2265.

    Article CAS  Google Scholar 

  4. Horvath TL, Diano S, Tschop M . Ghrelin in hypothalamic regulation of energy balance.Curr Top Med Chem 2003;3: 921–927.

    Article CAS  Google Scholar 

  5. Walker AK, Ibia IE, Zigman JM . Disruption of cue-potentiated feeding in mice with blocked ghrelin signaling.Physiol Behav 2012;108: 34–43.

    Article CAS  Google Scholar 

  6. Perello M, Zigman JM . The role of ghrelin in reward-based eating.Biol Psychiatry 2012;72: 347–353.

    Article CAS  Google Scholar 

  7. Chuang JC, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter Met al. Ghrelin mediates stress-induced food-reward behavior in mice.J Clin Invest 2011;121: 2684–2692.

    Article CAS  Google Scholar 

  8. Jerlhag E, Egecioglu E, Dickson SL, Engel JA . Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference.Psychopharmacology 2010;211: 415–422.

    Article CAS  Google Scholar 

  9. Kanoski SE, Fortin SM, Ricks KM, Grill HJ . Ghrelin signaling in the ventral hippocampus stimulates learned and motivational aspects of feedingvia PI3K-Akt signaling.Biol Psychiatry 2013;73: 915–923.

    Article CAS  Google Scholar 

  10. Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath Bet al. Ghrelin controls hippocampal spine synapse density and memory performance.Nat Neurosci 2006;9: 381–388.

    Article CAS  Google Scholar 

  11. Lim E, Lee S, Li E, Kim Y, Park S . Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicityvia ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3beta pathways.Exp Neurol 2011;230: 114–122.

    Article CAS  Google Scholar 

  12. Chung H, Kim E, Lee DH, Seo S, Ju S, Lee Det al. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation.Endocrinology 2007;148: 148–159.

    Article CAS  Google Scholar 

  13. Chung H, Seo S, Moon M, Park S . Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells.J Endocrinol 2008;198: 511–521.

    Article CAS  Google Scholar 

  14. Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang Set al. Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation.Neurotox Res 2009;15: 332–347.

    Article CAS  Google Scholar 

  15. Andrews ZB, Erion D, Beiler R, Liu ZW, Abizaid A, Zigman Jet al. Ghrelin promotes and protects nigrostriatal dopamine functionvia a UCP2-dependent mitochondrial mechanism.J Neurosci 2009;29: 14057–14065.

    Article CAS  Google Scholar 

  16. Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park Set al. Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury.Endocrinology 2010;151: 3815–3826.

    Article CAS  Google Scholar 

  17. Lee J, Lim E, Kim Y, Li E, Park S . Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus.J Endocrinol 2010;205: 263–270.

    Article CAS  Google Scholar 

  18. Kluge M, Schussler P, Dresler M, Schmidt D, Yassouridis A, Uhr Met al. Effects of ghrelin on psychopathology, sleep and secretion of cortisol and growth hormone in patients with major depression.J Psychiatr Res 2011;45: 421–426.

    Article  Google Scholar 

  19. Carlini VP, Machado DG, Buteler F, Ghersi M, Ponzio MF, Martini ACet al. Acute ghrelin administration reverses depressive-like behavior induced by bilateral olfactory bulbectomy in mice.Peptides 2012;2: 160–165.

    Article  Google Scholar 

  20. Lutter M, Elmquist J . Depression and metabolism: linking changes in leptin and ghrelin to mood.F1000 Biol Rep 2009;1: 63.

    Article  Google Scholar 

  21. Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung Set al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress.Nat Neurosci 2008;11: 752–753.

    Article CAS  Google Scholar 

  22. Golden SA, Covington HE 3rd, Berton O, Russo SJ . A standardized protocol for repeated social defeat stress in mice.Nat Protoc 2011;6: 1183–1191.

    Article CAS  Google Scholar 

  23. Patterson ZR, Khazall R, Mackay H, Anisman H, Abizaid A . Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress.Endocrinology 2013;154: 1080–1091.

    Article CAS  Google Scholar 

  24. Raspopow K, Abizaid A, Matheson K, Anisman H . Psychosocial stressor effects on cortisol and ghrelin in emotional and non-emotional eaters: influence of anger and shame.Horm Behav 2010;58: 677–684.

    Article CAS  Google Scholar 

  25. Rouach V, Bloch M, Rosenberg N, Gilad S, Limor R, Stern Net al. The acute ghrelin response to a psychological stress challenge does not predict the post-stress urge to eat.Psychoneuroendocrinology 2007;32: 693–702.

    Article CAS  Google Scholar 

  26. Ochi M, Tominaga K, Tanaka F, Tanigawa T, Shiba M, Watanabe Tet al. Effect of chronic stress on gastric emptying and plasma ghrelin levels in rats.Life Sci 2008;82: 862–868.

    Article CAS  Google Scholar 

  27. Kristenssson E, Sundqvist M, Astin M, Kjerling M, Mattsson H, Dornonville de la Cour Cet al. Acute psychological stress raises plasma ghrelin in the rat.Regul Pept 2006;134: 114–117.

    Article CAS  Google Scholar 

  28. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Fujimiya Met al. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice.Neuroendocrinology 2001;74: 143–147.

    Article CAS  Google Scholar 

  29. Patterson ZR, Ducharme R, Anisman H, Abizaid A . Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor-deficient mice.Eur J Neurosci 2010;32: 632–639.

    Article CAS  Google Scholar 

  30. Meyer RM, Burgos-Robles A, Liu E, Correia SS, Goosens KA . A ghrelin–growth hormone axis drives stress-induced vulnerability to enhanced fear.Mol Psychiatry advance online publication, 15 October 2013; doi:10.1038/mp.2013.135 (e-pub ahead of print).

  31. Nakashima K, Akiyoshi J, Hatano K, Hanada H, Tanaka Y, Tsuru Jet al. Ghrelin gene polymorphism is associated with depression, but not panic disorder.Psychiatr Genet 2008;18: 257.

    Article  Google Scholar 

  32. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M . In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression.Prog Neuropsychopharmacol Biol Psychiatry 2011;35: 744–759.

    Article CAS  Google Scholar 

  33. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA . Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.Nature 2011;476: 458–461.

    Article CAS  Google Scholar 

  34. Eisch AJ, Petrik D . Depression and hippocampal neurogenesis: a road to remission?Science 2012;338: 72–75.

    Article CAS  Google Scholar 

  35. Petrik D, Lagace DC, Eisch AJ . The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building?Neuropharmacology 2012;62: 21–34.

    Article CAS  Google Scholar 

  36. Olson AK, Eadie BD, Ernst C, Christie BR . Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampusvia dissociable pathways.Hippocampus 2006;16: 250–260.

    Article CAS  Google Scholar 

  37. van Praag H, Kempermann G, Gage FH . Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.Nat Neurosci 1999;2: 266–270.

    Article CAS  Google Scholar 

  38. Van Bokhoven P, Oomen CA, Hoogendijk WJ, Smit AB, Lucassen PJ, Spijker S . Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment.Eur J Neurosci 2011;33: 1833–1840.

    Article CAS  Google Scholar 

  39. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.J Neurosci 2000;20: 9104–9110.

    Article CAS  Google Scholar 

  40. Stranahan AM, Khalil D, Gould E . Social isolation delays the positive effects of running on adult neurogenesis.Nat Neurosci 2006;9: 526–533.

    Article CAS  Google Scholar 

  41. Eisch AJ, Harburg GC . Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology.Hippocampus 2006;16: 271–286.

    Article CAS  Google Scholar 

  42. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa Set al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.Science 2003;301: 805–809.

    Article CAS  Google Scholar 

  43. Sahay A, Hen R . Adult hippocampal neurogenesis in depression.Nat Neurosci 2007;10: 1110–1115.

    Article CAS  Google Scholar 

  44. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel Get al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal.Biol Psychiatry 2008;64: 293–301.

    Article CAS  Google Scholar 

  45. Johansson I, Destefanis S, Aberg ND, Aberg MA, Blomgren K, Zhu Cet al. Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells.Endocrinology 2008;149: 2191–2199.

    Article CAS  Google Scholar 

  46. Li E, Chung H, Kim Y, Kim DH, Ryu JH, Sato Tet al. Ghrelin diectly stimulates adult hippocampal neurogenesis: implications for learning and memory.Endocr J 2013;60: 781–789.

    Article CAS  Google Scholar 

  47. Moon M, Kim S, Hwang L, Park S . Ghrelin regulates hippocampal neurogenesis in adult mice.Endocr J 2009;56: 525–531.

    Article CAS  Google Scholar 

  48. Li E, Kim Y, Kim S, Park S . Ghrelin-induced hippocampal neurogenesis and enhancement of cognitive function are mediated independently of GH/IGF-1 axis: lessons from the spontaneous dwarf rats.Endocr J 2013;60: 1065–1075.

    Article CAS  Google Scholar 

  49. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK . Expression of ghrelin receptor mRNA in the rat and the mouse brain.J Comp Neurol 2006;494: 528–548.

    Article CAS  Google Scholar 

  50. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CEet al. Mice lacking ghrelin receptors resist the development of diet-induced obesity.J Clin Invest 2005;115: 3564–3572.

    Article CAS  Google Scholar 

  51. Pieper AA, Xie S, Capota E, Estill SJ, Zhong J, Long JMet al. Discovery of a proneurogenic, neuroprotective chemical.Cell 2010;142: 39–51.

    Article CAS  Google Scholar 

  52. De Jesus-Cortes H, Xu P, Drawbridge J, Estill SJ, Huntington P, Tran Set al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.Proc Natl Acad Sci USA 2012;109: 17010–17015.

    Article CAS  Google Scholar 

  53. MacMillan KS, Naidoo J, Liang J, Melito L, Williams NS, Morlock Let al. Development of proneurogenic, neuroprotective small molecules.J Am Chem Soc 2011;133: 1428–1437.

    Article CAS  Google Scholar 

  54. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJet al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.Science 2006;311: 864–868.

    Article CAS  Google Scholar 

  55. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJet al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.Cell 2007;131: 391–404.

    Article CAS  Google Scholar 

  56. Moser MB, Moser EI . Functional differentiation in the hippocampus.Hippocampus 1998;8: 608–619.

    Article CAS  Google Scholar 

  57. Fanselow MS, Dong HW . Are the dorsal and ventral hippocampus functionally distinct structures?Neuron 2010;65: 7–19.

    Article CAS  Google Scholar 

  58. Maggio N, Segal M . Differential modulation of long-term depression by acute stress in the rat dorsal and ventral hippocampus.J Neurosci 2009;29: 8633–8638.

    Article CAS  Google Scholar 

  59. Tanti A, Rainer Q, Minier F, Surget A, Belzung C . Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus.Neuropharmacology 2012;63: 374–384.

    Article CAS  Google Scholar 

  60. Czerniawski J, Yoon T, Otto T . Dissociating space and trace in dorsal and ventral hippocampus.Hippocampus 2009;19: 20–32.

    Article  Google Scholar 

  61. Hock BJ Jr, Bunsey MD . Differential effects of dorsal and ventral hippocampal lesions.J Neurosci 1998;18: 7027–7032.

    Article CAS  Google Scholar 

  62. Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MTet al. Genomic anatomy of the hippocampus.Neuron 2008;60: 1010–1021.

    Article CAS  Google Scholar 

  63. Banasr M, Soumier A, Hery M, Mocaer E, Daszuta A . Agomelatine a new antidepressant, induces regional changes in hippocampal neurogenesis.Biol Psychiatry 2006;59: 1087–1096.

    Article CAS  Google Scholar 

  64. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann Jet al. Antidepressants increase neural progenitor cells in the human hippocampus.Neuropsychopharmacology 2009;34: 2376–2389.

    Article CAS  Google Scholar 

  65. Kheirbek MA, Hen R . Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood.Neuropsychopharmacology 2011;36: 373–374.

    Article  Google Scholar 

  66. Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD . Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury.J Neurotrauma 2013;31: 476–486.

    Article  Google Scholar 

  67. Tesla R, Wolf HP, Xu P, Drawbridge J, Estill SJ, Huntington Pet al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.Proc Natl Acad Sci USA 2012;109: 17016–17021.

    Article CAS  Google Scholar 

  68. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordberg C, Peterson DAet al. Neurogenesis in the adult human hippocampus.Nat Med 1998;4: 1313–1317.

    Article CAS  Google Scholar 

  69. Moravan MJ, Olschowka JA, Williams JP, O'Banion MK . Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain.Radiat Res 2011;176: 459–473.

    Article CAS  Google Scholar 

  70. Ko HG, Jang DJ, Son J, Kwak C, Choi JH, Ji YHet al. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory.Mol Brain 2009;2: 1.

    Article  Google Scholar 

  71. Wang Y, Neumann M, Hansen K, Hong SM, Kim S, Noble-Haeusslein LJet al. Fluoxetine increases hippocampal neurogenesis and induces epigenetic factors but does not improve functional recovery after traumatic brain injury.J Neurotrauma 2011;28: 259–268.

    Article  Google Scholar 

  72. Qiu G, Helmeste DM, Samaranayake AN, Lau WM, Lee TM, Tang SWet al. Modulation of the suppressive effect of corticosterone on adult rat hippocampal cell proliferation by paroxetine.Neurosci Bull 2007;23: 131–136.

    Article  Google Scholar 

  73. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WDet al. Long-term mortality after gastric bypass surgery.N Engl J Med 2007;357: 753–761.

    Article CAS  Google Scholar 

  74. Thaler JP, Cummings DE . Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery.Endocrinology 2009;150: 2518–2525.

    Article CAS  Google Scholar 

Download references

Acknowledgements

These studies were made possible through funding from the NIH (1R01MH085298 and 1R01DA024680 to JMZ; T32DA007290 to AKW through AJE, DA016765 and DA023555 to AJE and 1RO1MH087986 to AAP and Steven L McKnight), institutional funds from University of Iowa Carver College of Medicine to AAP, an International Research Alliance with the Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen (to JMZ), the Edward N and Della C Thome Memorial Foundation (to JMR), the Welch Foundation (I-1612; to JMR), NASA (NNX12AB55G to AJE) and an unrestricted endowment provided to Steven L McKnight by an anonymous donor. We also thank Lauren Peca and Shari Birnbaum from the UTSW Medical Center Behavior Core for technical assistance.

Author information

Author notes
  1. A A Pieper and J M Zigman: The last two authors contributed equally to this work.

Authors and Affiliations

  1. Department of Internal Medicine, Divisions of Hypothalamic Research and Endocrinology & Metabolism, University of Texas Southwestern Medical Center, Dallas, TX, USA,

    A K Walker, Q Wang, J-C Chuang, S Osborne-Lawrence & J M Zigman

  2. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA,

    A K Walker, P D Rivera, Q Wang, J-C Chuang, S Osborne-Lawrence, A J Eisch & J M Zigman

  3. Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA,

    S Tran, S J Estill, R Starwalt, P Huntington, L Morlock, J Naidoo, N S Williams & J M Ready

  4. Departments of Psychiatry and Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA,

    A A Pieper

Authors
  1. A K Walker

    You can also search for this author inPubMed Google Scholar

  2. P D Rivera

    You can also search for this author inPubMed Google Scholar

  3. Q Wang

    You can also search for this author inPubMed Google Scholar

  4. J-C Chuang

    You can also search for this author inPubMed Google Scholar

  5. S Tran

    You can also search for this author inPubMed Google Scholar

  6. S Osborne-Lawrence

    You can also search for this author inPubMed Google Scholar

  7. S J Estill

    You can also search for this author inPubMed Google Scholar

  8. R Starwalt

    You can also search for this author inPubMed Google Scholar

  9. P Huntington

    You can also search for this author inPubMed Google Scholar

  10. L Morlock

    You can also search for this author inPubMed Google Scholar

  11. J Naidoo

    You can also search for this author inPubMed Google Scholar

  12. N S Williams

    You can also search for this author inPubMed Google Scholar

  13. J M Ready

    You can also search for this author inPubMed Google Scholar

  14. A J Eisch

    You can also search for this author inPubMed Google Scholar

  15. A A Pieper

    You can also search for this author inPubMed Google Scholar

  16. J M Zigman

    You can also search for this author inPubMed Google Scholar

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, A., Rivera, P., Wang, Q.et al. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis.Mol Psychiatry20, 500–508 (2015). https://doi.org/10.1038/mp.2014.34

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links


[8]ページ先頭

©2009-2025 Movatter.jp