Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Cell Research
  • Review
  • Published:

14-3-3 proteins—an update

Cell Researchvolume 15pages228–236 (2005)Cite this article

ABSTRACT

14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein can interact with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Little is known about the consequences of these interactions, and thus are the subjects of ongoing studies. 14-3-3 controls cell cycle, cell growth, differentiation, survival, apoptosis, migration and spreading. Recent studies have revealed new mechanisms and new functions of 14-3-3, giving us more insights on this fascinating and complex family of proteins. Of all the seven isoforms, 14-3-3σ seems to be directly involved in human cancer. 14-3-3σ itself is subject to regulation by p53 upon DNA damage and by epigenetic deregulation. Gene silencing of 14-3-3σ by CpG methylation has been found in many human cancer types. This suggests that therapy-targeting 14-3-3σ may be beneficial for future cancer treatment.

Similar content being viewed by others

Log in or create a free account to read this content

Gain free access to this article, as well as selected content from this journal and more onnature.com

or

References

  1. Das PM, Singal R . DNA methylation and cancer.J Clin Oncol 2004;22:4632–42.

    Article CAS PubMed  Google Scholar 

  2. Gilbert J, Gore SD, Herman JG, Carducci MA . The clinical application of targeting cancer through histone acetylation and hypomethylation.Clin Cancer Res 2004;10:4589–96.

    Article CAS PubMed  Google Scholar 

  3. Maruyama R, Toyooka S, Toyooka KO, et al. Aberrant promotor methylation profile of bladder cancer and its relationship to clinicopathological features.Cancer Res 2001;61:8659–63.

    CAS PubMed  Google Scholar 

  4. Ferl RJ, Manak MS, Reyes MF . The 14-3-3σ reviews.Genome Biol 2002;3: 3010.1–3010.7.

    Article  Google Scholar 

  5. Moore BW, McGregor D . Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver.J Biol Chem 1965;240:1647–53.

    CAS PubMed  Google Scholar 

  6. Muslin AJ, Tanner JW, Allen PM, Shaw AS . Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.Cell 1996;84:889–97.

    Article CAS PubMed  Google Scholar 

  7. Yaffe MB, Rittinger K, Volinia S, et al. The structural basis for 14-3-3: phosphopeptide binding specificity.Cell 1997;91:961–71.

    Article CAS PubMed  Google Scholar 

  8. Urschel S, Bassermann F, Bai RY, et al. Phosphorylation of Grb10 regulates its interaction with 14-3-3.J Biol Chem 2005;18 (Epub ahead of print).

  9. Rubio MP, Geraghty KM, Wong BH, et al. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation, and trafficking.Biochem J 2004;379:395–408.

    Article CAS  Google Scholar 

  10. Benzinger A, Muster N, Koch HB, Yates JR 3rd, Hermeking H . Targeted proteomic analysis of 14-3-3σ, a p53 effector commonly silenced in cancer.Mol Cell Proteomics. 2005;18: [Epub ahead of print].

  11. Jin J, Smith D, Stark C, et al. Proteomic, functional, and domain-based analysis ofin vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.Current Biol 2004;14:1436–50.

    Article CAS  Google Scholar 

  12. Fu H, Subramanian RR, Masters SC . 14-3-3 proteins: structure, function, regulation.Ann Rev Pharmacol Toxicol 200;40:617–47

  13. Seger R, Krebs EG . The MAPK signaling cascade.FASEB J 1995;9:726–35.

    Article CAS PubMed  Google Scholar 

  14. Avruch J, Khokhlatchev A, Kyriakis JM, et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade.Recent Prog Horm Res 2001;56:127–55.

    Article CAS PubMed  Google Scholar 

  15. Dumaz N, Marais R . Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras.J Biol Chem 2003;278: 29819–23.

    Article CAS PubMed  Google Scholar 

  16. Yaffe MB . How do 14-3-3 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis.FEBS letters 2002;513:53–7.

    Article CAS PubMed  Google Scholar 

  17. Kato Y, Tapping RI, Huang S, et al. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor.Nature 1998;395:713–6.

    Article CAS PubMed  Google Scholar 

  18. Kato Y, Zhao M, Morikawa A, et al. Big mitogen-activated kinase regulates multiple members of the MEF2 protein family.J Biol Chem 2000;275:18534–40.

    Article CAS PubMed  Google Scholar 

  19. Zheng Q, Yin G, Yan C, Cavet M, Berk BC . 14-3-3β binds to big mitogen-activated protein kinase1 (BMK1/ERK5) and regulates BMK1 function.J Biol Chem 2004;279:8787–91.

    Article CAS PubMed  Google Scholar 

  20. Cheng M, Olivier P, Diehl JA, et al. The p21(Cip1) and p27 (Kip1) CDK “inhibitors” are essential activators of cyclin D-dependent kinases in murine fibroblasts.EMBO J 1999;18:1571–83.

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Slingerland J, Pagano M . Regulation of the cdk inhibitor p27 and its deregulation in cancer.J Cell Physiol 2000;183:10–7.

    Article CAS PubMed  Google Scholar 

  22. Sekimoto T, Fukumotot M, Yoneda Y . 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27kip1.EMBO J 2004;23:1934–42.

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Crino PB, Henske EP . New developments in the neurobiology of the tuberous sclerosis complex.Neurology 1999;53:1384–90.

    Article CAS PubMed  Google Scholar 

  24. Fujita N, Sato S, Katayama K, Tsuruo T . Akt-dependent phosphorylation of p27 promotes binding to 14-3-3 and cytoplasmic localization.J Biol Chem 2002;277: 28706–13.

    Article CAS PubMed  Google Scholar 

  25. Hengstschlager M, Rosner M, Fountoulakis M, Lubec G .Biochem Biophys Res Commun 2003;312:676–3.

  26. Liu MY, Cai S, Espejo A, Bedford MT, Walker CL . 14-3-3 interacts with tumor suppressor tuberin at Akt phosphorylation site(s).Cancer Res 2002;62:6475–80.

    CAS PubMed  Google Scholar 

  27. Li yong, Inoki K, Yeung R, Guan KL . Regulation of TSC2 by 14-3-3 binding.J Biol Chem 2002;277:44593–6.

    Article CAS PubMed  Google Scholar 

  28. Margolis SS, Korbluth S . When the checkpoints have gone. Insights into Cdc25 functional activation.Cell Cycle 2004;3:425–8.

    Article CAS PubMed  Google Scholar 

  29. Forrest A, Gabrielli B . Cdc25B activity is regulated by 14-3-3.Oncogene 2001;20:4393–401.

    Article CAS PubMed  Google Scholar 

  30. Dalal SN, Yaffe MB, DeCaprio JA . 14-3-3 family members act coordinately to regulate mitotic progression.Cell Cycle 2004;3:672–7.

    Article CAS PubMed  Google Scholar 

  31. Melo J, Toczyski . A unified view of the DNA-damage checkpoint.Curr Opin Cell Biol 2002;14:237–45.

    Article CAS PubMed  Google Scholar 

  32. Uchida S, Kuma A, Ohtsubo M, et al. Binding of 14-3-3β but not 14-3-3σ controls the cytoplasmic localization of CDC25B: binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B.J Cell Science 2004;117:3011–20.

    Article CAS PubMed  Google Scholar 

  33. Lee J, Kumagai A, Dunphy WG . Positive regulation of Wee1 by Chk1 and 14-3-3 proteins.Mol Biol Cell 2001;12:551–63.

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Samuel T, Weber O, Rauch P, et al. The G2/M regulator 14-3-3σ prevents apoptosis through sequestration of Bax.J Biol Chem 2001;276:45201–6.

    Article CAS PubMed  Google Scholar 

  35. Nomura M, Shimizu S, Sugiyama T, et al. 14-3-3 interacts directly with and negatively regulates por-apoptotic Bax.J Biol Chem 2003;278:2058–65.

    Article CAS PubMed  Google Scholar 

  36. Tan Y, Demeter MR, Ruan H, Comb MJ . BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival.J Biol Chem 2000;275:25865–9.

    Article CAS PubMed  Google Scholar 

  37. Cary LA, Han DC, Guan JL . Integrin-mediated signal transduction pathways.Histol Histopathol 1999;14:1001–9.

    CAS PubMed  Google Scholar 

  38. Han DC, Shen TL, Miao H, wang B, Guan JL . EphB1 associates with Grb7 and regulates cell migration.J Biol Chem 2002;277:45655–61.

    Article CAS PubMed  Google Scholar 

  39. Rodriguez LG, Guan JL . 14-3-3 regulation of cell spreading and migration requires a functional amphipathic groove.J cell Physiol 2005;202:285–94.

    Article CAS PubMed  Google Scholar 

  40. Honda H, Nakamoto T, Sakai R, Hirai H . p130 (Cas), an assembling molecule of actin filaments, promotes cell movement, cell migration, and cell spreading in fibroblasts.Biochem Biophys Res Commun 1999;262:25–30.

    Article CAS PubMed  Google Scholar 

  41. Tombes RM, Faison MO, Turbeville JM . Organization and evolution of multifunctional Ca2+/CaM-dependent protein kinase genes.Gene 2003;322:17–31.

    Article CAS PubMed  Google Scholar 

  42. Davare MA, Saneyoshi T, Guire ES, Nygaard SC, Soderling TR . Inhibition of Calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3.J Biol Chem 2004;279:52191–9.

    Article CAS PubMed  Google Scholar 

  43. Nakajima T, Shimooka H, Weixa P, et al. Immunohistochemical demonstration of 14-3-3σ protein in normal human tissues and lung cancers, and the preponderance of its strong expression in epithelial cells of squamous cell lineage.Pathol Int 2003;53:353–60.

    Article CAS PubMed  Google Scholar 

  44. Lakin ND, Jackson SP . Regulation of p53 in response to DNA damage.Oncogene 1999;18:7644–55.

    Article CAS PubMed  Google Scholar 

  45. Hermeking H, Lengauer C, Polyak K, et al. 14-3-3σ is a p53-regulated inhibitor of G2/M progression.Mol cell 1997;1:3–11.

    Article CAS PubMed  Google Scholar 

  46. Taylor WR, Stark GR . Regulation of the G2/M transition by p53.Oncogene 2001;20:1803–15.

    Article CAS PubMed  Google Scholar 

  47. Rodriguez M, Yu X, Chen J, Songyang Z . Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains.J Biol Chem 2003;278:52914–8.

    Article CAS PubMed  Google Scholar 

  48. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . 14-3-3σ is required to prevent mitotic catastrophe after DNA damage.Nature 1999;401:616–20.

    Article CAS PubMed  Google Scholar 

  49. Yang A, Kaghad M, Wang Y, et al. P63, a p53 homolog at 3q27-29, encodes multiple products with transactivation, death-inducing, and dominant-negative activities.Mol Cell 1998;2:305–16.

    Article CAS PubMed  Google Scholar 

  50. Ghahary A, Marcoux Y, Karimi-Busheri F, et al. Differentiated keratinocyte-releasable stratifin (14-3-3σ) stimulates MMP-1 expression in dermal fibroblasts.J Invest Dermatol 2005;124:170–7.

    Article CAS PubMed  Google Scholar 

  51. Urano T, Saito T, Tsukui T, et al. Efp Targets 14-3-3σ for protolysis and promotes breast tumor growth.Nature 2002;417:871–5.

    Article CAS PubMed  Google Scholar 

  52. Lodygin D, Hermeking H . The role of epigenetic inactivation of14-3-3σ in human cancer.Cell Res 2005;15:237–46.

    Article CAS PubMed  Google Scholar 

  53. Gasco M, Sullivan A, Repellin C, et al. Coincident inactivation of 14-3-3σ and p16INK4a is an early event in vulval squamous cell neoplasia.Oncogene 2002;21:1876–81.

    Article CAS PubMed  Google Scholar 

  54. Umbricht CB, Evron E, Gabrielson E, et al. Hypermethylation of 14-3-3σ (stratifin) is an early event in breast cancer.Oncogene 2001;20:3348–53.

    Article CAS PubMed  Google Scholar 

  55. Cheng L, Pan CX, Zhang S, et al. Loss of 14-3-3σ in prostate cancer and its precursors.Clin Cancer Res 2004;10:3064–8.

    Article CAS PubMed  Google Scholar 

  56. Bhatia K, Siraj AK, Hussain A, Bu R, Gutierrez MI . The tumor suppressor gene14-3-3σ is commonly methylated in normal and malignant lymphoid cells.Cancer Epidemiol Biomarkers Prev 2003;12:165–9.

    CAS PubMed  Google Scholar 

  57. Ferguson AT, Evron E, Umbricht CB, et al. High frequency of hypermethylation at the14-3-3σ locus leads to gene silencing in breast cancer.Proc Natl Acad Sci USA 2000;97:6049–54.

    Article CAS PubMed PubMed Central  Google Scholar 

  58. Lodygin D, Yazdi AS, Sander CA, Herzinger T, Hermeking H . Analysis of 14-3-3σ expression in hyperproliferative skin diseases reveals selective loss associated with CpG-methylation in basal cell carcinoma.Oncogene 2003;22:5519–24.

    Article CAS PubMed  Google Scholar 

  59. Lodygin D, Diebold J, Hermeking H . Prostate cancer is characterized by epigenetic silencing of14-3-3σ expression.Oncogene 2004;23:9034–41.

    Article CAS PubMed  Google Scholar 

  60. Yatabe Y, Osada H, Tatemasu Y, Mitsudomi T, Takahashi T . Decreased expression of 14-3-3σ in neuroendocrine tumors is independent of origin and malignant potential.Oncogene 2002;21:8310–9.

    Article CAS PubMed  Google Scholar 

  61. Moreira JM, Gromov P, Celis JE . Expression of the tumor suppressor protein 14-3-3σ is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition.Mol Cell Proteomics 2004;3:410–9.

    Article CAS PubMed  Google Scholar 

  62. Suzuki H, Itoh F, Toyota M, et al. Inactivation of the14-3-3σ gene is associated with 5'CpG island hypermethylation in human cancers.Cancer Res 200;60:4353–7.

  63. Iwata N, Yamamoto H, Sasaki S, et al. Frequent hypermethylation of CpG islands and loss of expression of the14-3-3σ gene in human hepatocellular carcinoma.Oncogene 2000;19:5298–302.

    Article CAS PubMed  Google Scholar 

  64. Mhawech P, Benz A, Cerato C, et al. Downregulation of the 14-3-3σ in ovary, prostate and endometrial carcinomas is associated with CpG island methylation.Mod Pathol 2005;18:340–8.

    Article CAS PubMed  Google Scholar 

  65. Logsdon CD, Simeone DM, Binkley C, et al. Molecular profiling pf pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer.Cancer Res 2003;63:2649–57.

    CAS PubMed  Google Scholar 

  66. Osada H, Tatematsu Y, Yatabe Y, et al. Frequent and histological type-specific inactivation of 14-3-3σ in human lung cancers.Oncogene 2002;21:2418–24.

    Article CAS PubMed  Google Scholar 

  67. Vercoutter-Edouart A-S, Lemoine J, Le Bourhis X, et al. Proteomic analysis reveals that 14-3-3s is down-regulated in human breast cancer cells.Cancer Res 2001;61:76–80.

    CAS PubMed  Google Scholar 

  68. Mhawech P, Greloz V, Assaly M, Herrmann F . Immunohistochemical expression of 14-3-3σ protein in human urological and gynecological tumors using multi-tumor microarray analysis.Pathol Int 2005;55:77–82.

    Article CAS PubMed  Google Scholar 

  69. Wilker EW, Grant RA, Artim SC, Yaffe MB . A structural basis for 14-3-3σ functional specificity.Am J Biochem 2005;25: [Epub ahead of print]

  70. Benzinger A, Popowicz GM, Joy JK, et al. The crystal of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization.Cell Res; 2005;15: [Epub ahead of print].

    Article CAS PubMed  Google Scholar 

  71. Van Hermert MJ, Niemantsverdriet M, Schmidt T, Backendorf C, Spaink HP . Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3σ and 14-3-3ζ.J Cell Sci 2003;117:1411–20.

    Article  Google Scholar 

  72. Kawabe T . G2 checkpoint abrogators as anticancer drugs.Mol Cancer Ther 2004;3:513–9.

    CAS PubMed  Google Scholar 

  73. Hermeking H . The 14-3-3 cancer connection.Nature Rev 2003;3:931–43.

    CAS  Google Scholar 

  74. Esteller M . DNA methylation and cancer therapy: new developments and expectations.Curr Opin Oncol 2005;17:55–60.

    Article CAS PubMed  Google Scholar 

  75. Cheng JC, Weisenberger DJ, Gonzales FA, et al. Continuous Zebularine treatment effectively sustains demethylation in human bladder cancer cells.Mol Cell Biol 2004;24:1270–8.

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Dhar S, Squire JA, Hande MP, Wellinger RJ, Pandita TK . Inactivation of 14-3-3σ influences telomere behavior and ionizing radiation-induced chromosomal instability.Mol Cell Biol 2000;20:7764–72.

    Article CAS PubMed PubMed Central  Google Scholar 

  77. Qi W, Liu X, Qiao D, Martinez JD . Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues.Int J Cancer 2005;113:359–63.

    Article CAS PubMed  Google Scholar 

  78. Qi W, Martinez JD . Reduction of 14-3-3 proteins correlates with increased sensitivity to killing of human lung cancer cells by ionizing radiation.Radiat Res 2003;160:217–23.

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

I like to thank Dr. Charles LeVea for his critical review of the manuscript, and Mr. Doug Nixon for his photographic experience.

Author information

Authors and Affiliations

  1. Department of Pathology and Laboratory Medicine at Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, 14263, New York, USA

    Paulette MHAWECH

Authors
  1. Paulette MHAWECH

Corresponding author

Correspondence toPaulette MHAWECH.

Rights and permissions

This article is cited by

Search

Advanced search

Quick links


[8]ページ先頭

©2009-2026 Movatter.jp