- Review Article
- Published:
RNA interference
Naturevolume 418, pages244–251 (2002)Cite this article
41kAccesses
3325Citations
37Altmetric
Abstract
A conserved biological response to double-stranded RNA, known variously as RNA interference (RNAi) or post-transcriptional gene silencing, mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, and regulates the expression of protein-coding genes. RNAi has been cultivated as a means to manipulate gene expression experimentally and to probe gene function on a whole-genome scale.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA inCaenorhabditis elegans.Nature391, 806–811 (1998).
Guo, S. & Kemphues, K. J.par-1, a gene required for establishing polarity inC. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.Cell81, 611–620 (1995).
Timmons, L. & Fire, A. Specific interference by ingested dsRNA.Nature395, 854 (1998).
van der Krol, A. R., Mur, L. A., de Lange, P., Mol, J. N. & Stuitje, A. R. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect.Plant Mol. Biol.14, 457–466 (1990).
Napoli, C. A., Lemieux, C., & Jorgensen, R. Introduction of a chimeric chalcone synthetase gene in Petunia results in reversible cosuppression of homologous genesin trans.Plant Cell2, 279–289 (1990).
Jorgensen, R. Altered gene expression in plants due to trans interactions between homologous genes.Trends Biotechnol.8, 340–344 (1990).
Jorgensen, R. A., Cluster, P. D., English, J., Que, Q. & Napoli, C. A. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences.Plant Mol. Biol.31, 957–973 (1996).
Elmayan, T. & Vaucheret, H. Single copies of a strongly expressed 35S-driven transgene undergo post-transcriptional silencing.Plant J.9, 787–797 (1996).
Que, Q., Wang, H. Y., English, J. & Jorgensen, R. The frequency and degree of cosuppression by sense chalcone synthetase transgenes are dependent on promoter strength and are reduced by premature nonsense codons in the transgene coding sequence.Plant Cell9, 1357–1368 (1997).
Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. Initiation and maintenance of virus-induced gene silencing.Plant Cell10, 937–946 (1998).
Angell, S. M. & Baulcombe, D. C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA.EMBO J.16, 3675–3684 (1997).
Dougherty, W. G. et al. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation.Mol. Plant Microbe Interact.7, 544–552 (1994).
Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA.Proc. Natl Acad. Sci. USA92, 1679–1683 (1995).
Bernstein, E., Denli, A. M. & Hannon, G. J. The rest is silence.RNA7, 1509–1521 (2001).
Romano, N. & Macino, G. Quelling: transient inactivation of gene expression inNeurospora crassa by transformation with homologous sequences.Mol. Microbiol.6, 3343–3353 (1992).
Fire, A., Albertson, D., Harrison, S. W. & Moerman, D. G. Production of antisense RNA leads to effective and specific inhibition of gene expression inC. elegans muscle.Development113, 503–514 (1991).
Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. & Villeneuve, A. M. Transgene-mediated cosuppression in theC. elegans germ line.Genes Dev.14, 1578–1583 (2000).
Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression inDrosophila: gene silencing ofAlcohol dehydrogenase bywhite-Adh transgenes isPolycomb dependent.Cell90, 479–490 (1997).
Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene inArabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus.Cell101, 543–553 (2000).
de Carvalho, F. et al. Suppression of beta-1,3-glucanase transgene expression in homozygous plants.EMBO J.11, 2595–2602 (1992).
Jones, L., Ratcliff, F. & Baulcombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance.Curr. Biol.11, 747–757 (2001).
Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants.Cell76, 567–576 (1994).
Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA.EMBO J.19, 5194–5201 (2000).
Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing inDrosophila.Mol Cell9, 315–327 (2002).
Tabara, H. et al. Therde-1 gene, RNA interference, and transposon silencing inC. elegans.Cell99, 123–132 (1999).
Dudley, N. R., Labbe, J. C. & Goldstein, B. Using RNA interference to identify genes required for RNA interference.Proc. Natl Acad. Sci. USA99, 4191–4196 (2002).
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic genelin-14 bylin-4 mediates temporal pattern formation inC. elegans.Cell75, 855–862 (1993).
Reinhart, B. J. et al. The 21-nucleotidelet-7 RNA regulates developmental timing inCaenorhabditis elegans.Nature403, 901–906 (2000).
Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate thatfrizzled andfrizzled 2 act in the wingless pathway.Cell95, 1017–1026 (1998).
Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro.Genes Dev.13, 3191–3197 (1999).
Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing inDrosophila cells.Nature404, 293–296 (2000).
Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants.Science286, 950–952 (1999).
Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell101, 25–33 (2000).
Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi inDrosophila melanogaster embryo lysate.EMBO J.20, 6877–6888 (2001).
Filippov, V., Solovyev, V., Filippova, M. & Gill, S. S. A novel type of RNase III family proteins in eukaryotes.Gene245, 213–221 (2000).
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature409, 363–366 (2001).
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing inC. elegans.Genes Dev.15, 2654–2659 (2001).
Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development inCaenorhabditis elegans.Science293, 2269–2271 (2001).
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that controlC. elegans developmental timing.Cell106, 23–34 (2001).
Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage.Structure (Camb.)9, 1225–1236 (2001).
Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway.Cell107, 309–321 (2001).
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi.Science293, 1146–1150 (2001).
Bohmert, K. et al.AGO1 defines a novel locus ofArabidopsis controlling leaf development.EMBO J.17, 170–180 (1998).
Hammond, S. M., Caudy, A. A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA.Nature Rev. Genet.2, 110–119 (2001).
Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi inC. elegans.Science287, 2494–2497 (2000).
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H.mut-7 ofC. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD.Cell99, 133–141 (1999).
Parrish, S. & Fire, A. Distinct roles for RDE-1 and RDE-4 during RNA interference inCaenorhabditis elegans.RNA7, 1397–1402 (2001).
Catalanotto, C., Azzalin, G., Macino, G. & Cogoni, C. Involvement of small RNAs and role of theqde genes in the gene silencing pathway inNeurospora.Genes Dev.16, 790–795 (2002).
Palauqui, J. C., Elmayan, T., Pollien, J. M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions.EMBO J.16, 4738–4745 (1997).
Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing.Cell107, 465–476 (2001).
Schiebel, W. et al. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato.Plant Cell10, 2087–2101 (1998).
Mourrain, P. et al.Arabidopsis SGS2 andSGS3 genes are required for posttranscriptional gene silencing and natural virus resistance.Cell101, 533–542 (2000).
Cogoni, C. & Macino, G. Gene silencing inNeurospora crassa requires a protein homologous to RNA-dependent RNA polymerase.Nature399, 166–169 (1999).
Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference inC. elegans.Curr. Biol.10, 169–178 (2000).
Lipardi, C., Wei, Q. & Paterson, B. M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs.Cell107, 297–307 (2001).
Fabian, E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA dependent RNA polymerase.Plant Cell14, 857–867 (2002).
Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA.Cell95, 177–187 (1998).
Mallory, A. C. et al. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal.Plant Cell13, 571–583 (2001).
Winston, W. M., Molodowitch, C. & Hunter, C. P. Systemic RNAi inC. elegans requires the putative transmembrane protein SID-1.Science295, 2456–2459 (2002).
Cogoni, C. & Macino, G. Posttranscriptional gene silencing inNeurospora by a RecQ DNA helicase.Science286, 2342–2344 (1999).
Wu-Scharf, D., Jeong, B., Zhang, C. & Cerutti, H. Transgene and transposon silencing inChlamydomonas reinhardtii by a DEAH-box RNA helicase.Science290, 1159–1162 (2000).
Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T. & Plasterk, R. H. RNA helicase MUT-14-dependent gene silencing triggered inC. elegans by short antisense RNAs.Science295, 694–697 (2002).
Domeier, M. E. et al. A link between RNA interference and nonsense-mediated decay inCaenorhabditis elegans.Science289, 1928–1931 (2000).
Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi.Science293, 1070–1074 (2001).
Furner, I. J., Sheikh, M. A. & Collett, C. E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation.Genetics149, 651–662 (1998).
Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals.Proc. Natl Acad. Sci. USA97, 11650–11654 (2000).
Voinnet, O., Lederer, C. & Baulcombe, D. C. A viral movement protein prevents spread of the gene silencing signal inNicotiana benthamiana.Cell103, 157–167 (2000).
Baulcombe, D. Viruses and gene silencing in plants.Arch. Virol. Suppl.15, 189–201 (1999).
Jacobsen, S. E., Running, M. P. & Meyerowitz, E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems.Development126, 5231–5243 (1999).
Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily.Genes Cells6, 313–325 (2001).
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined bypiwi are essential for stem cell self-renewal.Genes Dev.12, 3715–3727 (1998).
Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance.Plant Cell14, 629–639 (2002).
Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of theZWILLE gene in the regulation of central shoot meristem cell fate duringArabidopsis embryogenesis.EMBO J.17, 1799–1809 (1998).
Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of thelet-7 small temporal RNA.Science293, 834–838 (2001).
Lee, R. C., Feinbaum, R. L. & Ambros, V. TheC. elegans heterochronic genelin-4 encodes small RNAs with antisense complementarity tolin-14.Cell75, 843–854 (1993).
Olsen, P. H. & Ambros, V. Thelin-4 regulatory RNA controls developmental timing inCaenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation.Dev. Biol.216, 671–680 (1999).
Slack, F. J. et al. Thelin-41 RBCC gene acts in theC. elegans heterochronic pathway between thelet-7 regulatory RNA and the LIN-29 transcription factor.Mol. Cell5, 659–669 (2000).
Ha, I., Wightman, B. & Ruvkun, G. A bulgedlin-4/lin-14 RNA duplex is sufficient forCaenorhabditis elegans lin-14 temporal gradient formation.Genes Dev.10, 3041–3050 (1996).
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature411, 494–498 (2001).
Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells.Genes Dev.16, 948–958 (2002).
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs.Science294, 853–858 (2001).
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles inCaenorhabditis elegans.Science294, 858–862 (2001).
Lee, R. C. & Ambros, V. An extensive class of small RNAs inCaenorhabditis elegans.Science294, 862–864 (2001).
Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs.Genes Dev.16, 720–728 (2002).
Lai, E. C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation.Nature Genet.30, 363–364 (2002).
Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development.Nature Cell Biol.2, 70–75 (2000).
Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference.Development127, 4147–4156 (2000).
Gil, J. & Esteban, M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action.Apoptosis5, 107–114 (2000).
Clarke, P. A. & Mathews, M. B. Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA.RNA1, 7–20 (1995).
Smith, N. A. et al. Total silencing by intron-spliced hairpin RNAs.Nature407, 319–320 (2000).
Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes.Nature Genet.24, 180–183 (2000).
Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing inDrosophila using double-stranded RNA.Nature Biotechnol.18, 896–898 (2000).
LaCount, D. J., Bruse, S., Hill, K. L. & Donelson, J. E. Double-stranded RNA interference inTrypanosoma brucei using head-to-head promoters.Mol. Biochem. Parasitol.111, 67–76 (2000).
Shi, H. et al. Genetic interference inTrypanosoma brucei by heritable and inducible double-stranded RNA.RNA6, 1069–1076 (2000).
Wang, Z., Morris, J. C., Drew, M. E. & Englund, P. T. Inhibition ofTrypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters.J. Biol. Chem.275, 40174–40179 (2000).
Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells.Proc. Natl Acad. Sci. USA99, 1443–1448 (2002).
Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells.Science21, 21 (2002).
Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc. Natl Acad. Sci. USA99, 5515–5520 (2002).
Meissner, W., Rothfels, H., Schafer, B. & Seifart, K. Development of an inducible pol III transcription system essentially requiring a mutated form of the TATA-binding protein.Nucleic Acids Res.29, 1672–1682 (2001).
Ohkawa, J. & Taira, K. Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter.Hum. Gene Ther.11, 577–585 (2000).
Acknowledgements
I thank members of the Hannon laboratory for critical reading of the manuscript; J. Duffy for help in preparation of the figures; D. Baulcombe, M. Tijsterman, R. Carthew and S. Prasanth for providing the images forFig. 1; fellow investigators who granted permission to discuss unpublished observations; and C. Mello and C. Sherr for providing motive and opportunity, respectively, for our early work on RNAi. G.J.H. is a Rita Allen Foundation scholar and is supported by an Innovator Award from the U.S. Army Breast Cancer Research Program. This work was supported in part by a grant from the NIH.
Author information
Authors and Affiliations
Cold Spring Harbour Laboratory, 1 Bungtown Road, Cold Spring Harbour, 11724, New York, USA
Gregory J. Hannon
- Gregory J. Hannon
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toGregory J. Hannon.
Rights and permissions
About this article
Cite this article
Hannon, G. RNA interference.Nature418, 244–251 (2002). https://doi.org/10.1038/418244a
Issue Date:
This article is cited by
Cryo-EM structure reveals how SID-1 recognizes dsRNA that initiates systemic RNAi
Nature Structural & Molecular Biology (2024)
Liver fibrosis pathologies and potentials of RNA based therapeutics modalities
- Rimpy Diwan
- Samantha Lynn Gaytan
- Md Nurunnabi
Drug Delivery and Translational Research (2024)
Silencing of ApCht7 and ApCht10 revealed their function and evaluation of their potential as RNAi targets in Acyrthosiphon pisum
- Chunchun Li
- Lixiang Wang
- Chang-Zhong Liu
Journal of Pest Science (2024)
Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges
- Hara Kang
- Yun Ji Ga
- Jung-Yong Yeh
Journal of Biomedical Science (2023)
GEMIN4, a potential therapeutic targets for patients with basal-like subtype breast cancer
- Liang Wu
- Yue Zhang
- Yan Lin
BMC Women's Health (2023)