Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Machine Intelligence
  • Comment
  • Published:

AI’s social sciences deficit

Nature Machine Intelligencevolume 1pages330–331 (2019)Cite this article

Subjects

To create less harmful technologies and ignite positive social change, AI engineers need to enlist ideas and expertise from a broad range of social science disciplines, including those embracing qualitative methods, say Mona Sloane and Emanuel Moss.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

References

  1. Eubanks, V.Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor (St Martin’s, 2018).

  2. Noble, S. U.Algorithms of Oppression: How Search Engines Reinforce Racism (New York Univ. Press, 2018).

  3. Buolamwini, J. & Gebru, T.Proc. Mach. Learn. Res.81, 77–91 (2018).

    Google Scholar 

  4. Wilson, B., Hoffman, J. & Morgenstern, J. Preprint athttps://arxiv.org/abs/1902.11097 (2019).

  5. Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Preprinthttps://arxiv.org/abs/1606.06121 (2016).

  6. Keyes, O. inProc. ACM on Human-Computer Interaction2, 88 (ACM, 2018).

  7. Amodei, D. et al. Preprint athttps://arxiv.org/abs/1606.06565 (2016).

  8. Greene, D., Hoffmann, A. L. & Stark, L. inProc. 52nd Hawaii International Conference on System Sciences 2122–2131 (HICSS, 2019).

  9. Sloane, M. inProc. Weizenbaum Conference 2019 ‘Challenges of Digital Inequality - Digital Education, Digital Work, Digital Life’https://doi.org/10.34669/wi.cp/2.9 (2019).

  10. Metcalf, J., Moss, E. & boyd, d.Soc. Res.86, 449–476 (2019).

    Google Scholar 

  11. Awad, E. et al.Nature563, 59–64 (2018).

    Article  Google Scholar 

  12. Irving, G. & Askell, A.Distillhttps://doi.org/10.23915/distill.00014 (2019).

  13. Katz, Y. Preprint athttps://doi.org/10.2139/ssrn.3078224 (2017).

  14. Stark, L.Soc. Stud. Sci.48, 204–231 (2018).

    Article  Google Scholar 

  15. boyd, d. & Crawford, K.Inform. Commun. Soc.15, 662–679 (2012).

    Article  Google Scholar 

  16. Elish, M. C. & boyd, dCommun. Monogr.85, 57–80 (2017).

    Article  Google Scholar 

  17. Benthall, S. & Haynes, B. D. inProc. ACM Fairness, Accountability, and Transparency Conference (FAT*) 289–298 (ACM, 2019).

  18. Bowker, G. C. & Star, S. L.Sorting Things Out: Classification and Its Consequences (MIT Press, 2000).

  19. Benjamin, R.Race After Technology: Abolitionist Tools for the New Jim Code (Polity Books, 2019).

  20. Stark, L.XRDS Crossroads25, 50–55 (Spring, 2019).

  21. Daniels, J., Nkonde, M. & Mir, D.Advancing Racial Literacy in Tech: Why Ethics, Diversity in Hiring and Implicit Bias Trainings Aren’t Enough (Data & Society’s Fellowship Program, 2019).

  22. Wagner, C., Garcia, D., Jadidi, M. & Strohmaier, M. inThe International AAAI Conference on Web and Social Media 454–463 (AAAI, 2015).

  23. Richardson, R., Schultz, J. & Crawford, K.NYU Law Rev.94, 192–233 (2019).

    Google Scholar 

  24. Metcalf, J. et al.Mediumhttps://medium.com/pervade-team/the-study-has-been-approved-by-the-irb-gayface-ai-research-hype-and-the-pervasive-data-ethics-ed76171b882c (2017).

  25. Back, L.The Art of Listening (Berg, 2007).

  26. Nature562, 7 (2018).

  27. Howard, D. & Irani, L.in Proc. 2019 CHI Conference on Human Factors in Computing Systems 97 (ACM, 2019).

Download references

Author information

Authors and Affiliations

  1. New York University, New York, NY, USA

    Mona Sloane

  2. The Graduate Center, CUNY, New York, NY, USA

    Emanuel Moss

Authors
  1. Mona Sloane

    You can also search for this author inPubMed Google Scholar

  2. Emanuel Moss

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMona Sloane.

Rights and permissions

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing AI and Robotics

Sign up for theNature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing: AI and Robotics

[8]ページ先頭

©2009-2025 Movatter.jp