Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

The life span of the biosphere revisited

Naturevolume 360pages721–723 (1992)Cite this article

Abstract

A DECADE ago, Lovelock and Whitfield1 raised the question of how much longer the biosphere can survive on Earth. They pointed out that, despite the current fossil-fuel induced increase in the atmospheric CO2 concentration, the long-term trend should be in the opposite direction: as increased solar luminosity warms the Earth, silicate rocks should weather more readily, causing atmospheric CO2 to decrease. In their model1, atmospheric CO2 falls below the critical level for C3 photosynthesis, 150 parts per million (p.p.m.), in only 100 Myr, and this is assumed to mark the demise of the biosphere as a whole. Here, we re-examine this problem using a more elaborate model that includes a more accurate treatment of the greenhouse effect of CO2 (refs 2–4), a biologically mediated weathering parameterization, and the realization that C4 photosynthesis can persist to much lower concentrations of atmospheric CO2(<10 p.p.m.)5,6. We find that a C4-plant-based biosphere could survive for at least another 0.9 Gyr to 1.5 Gyr after the present time, depending respectively on whether CO2 or temperature is the limiting factor. Within an additional 1 Gyr, Earth may lose its water to space, thereby following the path of its sister planet, Venus.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lovelock, J. E. & Whitfield, M.Nature296, 561–563 (1982).

    Article ADS CAS  Google Scholar 

  2. Kasting, J. F. & Ackerman, T. P.Science234, 1383–1385 (1986).

    Article ADS CAS  Google Scholar 

  3. Kasting, J. F.Paleogeogr. Paleoclimat. Paleoecol.75, 83–95 (1989).

    Article ADS CAS  Google Scholar 

  4. Kasting, J. F., Whitfield, D. P., & Reynolds, R. T.Icarus (in the press).

  5. Heath, O. V. S.The Physiological Aspects of Photosynthesis (Stanford Univ. Press, (1969).

    Google Scholar 

  6. Pearcy, R. W. & Ehleringer, J.Plant Cell Envir.7, 1–13 (1984).

    Article CAS  Google Scholar 

  7. Newman, M. J. & Rood, R. T.Science198, 1035–1037 (1977).

    Article ADS CAS  Google Scholar 

  8. Gough, D. O.Solar Phys.74, 21–34 (1981).

    Article ADS CAS  Google Scholar 

  9. Sackman, I.-J., Boothroyd, A. I. & Fowler, W. A.Astrophys. J.360, 727–736 (1990).

    Article ADS  Google Scholar 

  10. Walker, J. C. G., Hays, P. B. & Kasting, J. F.J. geophys. Res.86, 9776–9782 (1981).

    Article ADS CAS  Google Scholar 

  11. Caldeira, K.Geology19, 204–206 (1991).

    Article ADS CAS  Google Scholar 

  12. Manabe, S. & Wetherald, R. T.J. atmos. Sci.24, 241–259 (1967).

    Article ADS CAS  Google Scholar 

  13. Sillen, L. G. inOceanography (ed. Sears, M.) 549–581 (Am. Assoc. Adv. Sci., Washington DC. 1961).

    Google Scholar 

  14. Stumm, W. & Morgan, J. J.Aquatic Chemistry (Wiley, New York, 1981).

    Google Scholar 

  15. Miller, A. G., Turpin, D. H. & Canvin, D. T.Plant Physiol.75, 1064–1070 (1984).

    Article CAS  Google Scholar 

  16. Rossow, W. B., Henderson-Sellers, A. & Weinreich, S. K.Science217, 1245–1247 (1982).

    Article ADS CAS  Google Scholar 

  17. Brock, T. D.Science230, 132–138 (1985).

    Article ADS CAS  Google Scholar 

  18. Baross, J. A. & Deming, J. W.Nature303, 423–426 (1983).

    Article ADS CAS  Google Scholar 

  19. Stetter, K. O. inThermophiles: General, Molecular, and Applied Microbiology (ed. Brock, T. D.) 39–74 (Wiley, New York, 1986).

    Google Scholar 

  20. Kasting, J. F.Icarus74, 472–494 (1988).

    Article ADS CAS  Google Scholar 

  21. Watson, A. J., Donahue, T. M. & Walker, J. C. G.Icarus48, 150–166 (1981).

    Article ADS CAS  Google Scholar 

  22. Sleep, N. H., Zahnle, K. J., Kasting, J. F. & Morowitz, H. J.Nature342, 139–142 (1989).

    Article ADS CAS  Google Scholar 

  23. Chameides, W. L.J. geophys. Res.89, 4739–4755 (1984).

    Article ADS CAS  Google Scholar 

  24. Blum, A. & Lasaga, A. C.Nature331, 431–433 (1988).

    Article ADS CAS  Google Scholar 

  25. Wogelius, R. A. & Walther, J. V.Geochim. cosmochim. Acta55, 943–954 (1991).

    Article ADS CAS  Google Scholar 

  26. Lagache, M.Bull. Soc. Franc. Miner. Crist.88, 223–253 (1965).

    CAS  Google Scholar 

  27. Lagache, M.Geochim. cosmochim. Acta40, 157–161 (1976).

    Article ADS CAS  Google Scholar 

  28. Volk, T.Am. J. Sci.287, 763–779 (1987).

    Article ADS CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Earth System Science Center & Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA

    Ken Caldeira & James F. Kasting

Authors
  1. Ken Caldeira
  2. James F. Kasting

Rights and permissions

About this article

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp