Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

Localization of cytoplasmic dynein to mitotic spindles and kinetochores

Naturevolume 345pages266–268 (1990)Cite this article

Abstract

WHAT is the origin of the forces generating chromosome and spindle movements in mitosis? Both microtubule dynamics1 and microtubule-dependent motors2 have been proposed as the source of these motor forces. Cytoplasmic dynein and kinesin are two soluble proteins3–6 that power membranous organelle movements on microtubules7,8. Kinesin directs movement of organelles to the 'plus' end of microtubules, and is found at the mitotic spindle in sea urchin embryos6, but not in mammalian cells9. Cytoplasmic dynein translocates organelles to the 'minus' end of microtubules, and is composed of two heavy chains and several light chains3,4. We report here that monoclonal antibodies to two of these subunits and to another polypeptide that associates with dynein localize the protein to the mitotic spindle and to the kinetochores of isolated chromosomes, suggesting that cytoplasmic dynein is important in powering movements of the spindle and chromosomes in dividing cells.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W.Nature331, 499–504 (1988).

    Article ADS CAS  Google Scholar 

  2. Mitchison, T. J.A Rev. Cell Biol.4, 527–549 (1988).

    Article CAS  Google Scholar 

  3. Paschal, B. M., Shpetner, H. S. & Vallee, R. B.J. Cell Biol.105, 1273–1282 (1987).

    Article CAS  Google Scholar 

  4. Lye, R. J., Porter, M. E., Scholey, J. M. & McIntosh, J. R.Cell51, 305–318 (1987).

    Article  Google Scholar 

  5. Vale, R. D., Reese, T. S. & Sheetz, M. P.Cell42, 39–50 (1985).

    Article CAS  Google Scholar 

  6. Scholey, J. M., Porter, M. E., Grissom, P. M. & McIntosh, J. R.Nature318, 483–486 (1985).

    Article ADS CAS  Google Scholar 

  7. Schroer, T. A., Schnapp, B. J., Reese, T. S. & Sheetz, M. P.J. Cell Biol.107, 1785–1792 (1988).

    Article CAS  Google Scholar 

  8. Schroer, T. A., Steuer, E. R. & Sheetz, M. P.Cell56, 937–946, (1989).

    Article CAS  Google Scholar 

  9. Neighbors, B. W., Williams, R. C. Jr & McIntosh, J. R.J. Cell Biol.106, 1193–1201 (1988).

    Article CAS  Google Scholar 

  10. Lee-Eiford, A., Ow, R. A. & Gibbons, I. R.J. biol. Chem.261, 2337–2342 (1986).

    CAS PubMed  Google Scholar 

  11. Gibbons, I. R.et al.J. biol. Chem.262, 2780–2786 (1987).

    CAS PubMed  Google Scholar 

  12. Gorbsky, G. J. & Borisy G. G.J. Cell Biol.109, 653–662 (1989).

    Article CAS  Google Scholar 

  13. Brenner S. L. and Brinkley B. R.Cold Spring Harb. Symp. quant. Biol.46, 241–254 (1982).

    Article  Google Scholar 

  14. Mohri, H., Mohri, T., Mabuchi, I., Sakai, H. & Ogawa, K.Dev. Growth Different.18, 391–398 (1976).

    Article CAS  Google Scholar 

  15. Piperno, G.J. Cell Biol.98, 1842–1850 (1984).

    Article CAS  Google Scholar 

  16. Hisanaga, S.-I.et al.Cell Motil. Cytoskel.7, 97–109 (1987).

    Article CAS  Google Scholar 

  17. Pfarr, C. M.et al.Nature345, 263–265 (1990).

    Article ADS CAS  Google Scholar 

  18. Rieder, C. L. & Alexander, S. P.J. Cell Biol.110, 81–95 (1990).

    Article CAS  Google Scholar 

  19. Kilmartin, J. V., Wright, B. & Milstein, C.J. Cell Biol.93, 576–582 (1982).

    Article CAS  Google Scholar 

  20. Kuznetsov, S. A., Rodionov, V. I., Bershadsky, A. D., Gelfand, V. I. & Rosenblat, V. A.Cell Biol. Int. Rep.4, 1017–1024 (1980).

    Article CAS  Google Scholar 

  21. De Brabander, M., Bulinski, J. C., Geuens, G., De Mey, J. & Borisy, G. G.J. Cell Biol.91, 438–445 (1981).

    Article CAS  Google Scholar 

  22. Mitchison, T. J. & Kirschner, M. W.J. Cell Biol.101, 755–765 (1985).

    Article CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Cell Biology and Physiology, Washington University School of Medicine, Box 8228, 660 S Euclid Ave, St Louis, Missouri, 63110, USA

    E. R. Steuer & M. P. Sheetz

  2. Department of Pharmacology, University of California, San Francisco, California, 94143, USA

    L. Wordeman

  3. Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA

    T. A. Schroer

Authors
  1. E. R. Steuer
  2. L. Wordeman
  3. T. A. Schroer
  4. M. P. Sheetz

Rights and permissions

About this article

Cite this article

Steuer, E., Wordeman, L., Schroer, T.et al. Localization of cytoplasmic dynein to mitotic spindles and kinetochores.Nature345, 266–268 (1990). https://doi.org/10.1038/345266a0

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp