Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Testing the neutral theory of molecular evolution with genomic data fromDrosophila

Naturevolume 415pages1024–1026 (2002)Cite this article

Abstract

Although positive selection has been detected in many genes, its overall contribution to protein evolution is debatable1. If the bulk of molecular evolution is neutral, then the ratio of amino-acid (A) to synonymous (S) polymorphism should, on average, equal that of divergence2. A comparison of theA/S ratio of polymorphism inDrosophila melanogaster with that of divergence fromDrosophila simulans shows that theA/S ratio of divergence is twice as high—a difference that is often attributed to positive selection. But an increase in selective constraint owing to an increase in effective population size could also explain this observation, and, if so, all genes should be affected similarly. Here we show that the difference between polymorphism and divergence is limited to only a fraction of the genes, which are also evolving more rapidly, and this implies that positive selection is responsible. A higherA/S ratio of divergence than of polymorphism is also observed in other species, which suggests a rate of adaptive evolution that is far higher than permitted by the neutral theory of molecular evolution.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution of the excess of amino-acid divergence contributed by each gene.

Similar content being viewed by others

References

  1. Nei, M.Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

    Google Scholar 

  2. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at theAdh locus inDrosophila.Nature351, 652–654 (1991).

    Article ADS CAS  Google Scholar 

  3. Kimura, M.The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  4. Fay, J. C., Wyckoff, G. J. & Wu, C.-I. Positive and negative selection on the human genome.Genetics158, 1227–1234 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  5. Kimura, M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution.Nature267, 275–276 (1977).

    Article ADS CAS  Google Scholar 

  6. Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation.Trends Ecol. Evol.15, 496–503 (2000).

    Article CAS  Google Scholar 

  7. Wyckoff, G. J., Wang, W. & Wu, C.-I. Rapid evolution of male reproductive genes in the descent of man.Nature403, 304–309 (2000).

    Article ADS CAS  Google Scholar 

  8. Weinreich, D. M. & Rand, D. M. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes.Genetics156, 385–399 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  9. Moriyama, E. N. & Powell, J. R. Intraspecific nuclear DNA variation inDrosophila.Mol. Biol. Evol.13, 261–277 (1996).

    Article CAS  Google Scholar 

  10. Eanes, W. F., Kirchner, M. & Yoon, J. Evidence for adaptive evolution of theG6pd gene in theDrosophila melanogaster andDrosophila simulans lineages.Proc. Natl Acad. Sci. USA90, 7475–7479 (1993).

    Article ADS CAS  Google Scholar 

  11. Begun, D. J. & Whitley, P. Adaptive evolution ofrelish, aDrosophila NF-κB/IκB protein.Genetics154, 1231–1238 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  12. Tsaur, S. C., Ting, C. T. & Wu, C. I. Positive selection driving the evolution of a gene of male reproduction,Acp26Aa, ofDrosophila: II. Divergence versus polymorphism.Mol. Biol. Evol.15, 1040–1046 (1998).

    Article CAS  Google Scholar 

  13. Langley, C. H. & Fitch, W. M. An examination of the constancy of the rate of molecular evolution.J. Mol. Evol.3, 161–177 (1974).

    Article ADS CAS  Google Scholar 

  14. Ohta, T. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory.J. Mol. Evol.40, 56–63 (1995).

    Article CAS  Google Scholar 

  15. Lachaise, D. M., Cariou, M.-L., David, J. R., Lemeunier, F. & Tsacas, L. The origin and dispersal of theDrosophila melanogaster subgroup: a speculative paleogeographic essay.Evol. Biol.22, 159–225 (1988).

    Article  Google Scholar 

  16. Andolfatto, P. Contrasting patterns of X-linked and autosomal nucleotide variation inDrosophila melanogaster andDrosophila simulans.Mol. Biol. Evol.18, 279–290 (2001).

    Article CAS  Google Scholar 

  17. Akashi, H. Codon bias evolution inDrosophila: Population genetics of mutation-selection drift.Gene205, 269–278 (1997).

    Article CAS  Google Scholar 

  18. McVean, G. A., Vieira, J. Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution inDrosophila.Genetics157, 245–257 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  19. Kliman, R. M. et al. The population genetics of the origin and divergence of theDrosophila simulans complex species.Genetics156, 1913–1931 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  20. Begun, D. J. The frequency distribution of nucleotide variation inDrosophila simulans.Mol. Biol. Evol.18, 1343–1352 (2001).

    Article CAS  Google Scholar 

  21. Ohta, T. Slightly deleterious mutant substitutions during evolution.Nature246, 96–98 (1973).

    Article ADS CAS  Google Scholar 

  22. Hey, J. & Wakeley, J. A coalescent estimator of the population recombination rate.Genetics145, 833–846 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  23. Rozas, J. & Rozas, R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis.Bioinformatics15, 174–175 (1999).

    Article CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH and NSF to C.-I.W. and a Genetics Training Grant and a Department of Education PhD fellowship to J.C.F.

Author information

Author notes
  1. Chung-I Wu

    Present address: Department of Ecology and Evolution, University of Chicago, Chicago, 60637, Illinois, USA

  2. Justin C. Fay

    Present address: Department of Genome Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, 94720

  3. Gerald J. Wyckoff

    Present address: Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, USA

Authors and Affiliations

  1. Committee on Genetics, University of Chicago, Chicago, 60637, Illinois, USA

    Justin C. Fay, Gerald J. Wyckoff & Chung-I Wu

Authors
  1. Justin C. Fay
  2. Gerald J. Wyckoff
  3. Chung-I Wu

Corresponding author

Correspondence toJustin C. Fay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Fay, J., Wyckoff, G. & Wu, CI. Testing the neutral theory of molecular evolution with genomic data fromDrosophila.Nature415, 1024–1026 (2002). https://doi.org/10.1038/4151024a

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp