Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule

Naturevolume 378pages767–768 (1995)Cite this article

Abstract

THE homochirality of natural amino acids and sugars remains a puzzle for theories of the chemical origin of life1–18. In 1953 Frank7 proposed a reaction scheme by which a combination of autocatalysis and inhibition in a system of replicating chiral molecules can allow small random fluctuations in an initially racemic mixture to tip the balance to yield almost exclusively one enantiomer. Here we show experimentally that autocatalysis in a chemical reaction can indeed enhance a small initial enantiomeric excess of a chiral molecule. When a 5-pyrimidyl alkanol with a small (2%) enantiomeric excess is treated with diisopropylzinc and pyrimidine-5-car-boxaldehyde, it undergoes an autocatalytic reaction to generate more of the alkanol. Because the reaction involves a chiral catalyst generated from the initial alkanol, and because the catalytic step is enantioselective, the enantiomeric excess of the product is enhanced. This process provides a mechanism by which a small initial imbalance in chirality can become overwhelming.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bada, J. L.Nature374, 594–595 (1995).

    Article ADS CAS  Google Scholar 

  2. Mason, S. F.Nature314, 400–401 (1985).

    Article ADS  Google Scholar 

  3. Bonner, W. A.Topics Stereochem.18, 1–96 (1988).

    CAS  Google Scholar 

  4. Mason, S. F. & Tranter, G. E.Proc. R. Soc. Lond. A397, 45–65 (1985).

    Article ADS CAS  Google Scholar 

  5. Kagan, H. B.et al.Tetrahedron Lett.27, 2479–2482 (1971).

    Article  Google Scholar 

  6. Meiring, W. J.Nature329, 712–714 (1987).

    Article ADS CAS  Google Scholar 

  7. Frank, F. C.Biochem. biophys. Acta11, 459–463 (1953).

    Article CAS  Google Scholar 

  8. Calvin, M.Chemical Evolution Ch. 7 (Clarendon, London, 1969).

    Google Scholar 

  9. Wynberg, H.J. Macromolec. Sci.—Chem. A26, 1033–1041 (1989).

    Article  Google Scholar 

  10. Kondepudi, D. K. & Nelson, G. W.Nature314, 438–441 (1985).

    Article ADS CAS  Google Scholar 

  11. Tranter, G. E.Nature318, 172–173 (1985).

    Article ADS CAS  Google Scholar 

  12. Havinga, E.Biochim. biophys. Acta13, 171–174 (1954).

    Article CAS  Google Scholar 

  13. Baker, W., Gilbert, B. & Ollis, W. D.J. chem. Soc. 1443–1446 (1952).

  14. Berkovitch-Yellin, Z.et al.J. Am. chem. Soc.107, 3111–3122 (1985).

    Article CAS  Google Scholar 

  15. Pincock, R. E., Perkins, R. R., Ma, A. S. & Wilson, K. R.Science174, 1018–1020 (1971).

    Article ADS CAS  Google Scholar 

  16. Puchot, C.et al.J. Am. chem. Soc.108, 2353–2357 (1986).

    Article CAS  Google Scholar 

  17. Oguni, N. & Kaneko, T.J. Am. chem. Soc.110, 7877–7878 (1988).

    Article CAS  Google Scholar 

  18. Noyori, R. & Kitamura, M.Angew. Chem., Int. Edn. engl.30, 49–69 (1991).

    Article  Google Scholar 

  19. Soai K., Niwa, S. & Hori, H.J. chem. Soc., chem. Commun. 982–983 (1990).

  20. Soai K., Hayase, T., Shimada, C. & Isobe, K.Tetrahedron: Asymmetry5, 789–792 (1994).

    Article CAS  Google Scholar 

  21. Soai K., Hayase, T. & Takai, K.Tetrahedron: Asymmetry6, 637–638 (1995).

    Article CAS  Google Scholar 

  22. Soai K. & Niwa, S.Chem. Rev.92, 833–856 (1992).

    Article CAS  Google Scholar 

  23. Soai K., Hayase, T., Takai, K. & Sugiyama, T.J. org. Chem.59, 7908–7909 (1994).

    Article CAS  Google Scholar 

  24. Sato T., Soai, K., Suzuki, K. & Mukaiyama, T.Chem. Lett. 601–604 (1978).

  25. Niwa, S. & Soai, K.J. chem. Soc., Perkin Trans. 1 2717–2720 (1991).

  26. Rho, T. & Abuh, Y. F.Synth. Commun.24, 253–256 (1994).

    Article CAS  Google Scholar 

  27. Kondepudi, D. K., Kaufman, R. J. & Singh, N.Science250, 975–976 (1990).

    Article ADS CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo, 162, Japan

    Kenso Soai, Takanori Shibata, Hiroshi Morioka & Kaori Choji

Authors
  1. Kenso Soai
  2. Takanori Shibata
  3. Hiroshi Morioka
  4. Kaori Choji

Rights and permissions

About this article

Cite this article

Soai, K., Shibata, T., Morioka, H.et al. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule.Nature378, 767–768 (1995). https://doi.org/10.1038/378767a0

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp