Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Dendritic cells and the control of immunity

Naturevolume 392pages245–252 (1998)Cite this article

Abstract

B and T lymphocytes are the mediators of immunity, but their function is under the control of dendritic cells. Dendritic cells in the periphery capture and process antigens, express lymphocyte co-stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate immune responses. They not only activate lymphocytes, they also tolerize T cells to antigens that are innate to the body (self-antigens), thereby minimizing autoimmune reactions. Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis. With knowledge comes the realization that these cells are a powerful tool for manipulating the immune system.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Afferent and efferent limbs of immunity that resolve several demands of antigen presentationin vivo (see text).
Figure 2: Some features of DCs, including DCs expandedex vivo from precursors.
Figure 3: The unusual shapes of DCs.
Figure 4: Features that change during DC maturation.
Figure 5: Intracellular MHC II-bearing compartments in immature, maturing and mature DCs.
Figure 6: Distinct subsets of DCs in lymphoid organs, possibly derived from separate pathways of development (see text).

Similar content being viewed by others

References

  1. Steinman, R. M. inFundamental Immunology(ed. Paul, W. E.) 4th edn (Lippincott-Raven, Philadelphia, in the press).

  2. Inaba, K.et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.J. Exp. Med.176, 1693–1702 (1992).

    Article CAS PubMed  Google Scholar 

  3. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells.Nature360, 258–261 (1992).

    Article ADS CAS PubMed  Google Scholar 

  4. Szabolcs, P., Moore, M. A. S. & Young, J. W. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-α.J. Immunol.154, 5851–5861 (1995).

    CAS PubMed  Google Scholar 

  5. Romani, N.et al. Proliferating dendritic cell progenitors in human blood.J. Exp. Med.180, 83–93 (1994).

    Article CAS PubMed  Google Scholar 

  6. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α.J. Exp. Med.179, 1109–1118 (1994).

    Article CAS PubMed  Google Scholar 

  7. Sallusto, F. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate antigen to the MHC class II compartment. Downregulation by cytokines and bacterial products.J. Exp. Med.182, 389–400 (1995).

    Article CAS PubMed  Google Scholar 

  8. Romani, N.et al. Generation of mature dendritic cells from human blood: An improved method with special regard to clinical applicability.J. Immunol. Meth.196, 137–151 (1996).

    Article CAS  Google Scholar 

  9. Reddy, A., Sapp, M., Feldman, M., Subklewe, M. & Bhardwaj, N. Amonocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells.Blood90, 3640–3646 (1997).

    CAS PubMed  Google Scholar 

  10. Maraskovsky, E.et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 and ligand-treated mice: Multiple dendritic cell subpopulations identified.J. Exp. Med.184, 1953–1962 (1996).

    Article CAS PubMed  Google Scholar 

  11. Adema, G. J.et al. Adendritic-cell-derived C-C chemokine that preferentially attracts naive T cells.Nature387, 713–717 (1997).

    Article ADS CAS PubMed  Google Scholar 

  12. Mueller, C. G. F.et al. Polymerase chain reaction selects a novel disintegrin-proteinase from CD40-activated germinal center dendritic cells.J. Exp. Med.186, 655–663 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Greaves, D. R.et al. CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells.J. Exp. Med.186, 837–844 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  14. Winzler, C.et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures.J. Exp. Med.185, 317–328 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  15. Bhardwaj, N., Young, J. W., Nisanian, A. J., Baggers, J. & Steinman, R. M. Small amounts of superantigen, when presented on dendritic cells, are sufficient to initiate T cell responses.J. Exp. Med.178, 633–642 (1993).

    Article CAS PubMed  Google Scholar 

  16. Inaba, K., Inaba, M., Naito, M. & Steinman, R. M. Dendritic cell progenitors phagocytose particulates, includingBacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigensin vivo.J.Exp. Med.178, 479–488 (1993).

    Article CAS PubMed  Google Scholar 

  17. Moll, H., Fuchs, H., Blank, C. & Rollinghoff, M. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells.Eur. J. Immunol.23, 1595–1601 (1993).

    Article CAS PubMed  Google Scholar 

  18. Zitvogel, L.et al. Therapy of murine tumors with tumor peptide pulsed dendritic cells: Dependence on T-cells, B7 costimulation, and Th1-associated cytokines.J. Exp. Med.183, 87–97 (1996).

    Article CAS PubMed  Google Scholar 

  19. Paglia, P., Chiodoni, C., Rodolfo, M. & Colombo, M. P. Murine dendritic cells loadedin vitro with soluble protein prime CTL against tumor antigenin vivo.J. Exp. Med.183, 317–322 (1996).

    Article CAS PubMed  Google Scholar 

  20. Mayordomo, J. I.et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity.Nature Med.1, 1297–1302 (1995).

    Article CAS PubMed  Google Scholar 

  21. Hsu, F. J.et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nature Med.2, 52–58 (1996).

    Article CAS PubMed  Google Scholar 

  22. Ingulli, E., Mondino, A., Khoruts, A. & Jenkins, M. K.In vivo detection of dendritic cell antigen presentation to CD4+ T cells.J. Exp. Med.185, 2133–2141 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Luther, S. A., Gulbranson-Judge, A., Acha-Orbea, H. & Maclennan, I. C. M. Viral superantigen drives extrafollicular and follicular B differentiation leading to virus-specific antibody production.J. Exp. Med.185, 551–562 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Kudo, S., Matsuno, K., Ezaki, T. & Ogawa, M. Anovel migration pathway for rat dendritic cells from the blood: Hepatic sinusoids-lymph translocation.J. Exp. Med.185, 777–784 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Inaba, K.et al. High levels of a major histocompatibility complex II–self peptide complex on dendritic cells from lymph node.J. Exp. Med.186, 665–672 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Cella, M.et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation.J. Exp. Med.184, 747–752 (1996).

    Article CAS PubMed  Google Scholar 

  27. Koch, F.et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10.J. Exp. Med.184, 741–747 (1996).

    Article CAS PubMed  Google Scholar 

  28. Reis e Sousa, C.et al.In vivo microbial stimulation induces rapid CD40L-independent production of IL-12 by dendritic cells and their re-distribution to T cell areas.J. Exp. Med.186, 1819–1829 (1997).

    Article CAS PubMed  Google Scholar 

  29. Caux, C.et al. B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.J. Exp. Med.180, 1841–1847 (1994).

    Article CAS PubMed  Google Scholar 

  30. Inaba, K.et al. The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cellsin situ and during maturationin vitro.J. Exp. Med.180, 1849–1860 (1994).

    Article CAS PubMed  Google Scholar 

  31. Bhardwaj, N.et al. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic resonses from human CD8+ T cells.J. Clin. Invest.94, 797–807 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Bender, A., Bui, L. K., Feldman, M. A. V., Larsson, M. & Bhardwaj, N. Inactivated influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T cell responses.J. Exp. Med.182, 1663–1671 (1995).

    Article CAS PubMed  Google Scholar 

  33. Caux, C.et al. Activation of human dendritic cells through CD40 cross-linking.J. Exp. Med.180, 1263–1272 (1994).

    Article CAS PubMed  Google Scholar 

  34. Wong, B. R.et al. TRANCE, a new TNF family member predominantly expressed in T cells, is a dendritic cell specific survival factor.J. Exp. Med.186, 2075–2080 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Anderson, D. M.et al. Ahomologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function.Nature390, 175–179 (1997).

    Article ADS CAS PubMed  Google Scholar 

  36. Lukas, M.et al. Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model.J. Invest. Dermatol.106, 1293–1299 (1996).

    Article CAS PubMed  Google Scholar 

  37. Reis e Sousa, C., Stahl, P. D. & Austyn, J. M. Phagocytosis of antigens by Langerhans cells in vitro.J.Exp. Med.178, 509–519 (1993).

    Article CAS PubMed  Google Scholar 

  38. Svensson, M., Stockinger, B. & Wick, M. J. Bone marrow-derived dendritic cells can process bacteria for MHC-1 and MHC-II presentation to T cells.J. Immunol.158, 4229–4236 (1997).

    CAS PubMed  Google Scholar 

  39. Jiang, W.et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing.Nature375, 151–155 (1995).

    Article ADS CAS PubMed  Google Scholar 

  40. Nijman, H. W.et al. Antigen capture and MHC class II compartments of freshly isolated and cultured human blood dendritic cells.J. Exp. Med.182, 163–174 (1995).

    Article CAS PubMed  Google Scholar 

  41. Pierre, P.et al. Developmental regulation of MHC class II transport in mouse dendritic cells.Nature388, 787–792 (1997).

    Article ADS CAS PubMed  Google Scholar 

  42. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells.Nature388, 782–787 (1997).

    Article ADS CAS PubMed  Google Scholar 

  43. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class-I restricted CTLs.Nature392, 86–89 (1998).

    Article ADS CAS PubMed  Google Scholar 

  44. Buelens, C.et al. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by IL-10.Eur. J. Immunol.27, 1848–1852 (1997).

    Article CAS PubMed  Google Scholar 

  45. Sallusto, F., Nicolo, C., De Maria, R., Corinti, S. & Testi, R. Ceramide inhibits antigen uptake and presentation by dendritic cells.J. Exp. Med.184, 2411–2416 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Granelli-Piperno, A., Pope, M., Inaba, K. & Steinman, R. M. Coexpression of REL and SP1 transcription factors in HIV-1 induced, dendritic cell-T cell syncytia.Proc. Natl Acad. Sci. USA92, 1094–10948 (1995).

    Article  Google Scholar 

  47. Kitajima, T., Arizumi, K., Bergstresser, P. R. & Takashima, A. Anovel mechanism of glucocorticoid-induced immune suppression: The inhibition of T cell-mediated terminal maturation of a murine dendritic cell line.J. Clin. Invest.98, 142–147 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on MHC class II expressing dendritic cells.J. Exp. Med.186, 1223–1232 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. O'Doherty, U.et al. Human blood contains two subsets of dendritic cells, one immunologically mature, and the other immature.Immunology82, 487–493 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  50. Brown, K. A.et al. Human blood dendritic cells: binding to vascular endothelium and expression of adhesion molecules.Clin. Exp. Immunol.107, 601–607 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  51. Matsuno, K., Ezaki, T., Kudo, S. & Uehara, Y. Alife stage of particle-laden rat dendritic cellsin vivo: their terminal division, active phagocytosis and translocation from the liver to hepatic lymph.J. Exp. Med.183, 1865–1878 (1996).

    Article CAS PubMed  Google Scholar 

  52. McWilliam, A. S.et al. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli.J. Exp. Med.184, 2429–2432 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Roake, J. A.et al. Dendritic cell loss from non-lymphoid tissues following systemic administration of lipopolysaccharide, tumour necrosis factor, and interleukin-1.J. Exp. Med.181, 2237–2248 (1995).

    Article CAS PubMed  Google Scholar 

  54. MacPherson, G. G., Jenkins, C. D., Stein, M. J. & Edwards, C. Endotoxin-mediated dendritic cell release from the intestine: Characterization of released dendritic cells and TNF dependence.J.Immunol.154, 1317–1322 (1995).

    CAS PubMed  Google Scholar 

  55. De Smedt, T.et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharidein vivo.J. Exp. Med.184, 1413–1424 (1996).

    Article CAS PubMed  Google Scholar 

  56. Hosoi, J.et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide.Nature363, 159–162 (1993).

    Article ADS CAS PubMed  Google Scholar 

  57. Sozzani, S.et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines.J. Immunol.155, 3292–3295 (1995).

    CAS PubMed  Google Scholar 

  58. Young, J. W., Szabolcs, P. & Moore, M. A. S. Identification of dendritic cell colony-forming units among normal CD4+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor α.J. Exp. Med.182, 1111–1120 (1995).

    Article CAS PubMed  Google Scholar 

  59. Saunders, D.et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor.J. Exp. Med.184, 2185–2196 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  60. Flores-Romo, L.et al. CD40 ligation on human CD34+ hematopoietic progenitors induces their proliferation and differentiation into functional dendritic cells.J. Exp. Med.185, 341–349 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Caux, C.et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+ TNFα.J. Exp. Med.184, 695–706 (1996).

    Article CAS PubMed  Google Scholar 

  62. Strunk, D., Egger, C., Leitner, G., Hanau, D. & Stingl, G. Askin homing molecule defines the Langerhans cells progenitor in human peripheral blood.J. Exp. Med.185, 1131–1136 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  63. Caux, C.et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFα: II Functional analysis.Blood90, 1458–1470 (1997).

    CAS PubMed  Google Scholar 

  64. Szabolcs, P.et al. Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-CFU intermediate.Blood87, 4520–4530 (1996).

    CAS PubMed  Google Scholar 

  65. Borkowski, T. A., Letterio, J. J., Farr, A. G. & Udey, M. C. Arole for endogenous transforming growth factor β1 in Langerhans cell biology: The skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells.J. Exp. Med.184, 2417–2422 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Suss, G. & Shortman, K. Asubclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand induced apoptosis.J. Exp. Med.183, 1789–1796 (1996).

    Article CAS PubMed  Google Scholar 

  67. Ardavin, C., Wu, L., Li, C. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population.Nature362, 761–763 (1993).

    Article ADS CAS PubMed  Google Scholar 

  68. Grouard, G.et al. The enigmatic plasmacytoid T cells develop into dendritic cells with IL-3 and CD40-ligand.J. Exp. Med.185, 1101–1111 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Lieberman, P. H.et al. Langerhans cell [eosinophilic] granulomatosis. A clinicopathologic study encompassing 50 years.Am. J. Surg. Pathol.20, 519–552 (1996).

    Article CAS PubMed  Google Scholar 

  70. Dubois, B.et al. Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes.J. Exp. Med.185, 941–951 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Fayette, J.et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2.J. Exp. Med.185, 1909–1918 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Frankel, S. S.et al. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid.Science272, 115–117 (1996).

    Article ADS CAS PubMed  Google Scholar 

  73. Frankel, S. S.et al. Active replication of HIV-1 at the lymphoepithelial surface of the tonsil.Am. J. Pathol.151, 89–96 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  74. Kelsall, B. L. & Strober, W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer's Patch.J. Exp. Med.183, 237–247 (1996).

    Article CAS PubMed  Google Scholar 

  75. Matsumoto, M.et al. Distinct roles of lymphotoxin-α and type 1 TNF receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells.J. Exp. Med.186, 1997–2004 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Liu, Y.-J., Grouard, G., de Bouteiller, O. & Banchereau, J. Follicular dendritic cells and germinal centers.Int. Rev. Cytology166, 139–179 (1996).

    Article CAS  Google Scholar 

  77. Liu, Y.-J.et al. Follicular dendritic cells specifically express the long CR2/CD21 isoform.J. Exp. Med.185, 165–170 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  78. Grouard, G., Durand, I., Filgueira, L., Banchereau, J. & Liu, Y.-J. Dendritic cells capable of stimulating T cells in germinal centres.Nature384, 364–367 (1996).

    Article ADS CAS PubMed  Google Scholar 

  79. Brocker, T. & Karjalainen, K. Targeted expression of MHC class II molecules demonstrates that dendritic cells can induce negative but no positive selection of thymocytesin vivo.J. Exp. Med.185, 541–550 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  80. Laufer, T. M., DeKoning, J., Markowitz, J. S., Lo, D. & Glimcher, L. H. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex.Nature383, 81–85 (1996).

    Article ADS CAS PubMed  Google Scholar 

  81. Zal, T., Volkmann, A. & Stockinger, B. Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen.J. Exp. Med.180, 2089–2099 (1994).

    Article CAS PubMed  Google Scholar 

  82. Kurts, C.et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo.J. Exp. Med.184, 923–930 (1996).

    Article CAS PubMed  Google Scholar 

  83. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. A. P. & Heath, W. R. Class I-restricted cross-presentation of exogenous self antigens leads to deletion of autoreactive CD8+ T cells.J. Exp. Med.186, 239–245 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  84. Forster, I. & Lieberam, I. Peripheral tolerance of CD4 T cells following local activation in adolescent mice.Eur. J. Immunol.26, 3194–3202 (1996).

    Article CAS PubMed  Google Scholar 

  85. Soderberg-Naucler, C., Fish, K. N. & Nelson, J. A. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors.Cell91, 119–126 (1997).

    Article CAS PubMed  Google Scholar 

  86. Rettig, M. B.et al. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients.Science276, 1851–1854 (1997).

    Article CAS PubMed  Google Scholar 

  87. Cameron, P. U.et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells.Science257, 383–387 (1992).

    Article ADS CAS PubMed  Google Scholar 

  88. Weissman, D., Barker, T. D. & Fauci, A. S. The efficiency of acute infection of CD4+ T cells is markedly enhanced in the setting of antigen-specific immune activation.J. Exp. Med.183, 687–692 (1996).

    Article CAS PubMed  Google Scholar 

  89. Pinchuk, L. M., Polacino, P. S., Agy, M. B., Klaus, S. J. & Clark, E. A. The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection.Immunity1, 317–325 (1994).

    Article CAS PubMed  Google Scholar 

  90. Pope, M.et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1.Cell78, 389–398 (1994).

    Article CAS PubMed  Google Scholar 

  91. Grosjean, I.et al. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells.J. Exp. Med.186, 801–812 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  92. Schnorr, J.-J.et al. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression.Proc. Natl Acad. Sci. USA94, 5326–531 (1997).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  93. Fugier-Vivier, I.et al. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells.J. Exp. Med.186, 813–823 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  94. Pope, M., Elmore, D., Ho, D. & Marx, P. Dendritic cell–T cell mixtures, isolated from the skin and mucosae of macaques, support the replication of SIV.AIDS Res. Hum. Retro.13, 819–827 (1997).

    Article CAS  Google Scholar 

  95. Chaux, P., Moutet, M., Faivre, J., Martin, F. & Martin, M. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 constimulatory molecules of the T-cell activation.Lab. Invest.74, 975–983 (1996).

    CAS PubMed  Google Scholar 

  96. Specht, J. M.et al. Dendritic cells retrovirally transduced with a model tumor antigen gene are therapeutically effective against established pulmonary metastates.J. Exp. Med.186, 1213–1221 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  97. Song, W.et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model tumor antigen induce protective and therapeutic antitumor immunity.J. Exp. Med.186, 1247–1256 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  98. Schuler, G. & Steinman, R. M. Dendritic cells as adjuvants for immune-mediated resistance to tumors.J. Exp. Med.186, 1183–1187 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  99. Josien, R., Heslan, M., Soulillou, J.-P. & Cuturi, M.-C. Rat spleen dendritic cells express natural killer cell receptor protein 1 (NKR-P1) and have cytotoxic activity to select targets via a Ca2+-dependent mechanism.J. Exp. Med.186, 467–472 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Condon, C., Watkins, S. C., Celluzzi, C. M., Thompson, K. & Falo, L. D. J DNA-based immunization byin vivo transfection of dendritic cells.Nature Med.2, 1122–1128 (1996).

    Article CAS PubMed  Google Scholar 

  101. Casares, S., Inaba, K., Brumeanu, T., Steinman, R. M. & Bona, C. A. Antigen presentation by dendritic cells following immunization with DNA encoding a class II-restricted viral epitope.J. Exp. Med.186, 1481–1486 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  102. Colonna, M.et al. Acommon inhibitory receptor for MHC class I molecules on human lymphoid and myelomonocytic cells.J. Exp. Med.186, 1809–1818 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  103. Vicari, A. P.et al. TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development.Immunity7, 291–302 (1997).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this review to the memory of J. Chiller. J.B. acknowledges the members of the Schering Plough Laboratory for Immunological Research, Dardilly, and particularly F. Brière, C. Caux, S. Lebecque, Y.-J. Liu, M. Vatan, A.Waitz, and R.S. acknowledges the long-standing contributions of N.Bhardwaj, A. Granelli-Piperno, K. Inaba, I. Mellman, C. Moberg, M. Nussenzweig, M. Pack, M. Pope, N. Romani, G. Schuler, J.Young and the support of the NIAID. Because of space limitations, the reference list has been restricted to a select sample from the past five years. A more complete list is available from the authors. We thank our many colleagues for their critical comments on this review.

Author information

Authors and Affiliations

  1. Baylor Institute for Immunology, Research, Baylor Research Institute, 3409 Worth Street, Dallas, 75246, Texas, USA

    Jacques Banchereau & Ralph M. Steinman

  2. Laboratory of Cellular Physiology and Immunology, Rockefeller University, 1230 New York Avenue, New York, 10021-6399, New York, USA

    Jacques Banchereau & Ralph M. Steinman

Authors
  1. Jacques Banchereau

    You can also search for this author inPubMed Google Scholar

  2. Ralph M. Steinman

    You can also search for this author inPubMed Google Scholar

Rights and permissions

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp