- Brief Communication
- Published:
Structural basis for CaVα2δ:gabapentin binding
Nature Structural & Molecular Biologyvolume 30, pages735–739 (2023)Cite this article
3705Accesses
23Altmetric
Abstract
Gabapentinoid drugs for pain and anxiety act on the CaVα2δ-1 and CaVα2δ-2 subunits of high-voltage-activated calcium channels (CaV1s and CaV2s). Here we present the cryo-EM structure of the gabapentin-bound brain and cardiac CaV1.2/CaVβ3/CaVα2δ-1 channel. The data reveal a binding pocket in the CaVα2δ-1 dCache1 domain that completely encapsulates gabapentin and define CaVα2δ isoform sequence variations that explain the gabapentin binding selectivity of CaVα2δ-1 and CaVα2δ-2.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Dooley, D. J., Taylor, C. P., Donevan, S. & Feltner, D. Ca2+ channel α2δ ligands: novel modulators of neurotransmission.Trends Pharmacol. Sci.28, 75–82 (2007).
Taylor, C. P., Angelotti, T. & Fauman, E. Pharmacology and mechanism of action of pregabalin: the calcium channel α2-δ (α2-δ) subunit as a target for antiepileptic drug discovery.Epilepsy Res.73, 137–150 (2007).
Field, M. J. et al. Identification of the α2-δ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin.Proc. Natl Acad. Sci. USA103, 17537–17542 (2006).
Domon, Y. et al. Binding characteristics and analgesic effects of Mirogabalin, a novel ligand for the α2δ subunit of voltage-gated calcium channels.J. Pharmacol. Exp. Ther.365, 573–582 (2018).
Kato, J., Inoue, T., Yokoyama, M. & Kuroha, M. A review of a new voltage-gated Ca2+ channel α2δ ligand, mirogabalin, for the treatment of peripheral neuropathic pain.Expert Opin. Pharmacother.22, 2311–2322 (2021).
Gee, N. S. et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel.J. Biol. Chem.271, 5768–5776 (1996).
Bauer, C. S. et al. The increased trafficking of the calcium channel subunit α2δ-1 to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin.J. Neurosci.29, 4076–4088 (2009).
Cassidy, J. S., Ferron, L., Kadurin, I., Pratt, W. S. & Dolphin, A. C. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α2δ-1 subunits.Proc. Natl Acad. Sci. USA111, 8979–8984 (2014).
Marais, E., Klugbauer, N. & Hofmann, F. Calcium channel α2δ subunits-structure and Gabapentin binding.Mol. Pharmacol.59, 1243–1248 (2001).
Qin, N., Yagel, S., Momplaisir, M. L., Codd, E. E. & D’Andrea, M. R. Molecular cloning and characterization of the human voltage-gated calcium channel α2δ-4 subunit.Mol. Pharmacol.62, 485–496 (2002).
Meyer, J. O. & Dolphin, A. C. Rab11-dependent recycling of calcium channels is mediated by auxiliary subunit α2δ-1 but not α2δ-3.Sci. Rep.11, 10256 (2021).
Tran-Van-Minh, A. & Dolphin, A. C. The α2δ ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit α2δ-2.J. Neurosci.30, 12856–12867 (2010).
Chen, Z. et al. EMC holdase:CaV1.2/CaVβ3 complex and CaV1.2 channel structures reveal CaV assembly and drug binding mechanisms. Preprint atbioRxivhttps://doi.org/10.1101/2022.10.03.510667 (2022).
Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. The physiology, pathology and pharmacology of voltage-gated calcium channels and their future therapeutic potential.Pharm. Rev.67, 821–870 (2015).
Nanou, E. & Catterall, W. A. Calcium channels, synaptic plasticity and neuropsychiatric disease.Neuron98, 466–481 (2018).
Buraei, Z. & Yang, J. The β subunit of voltage-gated Ca2+ channels.Physiol. Rev.90, 1461–1506 (2010).
Dolphin, A. C. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology.J. Physiol.594, 5369–5390 (2016).
Brown, J. P., Dissanayake, V. U., Briggs, A. R., Milic, M. R. & Gee, N. S. Isolation of the [3H]gabapentin-binding protein/α2δ Ca2+ channel subunit from porcine brain: development of a radioligand binding assay for α2δ subunits using [3H]leucine.Anal. Biochem.255, 236–243 (1998).
Dolphin, A. C. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond.Nat. Rev. Neurosci.13, 542–555 (2012).
David, D. J., Donovan, C. M., Meder, W. P. & Whetzel, S. Z. Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K+-evoked [3H]-norepinephrine release from rat neocortical slices.Synapse45, 171–190 (2002).
Anantharaman, V. & Aravind, L. Cache—a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors.Trends Biochem. Sci.25, 535–537 (2000).
Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum.Science323, 1693–1697 (2009).
Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy.Nat. Cell Biol.14, 93–105 (2011).
Hegde, R. S. The function, structure, and origins of the ER membrane protein complex.Annu. Rev. Biochem.91, 651–678 (2022).
Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution.Nature537, 191–196 (2016).
Yao, X., Gao, S. & Yan, N. Structural basis for pore blockade of human voltage-gated calcium channel Cav1.3 by motion sickness drug cinnarizine.Cell Res.32, 946–948 (2022).
Gao, S., Yao, X. & Yan, N. Structure of human Cav2.2 channel blocked by the painkiller ziconotide.Nature596, 143–147 (2021).
Gumerov, V. M. et al. Amino acid sensor conserved from bacteria to humans.Proc. Natl Acad. Sci. USA119, e2110415119 (2022).
Canti, C. et al. The metal-ion-dependent adhesion site in the von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels.Proc. Natl Acad. Sci. USA102, 11230–11235 (2005).
Wang, M., Offord, J., Oxender, D. L. & Su, T. Z. Structural requirement of the calcium-channel subunit α2δ for gabapentin binding.Biochem. J.342, 313–320 (1999).
Oyama, M., Watanabe, S., Iwai, T. & Tanabe, M. Mirogabalin activates the descending noradrenergic system by binding to the α2δ-1 subunit of voltage-gated Ca2+ channels to generate analgesic effects.J. Pharm. Sci.146, 33–39 (2021).
Lotarski, S. et al. Anticonvulsant activity of pregabalin in the maximal electroshock-induced seizure assay in α2δ1 (R217A) and α2δ2 (R279A) mouse mutants.Epilepsy Res.108, 833–842 (2014).
Lotarski, S. M. et al. Anxiolytic-like activity of pregabalin in the Vogel conflict test in α2δ-1 (R217A) and α2δ-2 (R279A) mouse mutants.J. Pharmacol. Exp. Ther.338, 615–621 (2011).
Gavira, J. A. et al. How bacterial chemoreceptors evolve novel ligand specificities.mBiohttps://doi.org/10.1128/mBio.03066-19 (2020).
Page, K. M., Gumerov, V. M., Dahimene, S., Zhulin, I. B. & Dolphin, A. C. The importance of cache domains in α2δ proteins and the basis for their gabapentinoid selectivity.Channels(Austin)17, 2167563 (2023).
Dahimene, S. et al. The α2δ-like protein Cachd1 increases N-type calcium currents and cell surface expression and competes with α2δ-1.Cell Rep.25, 1610–1621 (2018).
Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions.Protein Eng.8, 127–134 (1995).
Schmidt, T. G. & Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins.Nat. Protoc.2, 1528–1535 (2007).
Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.Nature504, 107–112 (2013).
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.Nat. Protoc.9, 2574–2585 (2014).
Lee, H., Lolicato, M., Arrigoni, C. & Minor, D. L. Jr Production of K2P2.1 (TREK-1) for structural studies.Methods Enzymol.653, 151–188 (2021).
Shaya, D. et al. Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins.Proc. Natl Acad. Sci. USA108, 12313–12318 (2011).
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements.J. Struct. Biol.152, 36–51 (2005).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination.Nat. Methods14, 290–296 (2017).
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3.eLife7, e42166 (2018).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.Acta Crystallogr. D Struct. Biol.75, 861–877 (2019).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.Acta Crystallogr. D66, 486–501 (2010).
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation.Acta Crystallogr. D65, 1074–1080 (2009).
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation.Protein Sci.27, 293–315 (2018).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators and developers.Protein Sci.30, 70–82 (2021).
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.51, 2778–2786 (2011).
Acknowledgements
We thank D. Bulkley for technical help and K. Brejc for comments on the manuscript. This work was supported by grant no. NIH R01 HL080050 to D.L.M.
Author information
These authors contributed equally: Zhou Chen, Abhisek Mondal.
Authors and Affiliations
Cardiovascular Research Institute, University of California, San Francisco, CA, USA
Zhou Chen, Abhisek Mondal & Daniel L. Minor Jr
Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
Daniel L. Minor Jr
California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
Daniel L. Minor Jr
Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA
Daniel L. Minor Jr
Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Daniel L. Minor Jr
- Zhou Chen
You can also search for this author inPubMed Google Scholar
- Abhisek Mondal
You can also search for this author inPubMed Google Scholar
- Daniel L. Minor Jr
You can also search for this author inPubMed Google Scholar
Contributions
Z.C., A.M. and D.L.M. conceived the study and designed the experiments. Z.C. expressed and characterized the samples. Z.C. and A.M. collected and analyzed the cryo-EM data. Z.C. and A.M. built and refined the atomic models. D.L.M. analyzed data and provided guidance and support. Z.C., A.M. and D.L.M. wrote the paper.
Corresponding author
Correspondence toDaniel L. Minor Jr.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Structural & Molecular Biology thanks Rachelle Gaudet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with theNature Structural & Molecular Biology team.Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP Cryo-EM analysis.
a, Exemplar CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP electron micrograph (~105,000x magnification) and 2D class averages. N = 3.b, Workflow for electron microscopy data processing for CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP sample. Initial cryoSPARC-3.2Ab initio reconstruction identified a population of particles containing the CaV1.2(ΔC)/CaVβ3/CaVα2δ-1 and EMC:CaV1.2(ΔC)/CaVβ3 complexes, similar to prior studies13. Red arrows indicate the two classes that were re-extracted, subjected to multiple rounds of 3D heterogeneous classification, and exported from cryoSPARC-3.2 for further 3D refinement in RELION-3.1. Particle subtraction was performed for both the refined maps in Relion-3.1 followed by 3D classification with single class and 3D refinement to get the final consensus maps. Multibody refinement was performed to enhance features of CaVα2δ-1, which was used for the CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP composite map. The composite map was used for model building and refinement.
Extended Data Fig. 2 CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP map and model quality.
a, Particle distribution plot and gold-standard Fourier shell correlation (FSC) curve for the overall CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP complex map and the extracellular map containing CaVα2δ-1:GBP.b, local resolution for the overall CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP map and the extracellular map containing CaVα2δ-1:GBP.c, local B-factor for the overall CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP model and the CaVα2δ-1:GBP subunit.d, Particle distribution plot and gold-standard Fourier shell correlation (FSC) curve for the EMC:CaV1.2(ΔC)/CaVβ3 complex from the CaV1.2(ΔC)/CaV β3/CaVα2δ-1:GBP sample.e, EMC:CaV1.2(ΔC)/CaVβ3 complex local resolution. Select elements of each complex are labeled.
Extended Data Fig. 3 CaV1.2(ΔC)/CaVβ3/CaVα2δ-1:GBP Cryo-EM maps.
a, CaV1.2(ΔC)/CaVβ3/CaVα2δ-1 side view (left) and extracellular (right) view. Subunits are colored: CaV1.2 (slate) and CaVβ3 (violet). CaVα2δ domains are colored as: dCache1 (aquamarine), dCache2 (orange), VWA:MIDAS (green), and CaVδ (yellow). Grey bars denote the membrane.b-e, CaVα2δ-1 subdomain representative maps forb, VWA:MIDAS domain,c, dCache1,d, dCache2:CaVδ. Part of CaVδ completes the second β-barrel subdomain of dCache2,e, CaVδ.f, GBP-binding site. Maps are rendered at 9–10σ. Domain colors are as ina.
Extended Data Fig. 4 CaVα2δ-1 GBP-binding site analysis and comparisons.
a, Superposition of the CaVα2δ-1:GBP (aquamarine) and CaVα2δ-1:L-Leu (orange) (PDB:8EOG)13 binding sites. GBP is red. L-Leu is purple.b andc, LigPLOT37 diagrams of theb, CaVα2δ-1:GBP (aquamarine) andc, CaVα2δ-1:L-Leu (orange) (PDB:8EOG)13 binding sites showing hydrogen bonds and ionic interactions (dashed lines) and van der Waals contacts ≤ 5 Å. GBP is red. L-Leu is purple.d, Superposition of the first dCache1 repeats from CaVα2δ-1:GBP (aquamarine) and the PctA:L-Ile complex (magenta) (PDB:5T65)34. GBP is red.e,f, Closeup view of superposition from ‘d’ showing ligand contact residues. CaVα2δ-1 is shown as a cartoon. GBP is red. Corresponding sidechains of PctA are magenta. L-Ile form the PctA complex is pink. PctA residues are labeled in italics.
Supplementary information
Supplementary Video 1
CaVα2δ-1 ligand binding site cryo-EM density comparison. Video shows superposition of maps for the CaVα2δ-1:GBP (13.9σ; clear) and CaVα2δ-1:L-Leu (7.5σ; orange) (EMD-28375)13, GBP (red) and L-Leu (purple) are shown as sticks.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, Z., Mondal, A. & Minor, D.L. Structural basis for CaVα2δ:gabapentin binding.Nat Struct Mol Biol30, 735–739 (2023). https://doi.org/10.1038/s41594-023-00951-7
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
The Voltage-Gated Calcium Channel α2δ Subunit in Neuropathic Pain
- Sheng-Jie Guo
- Yu-Qin Shi
- Yi-Li Zheng
Molecular Neurobiology (2025)
Determinants of interactions of a novel next-generation gabapentinoid NVA1309 and mirogabalin with the Cavα2δ-1 subunit
- Ivana A. Souza
- Maria A. Gandini
- Gerald W. Zamponi
Molecular Brain (2024)
An L-type calcium channel blocker nimodipine exerts anti-fibrotic effects by attenuating TGF-β1 induced calcium response in an in vitro model of thyroid eye disease
- Qian Chen
- Yuan Pan
- Dan Liang
Eye and Vision (2024)
Structural bases of inhibitory mechanism of CaV1.2 channel inhibitors
- Yiqing Wei
- Zhuoya Yu
- Yan Zhao
Nature Communications (2024)
Structural biology and molecular pharmacology of voltage-gated ion channels
- Jian Huang
- Xiaojing Pan
- Nieng Yan
Nature Reviews Molecular Cell Biology (2024)