Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Review Article
  • Published:

RNA interference

Naturevolume 418pages244–251 (2002)Cite this article

Abstract

A conserved biological response to double-stranded RNA, known variously as RNA interference (RNAi) or post-transcriptional gene silencing, mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, and regulates the expression of protein-coding genes. RNAi has been cultivated as a means to manipulate gene expression experimentally and to probe gene function on a whole-genome scale.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double-stranded RNA can be introduced experimentally to silence target genes of interest.
Figure 2: Dicer and RISC (RNA-induced silencing complex).
Figure 3: Transitive RNAi.
Figure 4: Small interfering RNAs versus small temporal RNAs.
Figure 5: A model for the mechanism of RNAi.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA inCaenorhabditis elegans.Nature391, 806–811 (1998).

    Article ADS CAS PubMed  Google Scholar 

  2. Guo, S. & Kemphues, K. J.par-1, a gene required for establishing polarity inC. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.Cell81, 611–620 (1995).

    Article CAS PubMed  Google Scholar 

  3. Timmons, L. & Fire, A. Specific interference by ingested dsRNA.Nature395, 854 (1998).

    Article ADS CAS PubMed  Google Scholar 

  4. van der Krol, A. R., Mur, L. A., de Lange, P., Mol, J. N. & Stuitje, A. R. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect.Plant Mol. Biol.14, 457–466 (1990).

    Article CAS PubMed  Google Scholar 

  5. Napoli, C. A., Lemieux, C., & Jorgensen, R. Introduction of a chimeric chalcone synthetase gene in Petunia results in reversible cosuppression of homologous genesin trans.Plant Cell2, 279–289 (1990).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Jorgensen, R. Altered gene expression in plants due to trans interactions between homologous genes.Trends Biotechnol.8, 340–344 (1990).

    Article CAS PubMed  Google Scholar 

  7. Jorgensen, R. A., Cluster, P. D., English, J., Que, Q. & Napoli, C. A. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences.Plant Mol. Biol.31, 957–973 (1996).

    Article CAS PubMed  Google Scholar 

  8. Elmayan, T. & Vaucheret, H. Single copies of a strongly expressed 35S-driven transgene undergo post-transcriptional silencing.Plant J.9, 787–797 (1996).

    Article CAS  Google Scholar 

  9. Que, Q., Wang, H. Y., English, J. & Jorgensen, R. The frequency and degree of cosuppression by sense chalcone synthetase transgenes are dependent on promoter strength and are reduced by premature nonsense codons in the transgene coding sequence.Plant Cell9, 1357–1368 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. Initiation and maintenance of virus-induced gene silencing.Plant Cell10, 937–946 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  11. Angell, S. M. & Baulcombe, D. C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA.EMBO J.16, 3675–3684 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Dougherty, W. G. et al. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation.Mol. Plant Microbe Interact.7, 544–552 (1994).

    Article CAS PubMed  Google Scholar 

  13. Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA.Proc. Natl Acad. Sci. USA92, 1679–1683 (1995).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  14. Bernstein, E., Denli, A. M. & Hannon, G. J. The rest is silence.RNA7, 1509–1521 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  15. Romano, N. & Macino, G. Quelling: transient inactivation of gene expression inNeurospora crassa by transformation with homologous sequences.Mol. Microbiol.6, 3343–3353 (1992).

    Article CAS PubMed  Google Scholar 

  16. Fire, A., Albertson, D., Harrison, S. W. & Moerman, D. G. Production of antisense RNA leads to effective and specific inhibition of gene expression inC. elegans muscle.Development113, 503–514 (1991).

    CAS PubMed  Google Scholar 

  17. Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. & Villeneuve, A. M. Transgene-mediated cosuppression in theC. elegans germ line.Genes Dev.14, 1578–1583 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  18. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression inDrosophila: gene silencing ofAlcohol dehydrogenase bywhite-Adh transgenes isPolycomb dependent.Cell90, 479–490 (1997).

    Article CAS PubMed  Google Scholar 

  19. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene inArabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus.Cell101, 543–553 (2000).

    Article CAS PubMed  Google Scholar 

  20. de Carvalho, F. et al. Suppression of beta-1,3-glucanase transgene expression in homozygous plants.EMBO J.11, 2595–2602 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Jones, L., Ratcliff, F. & Baulcombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance.Curr. Biol.11, 747–757 (2001).

    Article CAS PubMed  Google Scholar 

  22. Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants.Cell76, 567–576 (1994).

    Article CAS PubMed  Google Scholar 

  23. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA.EMBO J.19, 5194–5201 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing inDrosophila.Mol Cell9, 315–327 (2002).

    Article CAS PubMed  Google Scholar 

  25. Tabara, H. et al. Therde-1 gene, RNA interference, and transposon silencing inC. elegans.Cell99, 123–132 (1999).

    Article CAS PubMed  Google Scholar 

  26. Dudley, N. R., Labbe, J. C. & Goldstein, B. Using RNA interference to identify genes required for RNA interference.Proc. Natl Acad. Sci. USA99, 4191–4196 (2002).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  27. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic genelin-14 bylin-4 mediates temporal pattern formation inC. elegans.Cell75, 855–862 (1993).

    Article CAS PubMed  Google Scholar 

  28. Reinhart, B. J. et al. The 21-nucleotidelet-7 RNA regulates developmental timing inCaenorhabditis elegans.Nature403, 901–906 (2000).

    Article ADS CAS PubMed  Google Scholar 

  29. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate thatfrizzled andfrizzled 2 act in the wingless pathway.Cell95, 1017–1026 (1998).

    Article CAS PubMed  Google Scholar 

  30. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro.Genes Dev.13, 3191–3197 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing inDrosophila cells.Nature404, 293–296 (2000).

    Article ADS CAS PubMed  Google Scholar 

  32. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants.Science286, 950–952 (1999).

    Article CAS PubMed  Google Scholar 

  33. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell101, 25–33 (2000).

    Article CAS PubMed  Google Scholar 

  34. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi inDrosophila melanogaster embryo lysate.EMBO J.20, 6877–6888 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Filippov, V., Solovyev, V., Filippova, M. & Gill, S. S. A novel type of RNase III family proteins in eukaryotes.Gene245, 213–221 (2000).

    Article CAS PubMed  Google Scholar 

  36. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature409, 363–366 (2001).

    Article ADS CAS PubMed  Google Scholar 

  37. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing inC. elegans.Genes Dev.15, 2654–2659 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development inCaenorhabditis elegans.Science293, 2269–2271 (2001).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  39. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that controlC. elegans developmental timing.Cell106, 23–34 (2001).

    Article CAS PubMed  Google Scholar 

  40. Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage.Structure (Camb.)9, 1225–1236 (2001).

    Article CAS  Google Scholar 

  41. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway.Cell107, 309–321 (2001).

    Article CAS PubMed  Google Scholar 

  42. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi.Science293, 1146–1150 (2001).

    Article CAS PubMed  Google Scholar 

  43. Bohmert, K. et al.AGO1 defines a novel locus ofArabidopsis controlling leaf development.EMBO J.17, 170–180 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Hammond, S. M., Caudy, A. A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA.Nature Rev. Genet.2, 110–119 (2001).

    Article CAS PubMed  Google Scholar 

  45. Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi inC. elegans.Science287, 2494–2497 (2000).

    Article ADS CAS PubMed  Google Scholar 

  46. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H.mut-7 ofC. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD.Cell99, 133–141 (1999).

    Article CAS PubMed  Google Scholar 

  47. Parrish, S. & Fire, A. Distinct roles for RDE-1 and RDE-4 during RNA interference inCaenorhabditis elegans.RNA7, 1397–1402 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  48. Catalanotto, C., Azzalin, G., Macino, G. & Cogoni, C. Involvement of small RNAs and role of theqde genes in the gene silencing pathway inNeurospora.Genes Dev.16, 790–795 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Palauqui, J. C., Elmayan, T., Pollien, J. M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions.EMBO J.16, 4738–4745 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing.Cell107, 465–476 (2001).

    Article CAS PubMed  Google Scholar 

  51. Schiebel, W. et al. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato.Plant Cell10, 2087–2101 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  52. Mourrain, P. et al.Arabidopsis SGS2 andSGS3 genes are required for posttranscriptional gene silencing and natural virus resistance.Cell101, 533–542 (2000).

    Article CAS PubMed  Google Scholar 

  53. Cogoni, C. & Macino, G. Gene silencing inNeurospora crassa requires a protein homologous to RNA-dependent RNA polymerase.Nature399, 166–169 (1999).

    Article ADS CAS PubMed  Google Scholar 

  54. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference inC. elegans.Curr. Biol.10, 169–178 (2000).

    Article CAS PubMed  Google Scholar 

  55. Lipardi, C., Wei, Q. & Paterson, B. M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs.Cell107, 297–307 (2001).

    Article CAS PubMed  Google Scholar 

  56. Fabian, E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA dependent RNA polymerase.Plant Cell14, 857–867 (2002).

    Article CAS  Google Scholar 

  57. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA.Cell95, 177–187 (1998).

    Article CAS PubMed  Google Scholar 

  58. Mallory, A. C. et al. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal.Plant Cell13, 571–583 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Winston, W. M., Molodowitch, C. & Hunter, C. P. Systemic RNAi inC. elegans requires the putative transmembrane protein SID-1.Science295, 2456–2459 (2002).

    Article ADS CAS PubMed  Google Scholar 

  60. Cogoni, C. & Macino, G. Posttranscriptional gene silencing inNeurospora by a RecQ DNA helicase.Science286, 2342–2344 (1999).

    Article CAS PubMed  Google Scholar 

  61. Wu-Scharf, D., Jeong, B., Zhang, C. & Cerutti, H. Transgene and transposon silencing inChlamydomonas reinhardtii by a DEAH-box RNA helicase.Science290, 1159–1162 (2000).

    Article ADS CAS PubMed  Google Scholar 

  62. Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T. & Plasterk, R. H. RNA helicase MUT-14-dependent gene silencing triggered inC. elegans by short antisense RNAs.Science295, 694–697 (2002).

    Article ADS CAS PubMed  Google Scholar 

  63. Domeier, M. E. et al. A link between RNA interference and nonsense-mediated decay inCaenorhabditis elegans.Science289, 1928–1931 (2000).

    Article ADS CAS PubMed  Google Scholar 

  64. Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi.Science293, 1070–1074 (2001).

    Article CAS PubMed  Google Scholar 

  65. Furner, I. J., Sheikh, M. A. & Collett, C. E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation.Genetics149, 651–662 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  66. Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals.Proc. Natl Acad. Sci. USA97, 11650–11654 (2000).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  67. Voinnet, O., Lederer, C. & Baulcombe, D. C. A viral movement protein prevents spread of the gene silencing signal inNicotiana benthamiana.Cell103, 157–167 (2000).

    Article CAS PubMed  Google Scholar 

  68. Baulcombe, D. Viruses and gene silencing in plants.Arch. Virol. Suppl.15, 189–201 (1999).

    CAS PubMed  Google Scholar 

  69. Jacobsen, S. E., Running, M. P. & Meyerowitz, E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems.Development126, 5231–5243 (1999).

    CAS PubMed  Google Scholar 

  70. Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily.Genes Cells6, 313–325 (2001).

    Article CAS PubMed  Google Scholar 

  71. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined bypiwi are essential for stem cell self-renewal.Genes Dev.12, 3715–3727 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance.Plant Cell14, 629–639 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  73. Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of theZWILLE gene in the regulation of central shoot meristem cell fate duringArabidopsis embryogenesis.EMBO J.17, 1799–1809 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of thelet-7 small temporal RNA.Science293, 834–838 (2001).

    Article CAS PubMed  Google Scholar 

  75. Lee, R. C., Feinbaum, R. L. & Ambros, V. TheC. elegans heterochronic genelin-4 encodes small RNAs with antisense complementarity tolin-14.Cell75, 843–854 (1993).

    Article CAS PubMed  Google Scholar 

  76. Olsen, P. H. & Ambros, V. Thelin-4 regulatory RNA controls developmental timing inCaenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation.Dev. Biol.216, 671–680 (1999).

    Article CAS PubMed  Google Scholar 

  77. Slack, F. J. et al. Thelin-41 RBCC gene acts in theC. elegans heterochronic pathway between thelet-7 regulatory RNA and the LIN-29 transcription factor.Mol. Cell5, 659–669 (2000).

    Article CAS PubMed  Google Scholar 

  78. Ha, I., Wightman, B. & Ruvkun, G. A bulgedlin-4/lin-14 RNA duplex is sufficient forCaenorhabditis elegans lin-14 temporal gradient formation.Genes Dev.10, 3041–3050 (1996).

    Article CAS PubMed  Google Scholar 

  79. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature411, 494–498 (2001).

    Article ADS CAS PubMed  Google Scholar 

  80. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells.Genes Dev.16, 948–958 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  81. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs.Science294, 853–858 (2001).

    Article ADS CAS PubMed  Google Scholar 

  82. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles inCaenorhabditis elegans.Science294, 858–862 (2001).

    Article ADS CAS PubMed  Google Scholar 

  83. Lee, R. C. & Ambros, V. An extensive class of small RNAs inCaenorhabditis elegans.Science294, 862–864 (2001).

    Article ADS CAS PubMed  Google Scholar 

  84. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs.Genes Dev.16, 720–728 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Lai, E. C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation.Nature Genet.30, 363–364 (2002).

    Article CAS PubMed  Google Scholar 

  86. Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development.Nature Cell Biol.2, 70–75 (2000).

    Article CAS PubMed  Google Scholar 

  87. Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference.Development127, 4147–4156 (2000).

    CAS PubMed  Google Scholar 

  88. Gil, J. & Esteban, M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action.Apoptosis5, 107–114 (2000).

    Article CAS PubMed  Google Scholar 

  89. Clarke, P. A. & Mathews, M. B. Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA.RNA1, 7–20 (1995).

    CAS PubMed PubMed Central  Google Scholar 

  90. Smith, N. A. et al. Total silencing by intron-spliced hairpin RNAs.Nature407, 319–320 (2000).

    Article ADS CAS PubMed  Google Scholar 

  91. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes.Nature Genet.24, 180–183 (2000).

    Article CAS PubMed  Google Scholar 

  92. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing inDrosophila using double-stranded RNA.Nature Biotechnol.18, 896–898 (2000).

    Article CAS  Google Scholar 

  93. LaCount, D. J., Bruse, S., Hill, K. L. & Donelson, J. E. Double-stranded RNA interference inTrypanosoma brucei using head-to-head promoters.Mol. Biochem. Parasitol.111, 67–76 (2000).

    Article CAS PubMed  Google Scholar 

  94. Shi, H. et al. Genetic interference inTrypanosoma brucei by heritable and inducible double-stranded RNA.RNA6, 1069–1076 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  95. Wang, Z., Morris, J. C., Drew, M. E. & Englund, P. T. Inhibition ofTrypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters.J. Biol. Chem.275, 40174–40179 (2000).

    Article CAS PubMed  Google Scholar 

  96. Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells.Proc. Natl Acad. Sci. USA99, 1443–1448 (2002).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  97. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells.Science21, 21 (2002).

    Google Scholar 

  98. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc. Natl Acad. Sci. USA99, 5515–5520 (2002).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  99. Meissner, W., Rothfels, H., Schafer, B. & Seifart, K. Development of an inducible pol III transcription system essentially requiring a mutated form of the TATA-binding protein.Nucleic Acids Res.29, 1672–1682 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Ohkawa, J. & Taira, K. Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter.Hum. Gene Ther.11, 577–585 (2000).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

I thank members of the Hannon laboratory for critical reading of the manuscript; J. Duffy for help in preparation of the figures; D. Baulcombe, M. Tijsterman, R. Carthew and S. Prasanth for providing the images forFig. 1; fellow investigators who granted permission to discuss unpublished observations; and C. Mello and C. Sherr for providing motive and opportunity, respectively, for our early work on RNAi. G.J.H. is a Rita Allen Foundation scholar and is supported by an Innovator Award from the U.S. Army Breast Cancer Research Program. This work was supported in part by a grant from the NIH.

Author information

Authors and Affiliations

  1. Cold Spring Harbour Laboratory, 1 Bungtown Road, Cold Spring Harbour, 11724, New York, USA

    Gregory J. Hannon

Authors
  1. Gregory J. Hannon

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toGregory J. Hannon.

Rights and permissions

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp