Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

The homeobox genelim-6 is required for distinct chemosensory representations inC. elegans

Naturevolume 410pages694–698 (2001)Cite this article

AnErratum to this article was published on 01 August 2001

This article has beenupdated

Abstract

The ability to discriminate between different chemical stimuli is crucial for food detection, spatial orientation and other adaptive behaviours in animals. In the nematodeCaenorhabditis elegans, spatial orientation in gradients of soluble chemoattractants (chemotaxis) is controlled mainly by a single pair of chemosensory neurons1. These two neurons, ASEL and ASER, are left–right homologues in terms of the disposition of their somata and processes, morphology of specialized sensory endings, synaptic partners and expression profile of many genes2,3. However, recent gene-expression studies have revealed unexpected asymmetries between ASEL and ASER. ASEL expresses the putative receptor guanylyl cyclase genesgcy-6 andgcy-7, whereas ASER expressesgcy-5 (ref.4). In addition, only ASEL expresses the homeobox genelim-6, an orthologue of the humanLMX1 subfamily of homeobox genes5. Here we show, using laser ablation of neurons and whole-cell patch-clamp electrophysiology, that the asymmetries between ASEL and ASER extend to the functional level. ASEL is primarily sensitive to sodium, whereas ASER is primarily sensitive to chloride and potassium. Furthermore, we find thatlim-6 is required for this functional asymmetry and for the ability to distinguish sodium from chloride. Thus, a homeobox gene increases the representational capacity of the nervous system by establishing asymmetric functions in a bilaterally symmetrical neuron pair.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discrimination of sodium and chloride by wild-typeC. elegans.
Figure 2: Effect of ablations of ASEL and ASER on chemotaxis performance in chloride, sodium and potassium gradients.
Figure 3: Comparison of membrane currents in ASEL and ASER.
Figure 4: Discrimination of sodium and chloride inlim-6 mutants.

Similar content being viewed by others

Change history

References

  1. Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals inC. elegans.Neuron7, 729–742 (1991).

    Article CAS  Google Scholar 

  2. Ward, S., Thompson, N., White, J. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematodeCaenorhabditis elegans.J. Comp. Neurol.160, 313–338 (1975).

    Article CAS  Google Scholar 

  3. White, J., Southgate, E., Thompson, J. & Brenner, S. The structure of the nervous system of the nematodeCaenorhabditis elegans.Phil. Trans. R. Soc. Lond. B314, 1–340 (1986).

    Article ADS CAS  Google Scholar 

  4. Yu, S., Avery, L., Baude, E. & Garbers, D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors.Proc. Natl Acad. Sci. USA94, 3384–3387 (1997).

    Article ADS CAS  Google Scholar 

  5. Hobert, O., Tessmar, K. & Ruvkun, G. TheCaenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons.Development126, 1547–1562 (1999).

    CAS  Google Scholar 

  6. Pierce-Shimomura, J. T., Morse, T. M. & Lockery, S. R. The fundamental role of pirouettes inCaenorhabditis elegans chemotaxis.J. Neurosci.19, 9557–9569 (1999).

    Article CAS  Google Scholar 

  7. Ward, S. Chemotaxis by the nematodeCaenorhabditis elegans: identification of attractants and analysis of the response by use of mutants.Proc. Natl Acad. Sci. USA70, 817–821 (1973).

    Article ADS CAS  Google Scholar 

  8. Goodman, M. B., Hall, D. H., Avery, L. & Lockery, S. R. Active currents regulate sensitivity and dynamic range inC. elegans neurons.Neuron20, 763–772 (1998).

    Article CAS  Google Scholar 

  9. Troemel, E. R., Sagasti, A. & Bargmann, C. I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression inC. elegans.Cell99, 387–398 (1999).

    Article CAS  Google Scholar 

  10. Bargmann, C. I., Thomas, J. H. & Horvitz, H. R. Chemosensory cell function in the behavior and development ofCaenorhabditis elegans.Cold Spring Harb. Symp. Quant. Biol.55, 529–538 (1990).

    Article CAS  Google Scholar 

  11. Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons inCaenorhabditis elegans.Science251, 1243–1246 (1991).

    Article ADS CAS  Google Scholar 

  12. Kaplan, J. M. & Horvitz, H. R. A dual mechanosensory and chemosensory neuron inCaenorhabditis elegans.Proc. Natl Acad. Sci. USA90, 2227–2231 (1993).

    Article ADS CAS  Google Scholar 

  13. Dusenbery, D. B. Analysis of chemotaxis in the nematode by counter current separation.J. Exp. Zool.188, 41–47 (1974).

    Article CAS  Google Scholar 

  14. Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction inC. elegans.Cell74, 515–527 (1993).

    Article CAS  Google Scholar 

  15. Wes, P. D. & Bargmann, C. I.C. elegans odour discrimination requires asymmetric diversity in olfactory neurons.Nature410, 698–701 (2001).

    Article ADS CAS  Google Scholar 

  16. Mori, K. & Yoshihara, Y. Molecular recognition and olfactory processing in the mammalian olfactory system.Prog. Neurobiol.45, 585–619 (1995).

    Article CAS  Google Scholar 

  17. Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb.Neuron23, 499–511 (1991).

    Article  Google Scholar 

  18. Bargmann, C. I. & Avery, L. Laser killing of cells inCaenorhabditis elegans.Methods Cell Biol.48, 225–250 (1995).

    Article CAS  Google Scholar 

  19. Sengupta, P., Chou, J. H. & Bargmann, C. I.odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl.Cell84, 899–909 (1996).

    Article CAS  Google Scholar 

  20. Lockery, S. R. & Goodman, M. B. Tight-seal whole-cell patch clamping ofC. elegans neurons.Methods Enzymol.295, 201–217 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Bargmann and P. Wes for discussions and sharing unpublished data; O. Hobert for suggesting study of thelim-6 mutant; J. H. Thomas for technical instruction; O. Hobert, D. Garbers and TheC. elegans Genetics Center for strains; M. Moravec and J. Cervantes for technical assistance; and J. Eisen, M. Goodman, T. Morse and M. Westerfield for discussion. This work was supported by the National Science Foundation; the National Institute of Mental Health; the National Heart, Lung, and Blood Institute; the Office of Naval Research; The Sloan Foundation; and The Searle Scholars Program.

Author information

Authors and Affiliations

  1. Institute of Neuroscience, 1254 University of Oregon, Eugene, 97403, Oregon, USA

    Jonathan T. Pierce-Shimomura, Serge Faumont, Michelle R. Gaston, Bret J. Pearson & Shawn R. Lockery

Authors
  1. Jonathan T. Pierce-Shimomura

    You can also search for this author inPubMed Google Scholar

  2. Serge Faumont

    You can also search for this author inPubMed Google Scholar

  3. Michelle R. Gaston

    You can also search for this author inPubMed Google Scholar

  4. Bret J. Pearson

    You can also search for this author inPubMed Google Scholar

  5. Shawn R. Lockery

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Pierce-Shimomura, J., Faumont, S., Gaston, M.et al. The homeobox genelim-6 is required for distinct chemosensory representations inC. elegans.Nature410, 694–698 (2001). https://doi.org/10.1038/35070575

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp