Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Error and attack tolerance of complex networks

Naturevolume 406pages378–382 (2000)Cite this article

ACorrigendum to this article was published on 25 January 2001

Abstract

Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network1. Complex communication networks2 display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web3,4,5, the Internet6, social networks7 and cells8. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual illustration of the difference between an exponential and a scale-free network.
Figure 2: Changes in the diameterd of the network as a function of the fractionf of the removed nodes.
Figure 3: Network fragmentation under random failures and attacks.
Figure 4: Summary of the response of a network to failures or attacks.

Similar content being viewed by others

References

  1. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology.Nature402, 47–52 (1999).

    Article  Google Scholar 

  2. Claffy, K., Monk, T. E. et al. Internet tomography.Nature Web Matters [online] (7 Jan. 99) 〈http://helix.nature.com/webmatters/tomog/tomog.html〉 (1999).

  3. Albert, R., Jeong, H. & Barabási, A.-L. Diameter of the World-Wide Web.Nature401, 130–131 ( 1999).

    Article ADS CAS  Google Scholar 

  4. Kumar, R., Raghavan, P., Rajalopagan, S. & Tomkins, A. in Proc. 9th ACM Symp. on Principles of Database Systems 1–10 (Association for Computing Machinery, New York, 2000).

    Google Scholar 

  5. Huberman, B. A. & Adamic, L. A. Growth dynamics of the World-Wide Web.Nature401, 131 (1999).

    Article ADS CAS  Google Scholar 

  6. Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the internet topology, ACM SIGCOMM '99.Comput. Commun. Rev.29, 251–263 (1999).

    Article  Google Scholar 

  7. Wasserman, S. & Faust, K.Social Network Analysis (Cambridge Univ. Press, Cambridge, 1994).

    Book  Google Scholar 

  8. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. & Barabási, A.-L. The large-scale organization of metabolic networks.Nature (in the press).

  9. Erdös, P. & Rényi, A. On the evolution of random graphs.Publ. Math. Inst. Hung. Acad. Sci.5, 17–60 (1960).

    MathSciNet MATH  Google Scholar 

  10. Bollobás, B. Random Graphs (Academic, London, 1985).

    MATH  Google Scholar 

  11. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.Nature393, 440– 442 (1998).

    Article ADS CAS  Google Scholar 

  12. Zegura, E. W., Calvert, K. L. & Donahoo, M. J. A quantitative comparison of graph-based models for internet topology.IEEE/ACM Trans. Network.5, 770–787 (1997).

    Article  Google Scholar 

  13. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs.Nature404, 180 –183 (2000).

    Article ADS CAS  Google Scholar 

  14. Maritan, A., Colaiori, F., Flammini, A., Cieplak, M. & Banavar, J. Universality classes of optimal channel networks.Science272, 984– 986 (1996).

    Article ADS CAS  Google Scholar 

  15. Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks.Nature399, 130–132 (1999).

    Article ADS CAS  Google Scholar 

  16. Barthélémy, M. & Amaral, L. A. N. Small-world networks: evidence for a crossover picture.Phys. Rev. Lett.82, 3180–3183 ( 1999).

    Article ADS  Google Scholar 

  17. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks.Science286, 509– 511 (1999).

    Article ADS MathSciNet  Google Scholar 

  18. Barabási, A.-L., Albert, R. & Jeong, H. Mean-field theory for scale-free random networks. Physica A272, 173–187 ( 1999).

    Article ADS  Google Scholar 

  19. Redner, S. How popular is your paper? An empirical study of the citation distribution.Euro. Phys. J. B4, 131– 134 (1998).

    Article ADS CAS  Google Scholar 

  20. Lawrence, S. & Giles, C. L. Accessibility of information on the web.Nature400, 107– 109 (1999).

    Article ADS CAS  Google Scholar 

  21. Milgram, S. The small-world problem.Psychol. Today2, 60–67 (1967).

    Google Scholar 

  22. Bunde, A. & Havlin, S. (eds)Fractals and Disordered Systems (Springer, New York, 1996).

    Book  Google Scholar 

  23. Paxson, V. End-to-end routing behavior in the internet.IEEE/ACM Trans. Network.5, 601–618 ( 1997).

    Article  Google Scholar 

  24. Adamic, L. A. The small world web.Lect. Notes Comput. Sci.1696, 443–452 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Bunker, K. Newman, Z. N. Oltvai and P. Schiffer for discussions. This work was supported by the NSF.

Author information

Authors and Affiliations

  1. Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556, Indiana, USA

    Réka Albert, Hawoong Jeong & Albert-László Barabási

Authors
  1. Réka Albert

    You can also search for this author inPubMed Google Scholar

  2. Hawoong Jeong

    You can also search for this author inPubMed Google Scholar

  3. Albert-László Barabási

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAlbert-László Barabási.

Rights and permissions

About this article

Cite this article

Albert, R., Jeong, H. & Barabási, AL. Error and attack tolerance of complex networks.Nature406, 378–382 (2000). https://doi.org/10.1038/35019019

Download citation

Access through your institution
Buy or subscribe

Associated content

How robust is the Internet?

  • Yuhai Tu
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp