Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

A role for ghrelin in the central regulation of feeding

Naturevolume 409pages194–198 (2001)Cite this article

Abstract

Ghrelin is an acylated peptide that stimulates the release of growth hormone from the pituitary1. Ghrelin-producing neurons are located in the hypothalamus, whereas ghrelin receptors are expressed in various regions of the brain2,3,4, which is indicative of central—and as yet undefined—physiological functions. Here we show that ghrelin is involved in the hypothalamic regulation of energy homeostasis. Intracerebroventricular injections of ghrelin strongly stimulated feeding in rats and increased body weight gain. Ghrelin also increased feeding in rats that are genetically deficient in growth hormone. Anti-ghrelin immunoglobulin G robustly suppressed feeding. After intracerebroventricular ghrelin administration, Fos protein, a marker of neuronal activation5, was found in regions of primary importance in the regulation of feeding, including neuropeptide Y6 (NPY) neurons and agouti-related protein7 (AGRP) neurons. Antibodies and antagonists of NPY and AGRP abolished ghrelin-induced feeding. Ghrelin augmented NPY gene expression and blocked leptin-induced8 feeding reduction, implying that there is a competitive interaction between ghrelin and leptin in feeding regulation. We conclude that ghrelin is a physiological mediator of feeding, and probably has a function in growth regulation by stimulating feeding and release of growth hormone.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulation of feeding by single ICV administration of ghrelin.
Figure 2: Anti-ghrelin IgG suppresses feeding.
Figure 3: Effect of chronic ghrelin ICV administration on rats.
Figure 4: Localization of Fos expression in response to ICV administration of ghrelin.
Figure 5: Interactions of ghrelin with NPY, AGRP and leptin.

Similar content being viewed by others

References

  1. Kojima, M.et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature402, 656–660 (1999).

    Article CAS ADS  Google Scholar 

  2. Howard, A. D. et al. A receptor in pituitary and hypothalamus that functions in growth hormone release.Science273, 974 –977 (1996).

    Article CAS ADS  Google Scholar 

  3. McKee, K. K. et al. Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors.Mol. Endocrinol.11, 415–423 (1997).

    Article CAS  Google Scholar 

  4. Guan, X. M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues.Mol. Brain Res. 48, 23–29 (1997).

    Article CAS  Google Scholar 

  5. Sagar, S. M., Sharp, F. R. & Curran, T. Expression of c-fos protein in brain: metabolic mapping at the cellular level.Science240, 1328–1331 (1988).

    Article CAS ADS  Google Scholar 

  6. Stanley, B. G., Kyrkouli, S. E., Lampert, S. & Leibowitz, S. F. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity.Peptides7, 1189–1192 (1986).

    Article CAS  Google Scholar 

  7. Hahn, T., Breininger, J., Baskin, D. & Schwartz, M. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neurosci.1, 271–272 (1998).

    Article CAS  Google Scholar 

  8. Zhang, Y.et al. Positional cloning of the mouse obese gene and its human homologue.Nature372, 425–432 (1994).

    Article CAS ADS  Google Scholar 

  9. Bowers, C. Y., Momany, F. A., Reynolds, G. A. & Hong, A. On thein vitro andin vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology114, 1537–1545 (1984).

    Article CAS  Google Scholar 

  10. Locke, W., Kirgis, H. D., Bowers, C. Y. & Abdoh, A. A. Intracerebroventricular growth-hormone-releasing peptide-6 stimulates eating without affecting plasma growth hormone responses in rats.Life Sci.56, 1347–1352 ( 1995).

    Article CAS  Google Scholar 

  11. Cheng, K.et al. The synergistic effects of His-d-Trp-Ala-Trp-d-Phe-Lys-NH 2 on growth hormone (GH)-releasing factor-stimulated GH release and intracellular adenosine 3′,5′-monophosphate accumulation in rat primary pituitary cell culture.Endocrinology124, 2791–2798 (1989).

    Article CAS  Google Scholar 

  12. Okuma, S. & Kawashima, S. Spontanenous dwarf rat. Exp. Anim.29, 301–304 ( 1980).

    Google Scholar 

  13. Takeuchi, T. et al. Molecular mechanism of growth hormone (GH) deficiency in the spontaneous dwarf rat: detection of abnormal splicing of GH messenger ribonucleic acid by the polymerase chain reaction.Endocrinology 126, 31–38 (1990).

    Article CAS  Google Scholar 

  14. Schwartz, M. W. et al. Identification of targets of leptin action in rat hypothalamus.J. Clin. Invest.98, 1101– 1106 (1996).

    Article CAS  Google Scholar 

  15. Mercer, J. G. et al. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus.J. Neuroendocrinol. 8, 733–735 (1996).

    Article CAS  Google Scholar 

  16. Broberger, C. et al. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl Acad. Sci. USA95, 15043– 15048 (1998).

    Article CAS ADS  Google Scholar 

  17. Schwartz, M. W. et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus.Diabetes46, 2119–2123 (1997).

    Article CAS  Google Scholar 

  18. Kristensen, P. et al. Hypothalamic CART is a new anorectic peptide regulated by leptin.Nature393, 72– 76 (1998).

    Article CAS ADS  Google Scholar 

  19. Willesen, M. G., Kristensen, P. & Romer, J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat.Neuroendocrinology70, 306–316 ( 1999).

    Article CAS  Google Scholar 

  20. Dickson, S. L. & Luckman, S. M. Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6.Endocrinology138, 771–777 ( 1997).

    Article CAS  Google Scholar 

  21. Honda, K.et al. An electrophysiological and morphological investigation of the projections of growth hormone-releasing peptide-6-responsive neurons in the rat arcuate nucleus to the median eminence and to the paraventricular nucleus.Neuroscience90, 875–883 (1999).

    Article CAS  Google Scholar 

  22. Gerald, C. et al. A receptor subtype involved in neuropeptide-Y-induced food intake.Nature382, 168– 171 (1996).

    Article CAS ADS  Google Scholar 

  23. Wieland, H. A. et al. Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. Br. J. Pharmacol.125, 549–555 (1998).

    Article CAS  Google Scholar 

  24. Cone, R. D. et al. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation.Rec. Prog. Horm. Res. 51, 287–317 (1996).

    CAS PubMed  Google Scholar 

  25. Stephens, T. W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product.Nature377, 530– 532 (1995).

    Article CAS ADS  Google Scholar 

  26. Schwartz, M. W. et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression inob/ob mice. Diabetes45, 531–535 ( 1996).

    Article CAS  Google Scholar 

  27. Yamamoto, Y. et al. Down regulation of the prepro-orexin gene expression in genetically obese mice.Mol. Brain Res.65, 14– 22 (1999).

    Article CAS  Google Scholar 

  28. Ida, T., Nakahara, K., Murakami, N. & Nakazato, M. Effects of lateral cerebroventricular injection of the appetite-stimulating neuropeptides, orexin and neuropeptide Y, on the various behavioral activities of rats.Brain Res.821, 526– 529 (1999).

    Article CAS  Google Scholar 

  29. Daniels, A. J. et al. High-affinity neuropeptide Y receptor antagonists. Proc. Natl Acad. Sci. USA92, 9067– 9071 (1995).

    Article CAS ADS  Google Scholar 

  30. Kanatani, A. et al. L-152,804: orally active and selective neuropeptide Y Y5 receptor antagonist.Biochem. Biophys. Res. Commun.272, 169-173 (2000).

    Article  Google Scholar 

  31. Murakami, N., Marumoto, N., Nakahara, K. & Murakami, T. Daily injections of melatonin entrain the circadian activity rhythms of nocturnal rats but not diurnal chipmunks.Brain Res.775, 240–243 (1997).

    Article CAS  Google Scholar 

  32. Date, Y.et al. Orexin, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems.Proc. Natl Acad. Sci. USA96, 748–753 ( 1999).

    Article CAS ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Ueta forin situ hybridization; T. Kuroiwa, Y. Kawabata and R. Matsuura for assistance; and M. Ihara and A. Kanatani for providing L-152,804. This work was supported in part by grants-in-aid from the Ministry of Education, Science, Sports and Culture, and the Ministry of Health and Welfare, Japan, to M.N.

Author information

Authors and Affiliations

  1. Third Department of Internal Medicine Miyazaki Medical College, Kiyotake, Miyazaki, 889-1692 , Japan

    Masamitsu Nakazato, Yukari Date & Shigeru Matsukura

  2. Department of Veterinary Physiology Miyazaki University, Miyazaki, 889-2192, Japan

    Noboru Murakami

  3. Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka, 565-8565 , Japan

    Masayasu Kojima, Hisayuki Matsuo & Kenji Kangawa

Authors
  1. Masamitsu Nakazato

    You can also search for this author inPubMed Google Scholar

  2. Noboru Murakami

    You can also search for this author inPubMed Google Scholar

  3. Yukari Date

    You can also search for this author inPubMed Google Scholar

  4. Masayasu Kojima

    You can also search for this author inPubMed Google Scholar

  5. Hisayuki Matsuo

    You can also search for this author inPubMed Google Scholar

  6. Kenji Kangawa

    You can also search for this author inPubMed Google Scholar

  7. Shigeru Matsukura

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMasamitsu Nakazato.

Rights and permissions

About this article

Cite this article

Nakazato, M., Murakami, N., Date, Y.et al. A role for ghrelin in the central regulation of feeding.Nature409, 194–198 (2001). https://doi.org/10.1038/35051587

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp