Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Article
  • Published:

Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene

Nature Geneticsvolume 20pages129–135 (1998)Cite this article

Abstract

X-linked lymphoproliferative syndrome (XLP or Duncan disease) is characterized by extreme sensitivity to Epstein-Barr virus (EBV), resulting in a complex phenotype manifested by severe or fatal infectious mononucleosis, acquired hypogammaglobulinemia and malignant lymphoma. We have identified a gene, SH2D1A, that is mutated in XLP patients and encodes a novel protein composed of a single SH2 domain.SH2D1Ais expressed in many tissues involved in the immune system. The identification ofSH2D1A will allow the determination of its mechanism of action as a possible regulator of the EBV-induced immune response.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical map of the XLP critical region.
Figure 2: HumanSH2D1A gene.
Figure 3: Expression ofSH2D1A.
Figure 4: Analysis ofSH2D1A in an XLP family.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Epstein, M.A., Achong, B.G. & Barr, Y.M. Virus particles in cultured lymphocytes from Burkitt's lymphoma.Lancet1, 702– 703 (1964).

    Article CAS  Google Scholar 

  2. zur Hausen, H. et al. EBV DNA in biopsies of Burkitt's tumours and anaplastic carcinoma of the nasopharynx.Nature228, 1056–1058 (1970).

    Article CAS  Google Scholar 

  3. Imai, S. et al. Gastric carcinoma: Monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein.Proc. Natl Acad. Sci. USA91, 9131–9135 ( 1994).

    Article CAS  Google Scholar 

  4. Klein, G. The Epsein-Barr virus and neoplasia.N. Engl. J. Med. 293, 1353–1357 (1975).

    Article CAS  Google Scholar 

  5. McClain, K.L. et al. Association of Epstein-Barr virus with leiomyosarcomas in young people with AIDS.N. Engl. J. Med.332, 12–18 (1995).

    Article CAS  Google Scholar 

  6. Rickinson, A.B., Lee, S.P. & Steven, N.M. Cytotoxic T lymphocyte responses to Epstein-Barr virus.Curr. Opin. Immunol.8, 492– 497 (1996).

    Article CAS  Google Scholar 

  7. Purtilo, D.T. et al. X-linked recessive progressive combined variable immunodeficiency (Duncan's disease).Lancet1, 935– 940 (1975).

    Article CAS  Google Scholar 

  8. Purtilo, D.T., Grierson, H.L., Davis, J.R. & Okano, M. The X-linked lymphoproliferative disease: from autopsy toward cloning the gene, 1975-1990.Pediatr. Pathol.11, 685 –710 (1991).

    Article CAS  Google Scholar 

  9. Harrington, D.S., Weisenburger, D.D. & Purtilo, D.T. Malignant lymphoma in the X-linked Lymphoproliferative Syndrome.Cancer59, 1419– 1429 (1987).

    Article CAS  Google Scholar 

  10. Weisenburger, D.D. & Purtilo, D.T. Failure in immunological control of the virus infection: fatal infectious mononucleosis. in The Epstein-Barr Virus: Recent Advances (eds Epstein, M.A. & Achong, B.G.) 129–161 (Heinmann Medical Books, London, England, 1986).

    Google Scholar 

  11. Skare, J.C. et al.. Linkage analysis of seven kindreds with the X-linked lymphoproliferative syndrome (XLP) confirms that the XLP locus is nearDXS42andDXS37.Hum. Genet.82, 354– 358 (1989).

    CAS PubMed  Google Scholar 

  12. Wyandt, H.E. et al. Chromosomal deletion of Xq25 in an individual with X-linked lymphoproliferative disease.Am. J. Hum. Genet.33, 426–430 (1989).

    Article CAS  Google Scholar 

  13. Sanger, W.G. et al. Partial Xq25 deletion in a family with the X-linked lymphoproliferative disease (XLP).Cancer Genet. Cytogenet.47, 163–169 (1990).

    Article CAS  Google Scholar 

  14. Skare, J.C. et al. cterization of three overlapping deletions causing X-linked lymphoproliferative disease.Genomics16, 254–255 (1993).

    Article CAS  Google Scholar 

  15. Wu, B.L.et al. High-resolution mapping of probes near the X-linked lymphoproliferative disease (XLP) locus.Genomics17, 163– 170 (1993).

    Article CAS  Google Scholar 

  16. Coulson, A. et al. Towards a physical map of the genome of nematodeC. elegans.Proc. Natl Acad. Sci. USA83, 7821– 7825 (1996).

    Article  Google Scholar 

  17. Gregory, S.G., Howell, G.R. & Bentley, D.R. Genome mapping by fluorescent fingerprinting. Genome Res.7, 1162–1168 (1997).

    Article CAS  Google Scholar 

  18. Liston, P. et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes.Nature379, 349–353 (1996).

    Article CAS  Google Scholar 

  19. Bolino, A. et al. A new candidate region for the positional cloning of the XLP gene.Eur. J. Hum. Genet. in press.

  20. Ware, M.D. et al. Cloning and characterisation of the human SHIP, the 145-kD inositol 5-phosphatase that associates with SHC after cytokine stimulation.Blood88, 2833–2840 (1996).

    CAS PubMed  Google Scholar 

  21. Pesesse, X., Deleu, S., De Smedt, F., Drayer, L. & Erneux, C. Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP.Biochem. Biophys. Res. Commun.239, 697 –700 (1997).

    Article CAS  Google Scholar 

  22. Thompson, A.D. et al. EAT-2 is a novel SH2 domain containing protein that is up regulated by Ewing's sarcoma EWS/FL11 fusion gene.Oncogene13, 2649–2658 ( 1996).

    CAS PubMed  Google Scholar 

  23. Fainstein, E. et al. Nucleotide sequence analysis of human abl and bcr-abl cDNAs.Oncogene4, 1477–1481 (1989).

    CAS PubMed  Google Scholar 

  24. Huang, S-H., Jong, A.Y., Yang, W. & Holcenberg, J. Amplification of gene ends from gene libraries by polymerase chain reaction with single-sided specificity. inMethods in Molecular Biology, PCR Protocols: Current Methods and Applications (ed White B.A.) 357– 363 (Humana Press, Totowa, New Jersey, 1993).

    Chapter  Google Scholar 

  25. Riley, J. et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones.Nucleic Acids Res.18, 2887–2890 ( 1990).

    Article CAS  Google Scholar 

  26. Roberts, R.G., Coffey, A.J., Bobrow, M. & Bentley, D.R. Exon structure of the human dystrophin gene.Genomics16, 536–538 (1993).

    Article CAS  Google Scholar 

  27. Bhat. N.K. et al. Reciprocal expression of human ETS1 and ETS2 genes during T-cell activation: regulatory role for the protooncogene ETS1. Proc. Natl Acad. Sci. USA87, 3723– 3727 (1990).

    Article CAS  Google Scholar 

  28. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell72, 767–778 ( 1993).

    Article CAS  Google Scholar 

  29. Kuriyan, J. & Cowburn, D. Structures of SH2 and SH3 domains.Curr. Opin. Struct. Biol.3, 828– 837 (1993).

    Article CAS  Google Scholar 

  30. Mayer, B.J., Jackson, P.K., Van Etten, R.A. & Baltimore, D. Point mutations in the abl SH2 domain coordinately impair phosphotyrosine bindingin vitro and transforming activityin vivo. Mol. Cell. Biol.12, 609–618 (1992).

    Article CAS  Google Scholar 

  31. Lamartine, J. et al. Physical map and cosmid contig encompassing a new interstitial deletion of the X-linked lymphoproliferative syndrome region. Eur. J. Hum. Genet.4, 342–351 (1996).

    Article CAS  Google Scholar 

  32. Lanyi, A. et al. A yeast artificial chromosome (YAC) contig encompassing the critical region of the X-linked lymphoproliferative disease (XLP) locus. Genomics39, 55–65 ( 1997).

    Article CAS  Google Scholar 

  33. Arkwright, P.D. et al. X-linked lymphoproliferative disease in a UK family. Archives Dis. Childh. in press.

  34. Shapiro, M.B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression.Nucleic Acids Res.15, 7155–7174 (1987).

    Article CAS  Google Scholar 

  35. Schuster, V. et al. Molecular genetic haplotype segregation studies in three families with X-linked lymphoproliferative disease.Eur. J. Pediatr.153, 432–437 ( 1994).

    Article CAS  Google Scholar 

  36. Koch, C.A., Anderson, D., Moran, M.F., Ellis, C. & Pawson, T. SH2 and SH3 Domains: Elements that control interactions of cytoplasmic signaling proteins.Science252, 668–673 ( 1991).

    Article CAS  Google Scholar 

  37. Chan, A.C., Irving, B.A., Fraser, /FNM> & Weiss, A. The ζ chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein.Proc. Natl Acad. Sci. USA88, 9166–9170 (1991).

    Article CAS  Google Scholar 

  38. Ono, M., Bolland, S., Tempst, P. & Ravetch, J.V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB.Nature383, 263– 266 (1996).

    Article CAS  Google Scholar 

  39. Levine, A. et al.odd Oz: A novel drosophila pair rule gene. Cell77, 587–598 ( 1994).

    Article CAS  Google Scholar 

  40. Williams, L.L. et al. Correction of Duncan's syndrome by allogeneic bone marrow transplantation.Lancet342, 587– 588 (1993).

    Article CAS  Google Scholar 

  41. Filipovich, A. et al. Allogenic bone marrow transplantation for X-linked lymphoproliferative syndrome.Transplantation42, 222– 224 (1986).

    CAS PubMed  Google Scholar 

  42. Vowels, M.R. et al. Correction of X-linked lymphoproliferative disease by transplantation of cord-blood stem cells.N. Engl. J. Med.329, 1623–1625 (1993).

    Article CAS  Google Scholar 

  43. Larin, Z., Monaco, A.P. & Lehrach, H. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA.Proc. Natl Acad. Sci. USA 88, 4123–4127 (1991).

    Article CAS  Google Scholar 

  44. Anand, R., Villasante, A. & Tyler-Smith, C. Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis.Nucleic Acids Res.17, 3425– 3433 (1989).

    Article CAS  Google Scholar 

  45. Albersten, H.M. et al. Construction and characterisation of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl Acad. Sci. USA87, 425– 460 (1990).

    Google Scholar 

  46. Soderlund, C. & Dunham, I. SAM: a system for iteratively building marker maps.Comput. Appl. Biosci.11, 645 –655 (1995).

    CAS PubMed  Google Scholar 

  47. Coffey, A.J. et al. Construction of a 2.6 Mb contig in yeast artificial chromosomes spanning the human dystrophin gene using an STS-based approach. Genomics12, 474–484 ( 1992).

    Article CAS  Google Scholar 

  48. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach.Proc. Natl Acad. Sci. USA88, 11261– 11265 (1991).

    Article CAS  Google Scholar 

  49. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA.J. Mol. Biol.1, 78 –94 (1997).

    Article  Google Scholar 

  50. Solovyev, V.V., Salamov, A.A. & Lawrence, C.B. Identification of human gene structure using linear discriminant functions and dynamic programming.Ismb 3, 367–375 (1995).

    CAS PubMed  Google Scholar 

  51. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification.Nature Genet.6, 98–105 (1994).

    Article CAS  Google Scholar 

  52. Burn, T.C., Connors, T.D., Klinger, K.W. & Landes, G.M. Increased exon-trapping efficiency through modifications to the pSPL3 splicing vector.Gene161, 183–187 (1995).

    Article CAS  Google Scholar 

  53. Frohman, M.A. Dush, M.K. & Martin, G.T. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl Acad. Sci. USA85, 8998– 9002 (1988).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients, families and physicians who have contributed to this project. We thank all the members of Team 32 at the Sanger Centre for all the genomic sequencing. We also thank E. Campbell and T. Freeman for help with expression profiling, L. Everett for isolation of a BAC clone, S. Abbs and D. Vetrie for the provision of normal DNA samples, E. Sotheran, R. Gwilliam, D. Pearson, J. Conquer, P. Hunt and C. Cole for clone resources, D. Simmons for the gift of cDNA libraries, L. Webb for provision of B cell cDNA, R. Guy for T cells, H. Chapel, D. Crawford and Donhuisen-Ant for provision of patient material, A. Rickinson for helpful discussions and I. Dunham for critical review of the manuscript. We gratefully acknowledge the support of the Wellcome Trust. O.B. has been supported by the German Federal Ministery for Education, Research and Technology. G.P. was supported by Telethon 633 and AIRC. J.S. is supported by HIH grant NIH-NIAD 1 R01 AI33532-OIA3. M.S. is supported by a grant from TELETHON Italy. G.R. and L.Y. are supported by a grant from ARC. The continuous support of the Williams C. Havens Foundation to this project is acknowledged.

Author information

Authors and Affiliations

  1. The Sanger Centre, Wellcome Trust Genome Campus, Hinxton,, CB10 1SA, Cambridgeshire, UK

    Alison J. Coffey, Robert A. Brooksbank, Gareth R. Howell, Jacqueline M. Bye, Anthony P. Cahn, Jillian Durham, Paul Heath, Paul Wray, Rebecca Pavitt, Jane Wilkinson, Margaret Leversha, Elizabeth Huckle, Charles J. Shaw-Smith, Andrew Dunham, Susan Rhodes, Mark Vaudin, Mark T. Ross & David R. Bentley

  2. Abt. Medizinische Genetik der LMU, Goethestraße 29, Munich, 80336, Germany

    Oliver Brandau, Helene Achatz, Jan Murken & Alfons Meindl

  3. Max Planck-Institut für Biochemie, Martinsried, 82152, Germany

    Toshitaka Oohashi & Reinhard Fassler

  4. Dept of Respiratory Medicine, Addenbrooke's Hospital , Hills Road, Cambridge, CB2 2QQ, UK

    Anthony P. Cahn

  5. Kinderklinik der Universität, Würzburg, 97080 , Germany

    Volker Schuster

  6. Cattedra di Gen. Umana, Istituto di Scienze Biomediche Ospedale San Paolo, Milan, Italy

    Giovanni Porta & Paola Serafini

  7. Dip. di Patologia Umana ed Ereditaria, II Facolta' di Med., Univ. di Pavia, Italy

    Giovanni Porta

  8. Genetic Cancer Susceptibility Unit, International Agency for Research on Cancer, Lyon, France

    Luo Yin, Bakary Sylla & Giovanni Romeo

  9. Telethon Institute of Genetics and Medicine (TIGEM), San Raffaele Biomedical Science Park, Via Olgettina 58, Milan, 20132, Italy

    Massimo Zollo & Brunella Franco

  10. Lab Genetica Molecolare, Instituto Gaslini, Genoa, Italy

    Alessandra Bolino & Marco Seri

  11. Dept Microbiology and Pathology, University of Nebraska , Omaha, Nebraska, USA

    Arpad Lanyi, Jack R. Davis & Janos Sumegi

  12. Dept of Clinical Immunology, Royal Free Hospital School of Medicine, Pond Street, London, UK

    David Webster

  13. Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK

    Ann Harris

  14. Programme on Viral and Hereditary Factors in Carcinogenesis, International Agency for Research on Cancer, Lyon, France

    Gilbert Lenoir

  15. INSERM U429, Hopital des Enfants-Malades, Paris, 75015, France

    Genevieve de St Basile

  16. Great Ormond Street Hospital, London, WC1N 3JH, UK

    Alison Jones

  17. Haunersche Immundefektambulanz der LMU, Munich, 80336, Germany

    Bernd H. Behloradsky

Authors
  1. Alison J. Coffey

    You can also search for this author inPubMed Google Scholar

  2. Robert A. Brooksbank

    You can also search for this author inPubMed Google Scholar

  3. Oliver Brandau

    You can also search for this author inPubMed Google Scholar

  4. Toshitaka Oohashi

    You can also search for this author inPubMed Google Scholar

  5. Gareth R. Howell

    You can also search for this author inPubMed Google Scholar

  6. Jacqueline M. Bye

    You can also search for this author inPubMed Google Scholar

  7. Anthony P. Cahn

    You can also search for this author inPubMed Google Scholar

  8. Jillian Durham

    You can also search for this author inPubMed Google Scholar

  9. Paul Heath

    You can also search for this author inPubMed Google Scholar

  10. Paul Wray

    You can also search for this author inPubMed Google Scholar

  11. Rebecca Pavitt

    You can also search for this author inPubMed Google Scholar

  12. Jane Wilkinson

    You can also search for this author inPubMed Google Scholar

  13. Margaret Leversha

    You can also search for this author inPubMed Google Scholar

  14. Elizabeth Huckle

    You can also search for this author inPubMed Google Scholar

  15. Charles J. Shaw-Smith

    You can also search for this author inPubMed Google Scholar

  16. Andrew Dunham

    You can also search for this author inPubMed Google Scholar

  17. Susan Rhodes

    You can also search for this author inPubMed Google Scholar

  18. Volker Schuster

    You can also search for this author inPubMed Google Scholar

  19. Giovanni Porta

    You can also search for this author inPubMed Google Scholar

  20. Luo Yin

    You can also search for this author inPubMed Google Scholar

  21. Paola Serafini

    You can also search for this author inPubMed Google Scholar

  22. Bakary Sylla

    You can also search for this author inPubMed Google Scholar

  23. Massimo Zollo

    You can also search for this author inPubMed Google Scholar

  24. Brunella Franco

    You can also search for this author inPubMed Google Scholar

  25. Alessandra Bolino

    You can also search for this author inPubMed Google Scholar

  26. Marco Seri

    You can also search for this author inPubMed Google Scholar

  27. Arpad Lanyi

    You can also search for this author inPubMed Google Scholar

  28. Jack R. Davis

    You can also search for this author inPubMed Google Scholar

  29. David Webster

    You can also search for this author inPubMed Google Scholar

  30. Ann Harris

    You can also search for this author inPubMed Google Scholar

  31. Gilbert Lenoir

    You can also search for this author inPubMed Google Scholar

  32. Genevieve de St Basile

    You can also search for this author inPubMed Google Scholar

  33. Alison Jones

    You can also search for this author inPubMed Google Scholar

  34. Bernd H. Behloradsky

    You can also search for this author inPubMed Google Scholar

  35. Helene Achatz

    You can also search for this author inPubMed Google Scholar

  36. Jan Murken

    You can also search for this author inPubMed Google Scholar

  37. Reinhard Fassler

    You can also search for this author inPubMed Google Scholar

  38. Janos Sumegi

    You can also search for this author inPubMed Google Scholar

  39. Giovanni Romeo

    You can also search for this author inPubMed Google Scholar

  40. Mark Vaudin

    You can also search for this author inPubMed Google Scholar

  41. Mark T. Ross

    You can also search for this author inPubMed Google Scholar

  42. Alfons Meindl

    You can also search for this author inPubMed Google Scholar

  43. David R. Bentley

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toAlison J. Coffey orRobert A. Brooksbank.

Rights and permissions

About this article

Cite this article

Coffey, A., Brooksbank, R., Brandau, O.et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene.Nat Genet20, 129–135 (1998). https://doi.org/10.1038/2424

Download citation

Access through your institution
Buy or subscribe

Associated content

Why commonplace encounters turn to fatal attraction

  • Michel Sadelain
  • Elliott Kieff
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp