Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Cell Death & Differentiation
  • Review
  • Published:

c-Abl: activation and nuclear targets

Cell Death & Differentiationvolume 7pages10–16 (2000)Cite this article

Abstract

The c-Abl tyrosine kinase and its transforming variants have been implicated in tumorigenesis and in many important cellular processes. c-Abl is localized in the nucleus and the cytoplasm, where it plays distinct roles. The effects of c-Abl are mediated by multiple protein-protein and protein-DNA interactions and its tyrosine kinase domain. At the biochemical level, the mechanism of c-Abl kinase activation and the identification of its target proteins and cellular machineries have in part been solved. However, the phenotypic outcomes of these molecular events remained in large elusive. c-Abl has been shown to regulate the cell cycle and to induce under certain conditions cell growth arrest and apoptosis. In this respect the interaction of c-Abl with p53 and p73 has attracted particular attention. Recent findings have implicated c-Abl in an ionizing irradiation signaling pathway that elicits apoptosis. In this pathway p73 is an important immediate downstream effector. Here I review the current knowledge about these nuclear processes in which c-Abl is engaged and discuss some of their possible implications on cell physiology.

Similar content being viewed by others

Log in or create a free account to read this content

Gain free access to this article, as well as selected content from this journal and more onnature.com

or

Abbreviations

ATM:

ataxia-telangiectasia mutant

CTD:

C-terminus domain

EIAV:

equine infectious anaemia virus

HBV:

hepatitis B virus

IR:

ionizing irradiation

NES:

nuclear export signal

NLS:

nuclear localization signal

SH:

Src homology

References

  1. Van Etten RA . 1999 Cycling, stressed-out and nervous: cellular functions of c-Abl.Trends. Cell Biol.9: 179–186

    Article CAS PubMed  Google Scholar 

  2. Songyang Z, Shoelson SE, McGlade Jet al. 1994 Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav.Mol. Cell Biol.14: 2777–2785

    Article CAS PubMed PubMed Central  Google Scholar 

  3. Cohen GB, Ren R and Baltimore D . 1995 Modular binding domains in signal transduction proteins.Cell80: 237–248.

    Article CAS PubMed  Google Scholar 

  4. Pawson T . 1994 SH2 and SH3 domains in signal transduction.Adv. Cancer Res.64: 87–110

    Article CAS PubMed  Google Scholar 

  5. Cicchetti P, Mayer BJ, Thiel G and Baltimore D . 1992 Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho.Science257: 803–806

    Article CAS PubMed  Google Scholar 

  6. Ren R, Mayer BJ, Cicchetti P and Baltimore D . 1993 Identification of a ten-amino acid proline-rich SH3 binding site.Science259: 1157–1161

    Article CAS PubMed  Google Scholar 

  7. Shi Y, Alin K and Goff SP . 1995 Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity.Genes Dev.9: 2583–2597

    Article CAS PubMed  Google Scholar 

  8. Dai Z and Pendergast AM . 1995 Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity.Genes & Dev.9: 2569–2582

    Article CAS  Google Scholar 

  9. Wen ST and Van Etten RA . 1997 The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity.Genes Dev.11: 2456–2467

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Shafman T, Khanna KK, Kedar Pet al. 1997 Interaction between ATM protein and c-Abl in response to DNA damage.Nature387: 520–523

    Article CAS PubMed  Google Scholar 

  11. Baskaran R, Wood LD, Whitaker LLet al. 1997 Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation.Nature387: 516–519

    Article CAS PubMed  Google Scholar 

  12. Kharbanda S, Bharti A, Pei Det al. 1996 The stress response to ionizing radiation involves c-Abl-dependent phosphorylation of SHPTP1.Proc. Natl. Acad. Sci. USA93: 6898–6901

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Agami R and Shaul Y . 1998 The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes.Oncogene16: 1779–1788

    Article CAS PubMed  Google Scholar 

  14. Songyang Z, Shoelson SE, Chaudhuri Met al. 1993 SH2 domains recognize specific phosphopeptide sequences.Cell72: 767–778

    Article CAS PubMed  Google Scholar 

  15. Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT and Mulligan RC . 1991 Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene.Cell65: 1153–1163

    Article CAS PubMed  Google Scholar 

  16. Schwatzberg PL, Stall AM, Hardin JDet al. 1991 Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations.Cell65: 1165–1175

    Article  Google Scholar 

  17. Kipreos ET and Wang JY . 1992 Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA.Science256: 382–385

    Article CAS PubMed  Google Scholar 

  18. Miao JY and Wang J . 1996 Binding of A/T-rich DNA by three high mobility group-like domains in c-Abl tyrosine kinase.J. Biol. Chem.271: 22823–22830

    Article CAS PubMed  Google Scholar 

  19. McWhirter JR and Wang JY . 19943 An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias.EMBO J.12: 1533–1546

    Article  Google Scholar 

  20. Van Etten R, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT and Janmey PA . 1994 The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity.J. Cell Biol.124: 325–340

    Article CAS PubMed  Google Scholar 

  21. Konopka JB and Witte ON . 1985 Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products.Mol. Cell Biol.5: 3116–3123

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Pendergast AM, Muller AJ, Havlik MH, Clark R, McCormick F and Witte ON . 1991 Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor.Proc. Natl. Acad. Sci. USA88: 5927–5931

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Van Etten R, Jackson P and Baltimore D . 1989 The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization.Cell58: 669–678

    Article CAS PubMed  Google Scholar 

  24. Mayer BJ and Baltimore D . 1994 Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase.Mol. Cell Biol.14: 2883–2894

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Welch PJ and Wang JY . 1993 A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle.Cell75: 779–790

    Article CAS PubMed  Google Scholar 

  26. Feller SM, Ren R, Hanafusa H and Baltimore D . 1994 SH2 and SH3 domains as molecular adhesives: the interactions of Crk and Abl.Trends Biochem. Sci.19: 453–458

    Article CAS PubMed  Google Scholar 

  27. Xu W, Harrision SC and Eck MJ . 1997 Three-dimensional structure of the tyrosine kinase c-Src.Nature385: 595–602

    Article CAS PubMed  Google Scholar 

  28. Sicheri F, Moarefi I and Kuriyan J . 1997 Crystal structure of the Src family tyrosine kinase Hck.Nature385: 602–609

    Article CAS PubMed  Google Scholar 

  29. Barila D and Superti-Furga G . 1998 An intramolecular SH3-domain interaction regulates c-Abl activity.Nat. Genet.18: 280–282

    Article CAS PubMed  Google Scholar 

  30. Kharbanda S, Ren R, Pandey Pet al. 1995 Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents.Nature376: 785–788

    Article CAS PubMed  Google Scholar 

  31. Kharbanda S, Pandey P, Jin Set al. 1997 Functional interaction between DNA-PK and c-Abl in response to DNA damage.Nature386: 732–735

    Article CAS PubMed  Google Scholar 

  32. Nehme A, Baskaran R, Aebi Set al. 1997 Differential induction of c-Jun NH2-terminal kinase and c-Abl kinase in DNA mismatch repair-proficient and -deficient cells exposed to cisplatin.Cancer Res.57: 3253–3257

    CAS PubMed  Google Scholar 

  33. Nehme A, Baskaran R, Nebel Set al. 1999 Induction of JNK and c-Abl signalling by cisplatin and oxaliplatin in mismatch repair-proficient and -deficient cells.Br. J. Cancer79: 1104–1110

    Article CAS PubMed PubMed Central  Google Scholar 

  34. David Cordonnier M, Hamdane M, Bailly C and D'Halluin JC . 1998 The DNA binding domain of the human c-Abl tyrosine kinase preferentially binds to DNA sequences containing an AAC motif and to distorted DNA structures.Biochemistry37: 6065–6076

    Article CAS PubMed  Google Scholar 

  35. Dikstein R, Heffetz D, Ben-Neriah Y and Shaul Y . 1992 c-abl has a sequence-specific enhancer binding activity.Cell69: 751–757

    Article CAS PubMed  Google Scholar 

  36. Dikstein R, Agami R, Heffetz D and Shaul Y . 1996 p140/c-Abl that binds DNA is preferentially phosphorylated at tyrosine residues.Proc. Natl. Acad. Sci. USA93: 2387–2391

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Reith W, Ucla C, Barras Eet al. 1994 RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins.Mol. Cell Biol.14: 1230–1244

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Dikstein R, Faktor O, Ben-Levy R and Shaul Y . 1990 Functional organization of the hepatitis B virus enhancer.Mol. Cell Biol.10: 3682–3689

    Google Scholar 

  39. Goga A, Liu X, Hambuch TMet al. 1995 p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase.Oncogene11: 791–799

    CAS PubMed  Google Scholar 

  40. Baskaran R, Dahmus ME and Wang JY . 1993 Tyrosine phosphorylation of mammalian RNA polymeraseII carboxyl-terminal domain.Proc. Natl. Acad. Sci. USA90: 11167–11171

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Duyster J, Baskaran R and Wang JY . 1995 Src homology2 domain as a specificity determinant in the c-Abl-mediated tyrosine phosphorylation of the RNA polymeraseII carboxyl-terminal repeated domain.Proc. Natl. Acad. Sci. USA92: 1555–1559

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Welch PJ and Wang JY . 1995 Disruption of retinoblastoma protein function by coexpression of its C pocket fragment.Genes & Dev.9: 31–46

    Article CAS  Google Scholar 

  43. Baskaran R, Escobar SR and Wang JY . 1999 Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymeraseII: possible role in transcription elongation.Cell Growth Differ.10: 387–396

    CAS PubMed  Google Scholar 

  44. Yuan ZM, Huang Y, Ishiko Tet al. 1998 Regulation of Rad51 function by c-Abl in response to DNA damage.J. Biol. Chem.273: 3799–3802

    Article CAS PubMed  Google Scholar 

  45. Chen G, Yuan SS, Liu Wet al. 1999 Radiation-induced assembly of rad51 and rad52 recombination complex requires ATM and c-Abl.J. Biol. Chem.274: 12748–12752

    Article CAS PubMed  Google Scholar 

  46. Chow CS, Barnes CM and Lippard SJ . 1995 A single HMG domain in high mobility group1 protein binds to DNAs as small as 20 base pairs containing the major cisplatin adduct.Biochemistry34: 2956–2964

    Article CAS PubMed  Google Scholar 

  47. Ohndorf UM, Rould MA, He Q, Pabo CO and Lippard SJ . 1999 Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins.Nature399: 708–712

    Article CAS PubMed  Google Scholar 

  48. Morgan SE and Kastan MB . 1997 p53 and ATM: cell cycle, cell death, and cancer.Adv. Cancer Res.71: 1–25

    Article CAS PubMed  Google Scholar 

  49. Yuan ZM, Huang Y, Fan MM, Sawyers C, Kharbanda S and Kufe D . 1996 Genotoxic drugs induce interaction of the c-Abl tyrosine kinase and the tumor suppressor protein p53.J. Biol. Chem.271: 26457–26460

    Article CAS PubMed  Google Scholar 

  50. Yuan ZM, Huang Y, Whang Yet al. 1996 Role for c-Abl tyrosine kinase in growth arrest response to DNA damage.Nature382: 272–274

    Article CAS PubMed  Google Scholar 

  51. Sawyers CL, McLauglin J, Goga A, Havlik M and Witte O . 1994 The nuclear tyrosine kinase c-Abl negatively regulates cell growth.Cell77: 121–131

    Article CAS PubMed  Google Scholar 

  52. Wen ST, Jackson PK and Van Etten RA . 1996 The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products.EMBO J.15: 1583–1595

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Daniel R, Cai Y, Wong PM and Chung SW . 1995 Deregulation of c-abl mediated cell growth after retroviral transfer and expression of antisense sequences.Oncogene10: 1607–1614

    CAS PubMed  Google Scholar 

  54. Liu ZG, Baskaran R, Lea-Chou ETet al. 1996 Three distinct signalling responses by murine fibroblasts to genotoxic stress.Nature384: 273–276

    Article CAS PubMed  Google Scholar 

  55. Koleske AJ, Gifford AM, Scott MLet al. 1998 Essential roles for the Abl and Arg tyrosine kinases in neurulation.Neuron.21: 1259–1272

    Article CAS PubMed  Google Scholar 

  56. Sionov RV, Moallem E, Berger Met al. 1999 c-Abl neutralizes the inhibitory effect of Mdm2 on p53.J. Biol. Chem.274: 8371–8374

    Article CAS PubMed  Google Scholar 

  57. Agami R, Blandino G, Oren M and Shaul Y . 1999 Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis.Nature399: 809–813

    Article CAS PubMed  Google Scholar 

  58. Yuan ZM, Shioya H, Ishiko Tet al. 1999 p73 is regulated by tyrosine-kinase c-Abl in the apoptotic response to DNA damage [In Process Citation].Nature399: 814–817

    Article CAS PubMed  Google Scholar 

  59. Zhu J, Jiang J, Zhou W and Chen X . 1998 The potential tumor suppressor p73 differentially regulates cellular p53 target genes.Cancer Res.58: 5061–5065

    CAS PubMed  Google Scholar 

  60. Knudsen ES and Wang JY . 1996 Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites.J. Biol. Chem.271: 8313–8320

    Article CAS PubMed  Google Scholar 

  61. Welch PJ and Wang JY . 1995 Abrogation of retinoblastoma protein function by c-Abl through tyrosine kinase-dependent and -independent mechanisms.Mol. Cell Biol.15: 5542–5551

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Friedberg EC, Bardwell AJ, Bardwell Let al. 1995 Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymeraseII basel transcription.Philos. Trans. R. Soc. Lond. B. Biol. Sci.347: 63–68

    Article CAS PubMed  Google Scholar 

  63. Elledge SJ, Zhou Z, Allen JB and Navas TA . 1993 DNA damage and cell cycle regulation of ribonucleotide reductase.Bioessays15: 333–339

    Article CAS PubMed  Google Scholar 

  64. Huang M, Zhou Z and Elledge SJ . 1998 The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor.Cell94: 595–605

    Article CAS PubMed  Google Scholar 

  65. Katan Y, Agami R and Shaul Y . 1997 The transcriptional activation and repression domains of RFX1, a context-dependent regulator, can mutually neutralize their activities.Nucleic. Acids Res.25: 3621–3628

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Dorsch M and Goff SP . 1996 Increased sensitivity to apoptotic stimuli in c-abl-deficient progenitor B-cell lines.Proc. Natl. Acad. Sci. USA23: 13131–13136

    Article  Google Scholar 

  67. Yuan ZM, Huang Y, Ishiko T, Kharbanda S, Weichselbaum R and Kufe D . 1997 Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase.Proc. Natl. Acad. Sci. USA94: 1437–1440

    Article CAS PubMed PubMed Central  Google Scholar 

  68. Huang Y, Yuan ZM, Ishiko Tet al. 1997 Pro-apoptotic effect of the c-Abl tyrosine kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine.Oncogene15: 1947–1952

    Article CAS PubMed  Google Scholar 

  69. Gong JG, Costanzo A, Yang HQet al. 1999 The tyrosine-kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage.Nature399: 806–809

    Article CAS PubMed  Google Scholar 

  70. Dan S, Naito M, Seimiya H, Kizaki A, Mashima T and Tsuruo T . 1999 Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/SAPK activation during apoptosis of human monocytic leukemia U937 cells.Oncogene18: 1277–1283

    Article CAS PubMed  Google Scholar 

  71. Kaghad M, Bonnet H, Yang Aet al. 1997 Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers.Cell90: 809–819

    Article CAS PubMed  Google Scholar 

  72. Jost CA, Marin MC and Kaelin WJ . 1997 p73 is a human p53-related protein that can induce apoptosis.Nature389: 191–194

    Article CAS PubMed  Google Scholar 

  73. Levine AJ . 1997 p53, the cellular gatekeeper for growth and division.Cell88: 323–331

    Article CAS PubMed  Google Scholar 

  74. Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L and Debussche L . 1998 The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression.EMBO J.17: 4668–4679

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Schonthal A, Alberts AS, Frost JA and Feramisco JR . 1991 Differential regulation of jun family gene expression by the tumor promoter okadaic acid.New Biol.3: 977–986

    CAS PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Y Katan-Khaykovich for critical reading and helpful comments.

Author information

Authors and Affiliations

  1. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel

    Y Shaul

Authors
  1. Y Shaul

Corresponding author

Correspondence toY Shaul.

Additional information

Edited by R Knight

Rights and permissions

This article is cited by

Search

Advanced search

Quick links


[8]ページ先頭

©2009-2026 Movatter.jp