- Comment
- Published:
AI’s social sciences deficit
Nature Machine Intelligencevolume 1, pages330–331 (2019)Cite this article
2067Accesses
152Altmetric
To create less harmful technologies and ignite positive social change, AI engineers need to enlist ideas and expertise from a broad range of social science disciplines, including those embracing qualitative methods, say Mona Sloane and Emanuel Moss.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Prices may be subject to local taxes which are calculated during checkout
References
Eubanks, V.Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor (St Martin’s, 2018).
Noble, S. U.Algorithms of Oppression: How Search Engines Reinforce Racism (New York Univ. Press, 2018).
Buolamwini, J. & Gebru, T.Proc. Mach. Learn. Res.81, 77–91 (2018).
Wilson, B., Hoffman, J. & Morgenstern, J. Preprint athttps://arxiv.org/abs/1902.11097 (2019).
Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Preprinthttps://arxiv.org/abs/1606.06121 (2016).
Keyes, O. inProc. ACM on Human-Computer Interaction2, 88 (ACM, 2018).
Amodei, D. et al. Preprint athttps://arxiv.org/abs/1606.06565 (2016).
Greene, D., Hoffmann, A. L. & Stark, L. inProc. 52nd Hawaii International Conference on System Sciences 2122–2131 (HICSS, 2019).
Sloane, M. inProc. Weizenbaum Conference 2019 ‘Challenges of Digital Inequality - Digital Education, Digital Work, Digital Life’https://doi.org/10.34669/wi.cp/2.9 (2019).
Metcalf, J., Moss, E. & boyd, d.Soc. Res.86, 449–476 (2019).
Awad, E. et al.Nature563, 59–64 (2018).
Irving, G. & Askell, A.Distillhttps://doi.org/10.23915/distill.00014 (2019).
Katz, Y. Preprint athttps://doi.org/10.2139/ssrn.3078224 (2017).
Stark, L.Soc. Stud. Sci.48, 204–231 (2018).
boyd, d. & Crawford, K.Inform. Commun. Soc.15, 662–679 (2012).
Elish, M. C. & boyd, dCommun. Monogr.85, 57–80 (2017).
Benthall, S. & Haynes, B. D. inProc. ACM Fairness, Accountability, and Transparency Conference (FAT*) 289–298 (ACM, 2019).
Bowker, G. C. & Star, S. L.Sorting Things Out: Classification and Its Consequences (MIT Press, 2000).
Benjamin, R.Race After Technology: Abolitionist Tools for the New Jim Code (Polity Books, 2019).
Stark, L.XRDS Crossroads25, 50–55 (Spring, 2019).
Daniels, J., Nkonde, M. & Mir, D.Advancing Racial Literacy in Tech: Why Ethics, Diversity in Hiring and Implicit Bias Trainings Aren’t Enough (Data & Society’s Fellowship Program, 2019).
Wagner, C., Garcia, D., Jadidi, M. & Strohmaier, M. inThe International AAAI Conference on Web and Social Media 454–463 (AAAI, 2015).
Richardson, R., Schultz, J. & Crawford, K.NYU Law Rev.94, 192–233 (2019).
Metcalf, J. et al.Mediumhttps://medium.com/pervade-team/the-study-has-been-approved-by-the-irb-gayface-ai-research-hype-and-the-pervasive-data-ethics-ed76171b882c (2017).
Back, L.The Art of Listening (Berg, 2007).
Nature562, 7 (2018).
Howard, D. & Irani, L.in Proc. 2019 CHI Conference on Human Factors in Computing Systems 97 (ACM, 2019).
Author information
Authors and Affiliations
New York University, New York, NY, USA
Mona Sloane
The Graduate Center, CUNY, New York, NY, USA
Emanuel Moss
- Mona Sloane
You can also search for this author inPubMed Google Scholar
- Emanuel Moss
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMona Sloane.
Rights and permissions
About this article
Cite this article
Sloane, M., Moss, E. AI’s social sciences deficit.Nat Mach Intell1, 330–331 (2019). https://doi.org/10.1038/s42256-019-0084-6
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative