Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

The genomic natural history of the aurochs

Naturevolume 635pages136–141 (2024)Cite this article

Subjects

Abstract

Now extinct, the aurochs (Bos primigenius) was a keystone species in prehistoric Eurasian and North African ecosystems, and the progenitor of cattle (Bos taurus), domesticates that have provided people with food and labour for millennia1. Here we analysed 38 ancient genomes and found 4 distinct population ancestries in the aurochs—European, Southwest Asian, North Asian and South Asian—each of which has dynamic trajectories that have responded to changes in climate and human influence. Similarly toHomo heidelbergensis, aurochsen first entered Europe around 650 thousand years ago2, but early populations left only trace ancestry, with both North Asian and EuropeanB. primigenius genomes coalescing during the most recent glaciation. North Asian and European populations then appear separated until mixing after the climate amelioration of the early Holocene. European aurochsen endured the more severe bottleneck during the Last Glacial Maximum, retreating to southern refugia before recolonizing from Iberia. Domestication involved the capture of a small number of individuals from the Southwest Asian aurochs population, followed by early and pervasive male-mediated admixture involving each ancestral strain of aurochs after domestic stocks dispersed beyond their cradle of origin.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal, geographical and genetic location of 72 ancientBos genomes.
Fig. 2: Plots of ancestral components in aurochs and domestic cattle genomes.
Fig. 3: Phylogenies of whole genomes and mtDNA.
Fig. 4: Estimation of the past demography of the aurochs.

Similar content being viewed by others

Data availability

Sequence reads and alignment files of new data are available through the ENA under accession numberPRJEB75467. Previously published ancient data used in this study are available under accession numbersPRJEB31621,PRJNA379859,PRJNA803479 andPRJEB74338, and are detailed in Supplementary Table2. Sources for previously published modern genomic data analysed here are listed in Supplementary Table3. The ARS-UCD1.2 reference genome is available under NCBI assembly accessionGCF_002263795.1. TheB. taurus mitochondrial reference genome is available under NCBI accession numberV00654.1.

Code availability

This study makes use of publicly available software, referenced throughout the main text and supplementary material.

References

  1. van Vuure, C. & van Vuure, T.Retracing the Aurochs: History, Morphology and Ecology of an Extinct Wild Ox (Pensoft Publishers, 2005).

  2. de Carvalho, C. N. et al. Aurochs roamed along the SW coast of Andalusia (Spain) during Late Pleistocene.Sci. Rep.12, 9911 (2022).

    Article ADS PubMed PubMed Central  Google Scholar 

  3. Wang, X., Flynn, L. J. & Fortelius, M.Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (Columbia Univ. Press, 2013).

  4. Schulz, E. & KaiSer, T. M. Feeding strategy of the UrusBos primigenius BOJANUS, 1827 from the Holocene of Denmark.Cour. Forsch. Inst. Senckenberg259, 155–164 (2007).

    Google Scholar 

  5. Bro-Jørgensen, M. H. et al. Ancient DNA analysis of Scandinavian medieval drinking horns and the horn of the last aurochs bull.J. Archaeol. Sci.99, 47–54 (2018).

    Article  Google Scholar 

  6. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth.Proc. Natl Acad. Sci. USA115, 6506–6511 (2018).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  7. Bailey, J. F. et al. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species.Proc. Biol. Sci.263, 1467–1473 (1996).

    Article CAS PubMed  Google Scholar 

  8. Troy, C. S. et al. Genetic evidence for Near-Eastern origins of European cattle.Nature410, 1088–1091 (2001).

    Article ADS CAS PubMed  Google Scholar 

  9. Park, S. D. E. et al. Genome sequencing of the extinct Eurasian wild aurochs,Bos primigenius, illuminates the phylogeography and evolution of cattle.Genome Biol.16, 234 (2015).

    Article PubMed PubMed Central  Google Scholar 

  10. Verdugo, M. P. et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent.Science365, 173–176 (2019).

    Article ADS CAS PubMed  Google Scholar 

  11. Ginja, C. et al. Iron age genomic data from Althiburos – Tunisia renew the debate on the origins of African taurine cattle.iScience26, 107196 (2023).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  12. Svendsen, J. I. et al. Late Quaternary ice sheet history of northern Eurasia.Quat. Sci. Rev.23, 1229–1271 (2004).

    Article ADS  Google Scholar 

  13. Wright, E. inCattle and People: Interdisciplinary Approaches to an Ancient Relationship (eds Wright, E. & Ginja, C.) 3–27 (Lockwood Press, 2022).

  14. Hewitt, G. Post-glacial re-colonization of European biota.Biol. J. Linn. Soc. Lond.68, 87–112 (1999).

    Article  Google Scholar 

  15. Linseele, V. Size and size change of the African aurochs during the Pleistocene and Holocene.J. Afr. Archaeol.2, 165–185 (2004).

    Article  Google Scholar 

  16. Lefèvre, D., Raynal, J.-P., Vernet, G., Kieffer, G. & Piperno, M. Tephro-stratigraphy and the age of ancient Southern Italian Acheulean settlements: the sites of Loreto and Notarchirico (Venosa, Basilicata, Italy).Quat. Int.223–224, 360–368 (2010).

    Article  Google Scholar 

  17. Pereira, A. et al. The earliest securely dated hominin fossil in Italy and evidence of Acheulian occupation during glacial MIS 16 at Notarchirico (Venosa, Basilicata, Italy).J. Quat. Sci.30, 639–650 (2015).

    Article  Google Scholar 

  18. Cassoli, P. F., Di Stefano, G. & A., T. inNotarchirico:Un Sito del Pleistocene Medio Iniziale nel Bacino (ed. di Piperno, M.) 361–438 (Osanna, 1999).

  19. Lambeck, K., Esat, T. M. & Potter, E.-K. Links between climate and sea levels for the past three million years.Nature419, 199–206 (2002).

    Article ADS CAS PubMed  Google Scholar 

  20. Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary.Nat. Commun.10, 3713 (2019).

    Article ADS PubMed PubMed Central  Google Scholar 

  21. Otvos, E. G. The Last Interglacial Stage: definitions and marine highstand, North America and Eurasia.Quat. Int.383, 158–173 (2015).

    Article  Google Scholar 

  22. Leonardi, M., Boschin, F., Boscato, P. & Manica, A. Following the niche: the differential impact of the last glacial maximum on four European ungulates.Commun. Biol.5, 1038 (2022).

    Article PubMed PubMed Central  Google Scholar 

  23. Helmens, K. F. The Last Interglacial–Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe.Quat. Sci. Rev.86, 115–143 (2014).

    Article ADS  Google Scholar 

  24. Kosintsev, P. A. & Bachura, O. P. Late Pleistocene and Holocene mammal fauna of the Southern Urals.Quat. Int.284, 161–170 (2013).

    Article  Google Scholar 

  25. Robin, M. et al. Ancient mitochondrial and modern whole genomes unravel massive genetic diversity loss during near extinction of Alpine ibex.Mol. Ecol.31, 3548–3565 (2022).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Miller, W. et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change.Proc. Natl Acad. Sci. USA109, E2382–E2390 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Lord, E. et al. Population dynamics and demographic history of Eurasian collared lemmings.BMC Ecol. Evol.22, 126 (2022).

    Article PubMed PubMed Central  Google Scholar 

  28. Murray, C., Huerta-Sanchez, E., Casey, F. & Bradley, D. G. Cattle demographic history modelled from autosomal sequence variation.Phil. Trans. R. Soc. B365, 2531–2539 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Sinding, M.-H. S. et al. Kouprey (Bos sauveli) genomes unveil polytomic origin of wild Asian Bos.iScience24, 103226 (2021).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  30. Bergman, J. et al. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated withHomo sapiens expansion rather than climate change.Nat. Commun.14, 7679 (2023).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  31. Erven, J. A. M. et al. A high-coverage Mesolithic aurochs genome and effective leveraging of ancient cattle genomes using whole genome imputation.Mol. Biol. Evol.41, msae076 (2024).

    Article PubMed PubMed Central  Google Scholar 

  32. MacLeod, I. M., Larkin, D. M., Lewin, H. A., Hayes, B. J. & Goddard, M. E. Inferring demography from runs of homozygosity in whole-genome sequence, with correction for sequence errors.Mol. Biol. Evol.30, 2209–2223 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Clutton-Brock, T.Mammal Societies (Wiley, 2016).

  34. Cubric-Curik, V. et al. Large‐scale mitogenome sequencing reveals consecutive expansions of domestic taurine cattle and supports sporadic aurochs introgression.Evol. Appl.15, 663–678 (2022).

    Article CAS PubMed  Google Scholar 

  35. Makarewicz, C. & Tuross, N. Finding fodder and tracking transhumance: isotopic detection of goat domestication processes in the Near East.Curr. Anthropol.53, 495–505 (2012).

    Article  Google Scholar 

  36. Bollongino, R. et al. Modern taurine cattle descended from small number of near-eastern founders.Mol. Biol. Evol.29, 2101–2104 (2012).

    Article CAS PubMed  Google Scholar 

  37. Scheu, A. et al. The genetic prehistory of domesticated cattle from their origin to the spread across Europe.BMC Genet.16, 54 (2015).

    Article PubMed PubMed Central  Google Scholar 

  38. Upadhyay, M. R. et al. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle.Heredity118, 169–176 (2017).

    Article CAS PubMed  Google Scholar 

  39. Marshall, F. B., Dobney, K., Denham, T. & Capriles, J. M. Evaluating the roles of directed breeding and gene flow in animal domestication.Proc. Natl Acad. Sci. USA111, 6153–6158 (2014).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  40. Götherström, A. et al. Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe.Proc. Biol. Sci.272, 2345–2350 (2005).

    PubMed PubMed Central  Google Scholar 

  41. Achilli, A. et al. The multifaceted origin of taurine cattle reflected by the mitochondrial genome.PLoS One4, e5753 (2009).

    Article ADS PubMed PubMed Central  Google Scholar 

  42. Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R.Improved DNA extraction from ancient bones using silica-based spin columns.Am. J. Phys. Anthropol.105, 539–543 (1998).

    Article CAS PubMed  Google Scholar 

  43. Mattiangeli, V., Cassidy, L. M., Daly, K. G., Mullin, V. E. & Verdugo, M. Multi-step ancient DNA extraction protocol for bone and teeth. Protocols.iohttps://doi.org/10.17504/protocols.io.6qpvr45b2gmk/v1 (2023).

  44. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.Proc. Natl Acad. Sci. USA110, 15758–15763 (2013).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  45. Boessenkool, S. et al. Combining bleach and mild predigestion improves ancient DNA recovery from bones.Mol. Ecol. Resour.17, 742–751 (2017).

    Article CAS PubMed  Google Scholar 

  46. Mattiangeli, V., Cassidy, L. M., Daly, K. G. & Mullin, V. E. Bleach extraction protocol: damaged or degraded DNA recovery from bone or tooth powder. Protocols.iohttps://doi.org/10.17504/protocols.io.8epv5j88nl1b/v1 (2023).

  47. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Cold Spring Harb. Protoc.2010, pdb.prot5448 (2010).

    Article PubMed  Google Scholar 

  48. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory.Nat. Commun.5, 5257 (2014).

    Article ADS CAS PubMed  Google Scholar 

  49. Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the Early Neolithic.Nat. Commun.8, 16082 (2017).

    Article ADS PubMed PubMed Central  Google Scholar 

  50. Carøe, C. et al. Single‐tube library preparation for degraded DNA.Methods Ecol. Evol.9, 410–419 (2018).

    Article  Google Scholar 

  51. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.EMBnet.journal17, 10–12 (2011).

    Article  Google Scholar 

  52. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging.BMC Res. Notes9, 88 (2016).

    Article PubMed PubMed Central  Google Scholar 

  53. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009).

    Article PubMed PubMed Central  Google Scholar 

  55. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters.Bioinformatics29, 1682–1684 (2013).

    Article PubMed PubMed Central  Google Scholar 

  56. Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal.Proc. Natl Acad. Sci. USA111, 2229–2234 (2014).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  57. Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data.Bioinformatics32, 292–294 (2016).

    Article CAS PubMed  Google Scholar 

  58. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.Bioinformatics30, 2114–2120 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint atarXivhttps://doi.org/10.48550/arXiv.1303.3997 (2013).

  60. Danecek, P. et al. Twelve years of SAMtools and BCFtools.Gigascience10, giab008 (2021).

    Article PubMed PubMed Central  Google Scholar 

  61. Danecek, P. et al. The variant call format and VCFtools.Bioinformatics27, 2156–2158 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data.BMC Bioinformatics15, 356 (2014).

    Article PubMed PubMed Central  Google Scholar 

  63. Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach.Nucleic Acids Res.41, e129 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Robinson, J. T. et al. Integrative genomics viewer.Nat. Biotechnol.29, 24–26 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  65. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis.PLoS Comput. Biol.15, e1006650 (2019).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Res.32, 1792–1797 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  67. Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview Version 5: a multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation.Methods Mol. Biol.2231, 241–260 (2021).

    Article CAS PubMed  Google Scholar 

  68. Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison.BMC Evol. Biol.17, 42 (2017).

    Article PubMed PubMed Central  Google Scholar 

  69. Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences.Mol. Biol. Evol.22, 1185–1192 (2005).

    Article CAS PubMed  Google Scholar 

  70. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Syst. Biol.67, 901–904 (2018).

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Chang, T.-C., Yang, Y., Retzel, E. F. & Liu, W.-S. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development.Proc. Natl Acad. Sci. USA110, 12373–12378 (2013).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  72. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Syst. Biol.59, 307–321 (2010).

    Article CAS PubMed  Google Scholar 

  73. Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data.Am. J. Hum. Genet.108, 1880–1890 (2021).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels.Am. J. Hum. Genet.103, 338–348 (2018).

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels.Nat. Genet.53, 120–126 (2021).

    Article CAS PubMed  Google Scholar 

  76. Schiffels, S. & Wang, K. MSMC and MSMC2: the Multiple Sequentially Markovian Coalescent.Methods Mol. Biol.2090, 147–166 (2020).

    Article PubMed  Google Scholar 

  77. Chen, N. et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia.Nat. Commun.9, 2337 (2018).

    Article ADS PubMed PubMed Central  Google Scholar 

  78. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  79. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.Bioinformatics35, 526–528 (2019).

    Article CAS PubMed  Google Scholar 

  80. Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data.Genetics210, 719–731 (2018).

    Article PubMed PubMed Central  Google Scholar 

  81. Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data.G38, 551–566 (2018).

    Article PubMed  Google Scholar 

  82. Maier, R. et al. On the limits of fitting complex models of population history to f-statistics.eLife12, e85492 (2023).

    Article CAS PubMed PubMed Central  Google Scholar 

  83. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data.Genetics195, 693–702 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  84. Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.Mol. Ecol. Resour.15, 1179–1191 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Mol. Ecol.14, 2611–2620 (2005).

    Article CAS PubMed  Google Scholar 

  86. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data.PLoS Genet.8, e1002967 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  87. Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture.Genetics217, iyaa045 (2021).

    Article PubMed PubMed Central  Google Scholar 

  88. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe.Nature522, 207–211 (2015).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  89. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records.Paleoceanogr. Paleoclimatol.20, PA1003 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the European Research Council under the European Union’s Horizon 2020 research and innovation program, grant agreements 885729-AncestralWeave and 295729-CodeX. M.-H.S.S. is supported by the Carlsberg Foundation (Reintegration Fellowship, CF20-0355) and the Independent Research Fund Denmark (International Postdoc, 8020-00005B), which also contributed to the sequencing costs and carbon dating costs of this project; E.R. is supported by the Jan Löfqvist Endowment and Axel and Margaret Ax:son Johnson Foundation for Public Benefit and contributed to the sequencing and carbon dating costs of this project; K.G.D. is supported by Science Foundation Ireland (grant number 21/PATH-S/9515/); V.E.M. is supported by a Government of Ireland Postdoctoral Fellowship (GOIPD/2020/605); A.G.-d. and A.V.-G. are supported by Xunta de Galicia (CN 2021/17); M. Sablin is supported by state assignment no. 122031100282-2; A.A.T. is supported by the Russian Science Foundation (‘The World of Ancient Nomads of Inner Asia: Interdisciplinary Studies of Material Culture, Sculptures and Economy’, project no. 22-18-00470); and C.A.M. is supported by the European Council for Research for a Horizon 2020 grant (ASIAPAST, action no. 772957). We thank TrinSeq for sequencing support; L. Cassidy and L. Wright for discussions; R. Verdugo for contributions to figure design; the Margulan Institute of Archaeology Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan for storing, archiving and providing the material from the Roschinskoe site; the Museum of the Institute of Plant and Animal Ecology (Ural Branch of the Russian Academy of Sciences, Ekaterinburg) for providing specimens for sampling; A. Zeeb-Lanz and R. Arbogast for permitting the sampling of bones from Herxheim; R. W. Schmitz for permitting the sampling of bones from Bedburg-Königshoven; and H. Hartnagel for assistance in sampling the Rhine specimens.

Author information

Author notes
  1. Deceased: Viktor Zeibert

Authors and Affiliations

  1. Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland

    Conor Rossi, Victoria E. Mullin, Amelie Scheu, Jolijn A. M. Erven, Marta Pereira Verdugo, Kevin G. Daly, Valeria Mattiangeli, Matthew D. Teasdale, Deborah Diquelou & Daniel G. Bradley

  2. Department of Biology, University of Copenhagen, Copenhagen, Denmark

    Mikkel-Holger S. Sinding

  3. Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany

    Amelie Scheu & Joachim Burger

  4. Groningen Institute of Archaeology, University of Groningen, Groningen, The Netherlands

    Jolijn A. M. Erven

  5. School of Agriculture and Food Science, University College Dublin, Dublin, Ireland

    Kevin G. Daly

  6. Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

    Marta Maria Ciucani, Pernille Bangsgaard, Matthew Collins & M. Thomas P. Gilbert

  7. Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

    Matthew D. Teasdale

  8. Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK

    Aurélie Manin, Ashleigh F. Haruda, Kristina Tabbada & Greger Larson

  9. McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK

    Matthew Collins

  10. Independent researcher, Langcliffe, UK

    Tom C. Lord

  11. Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan

    Viktor Zeibert

  12. Sezione di Geologia e Paleontologia, Museo Civico di Storia Naturale di Verona, Verona, Italy

    Roberto Zorzin

  13. Vendsyssel Historical Museum, Hjørring, Denmark

    Michael Vinter

  14. Department of Natural Sciences, National Museums Scotland, Edinburgh, UK

    Zena Timmons & Andrew C. Kitchener

  15. School of Geosciences, University of Edinburgh, Edinburgh, UK

    Andrew C. Kitchener

  16. LEIZA, Archaeological Research Centre and Museum for Human Behavioural Evolution, Schloss Monrepos, Neuwied, Germany

    Martin Street

  17. Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany

    Laurent A. F. Frantz

  18. School of Biological and Chemical Sciences, Queen Mary University of London, London, UK

    Laurent A. F. Frantz

  19. Institute for Prehistory and Protohistory, University of Cologne, Cologne, Germany

    Birgit Gehlen

  20. Bioarchaeology Service, Museo delle Civiltà, Piazza Guglielmo Marconi, Rome, Italy

    Francesca Alhaique & Antonio Tagliacozzo

  21. Sezione di Geologia e Paleontologia, Museo della Natura e dell’ Uomo, Padova, Italy

    Mariagabriella Fornasiero

  22. Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy

    Luca Pandolfi

  23. Department of Paleontology and Mineralogy, National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria

    Nadezhda Karastoyanova

  24. National Museum of Denmark, Copenhagen, Denmark

    Lasse Sørensen

  25. Department of Recreational Geography, Service, Tourism and Hospitality, Institute of Geography, Altai State University, Barnaul, Russian Federation

    Kirill Kiryushin

  26. The Biological Museum, Lund University, Arkivcentrum Syd, Lund, Sweden

    Jonas Ekström & Maria Mostadius

  27. Instituto Universitario de Xeoloxía, Universidade da Coruña (UDC), A Coruña, Spain

    Aurora Grandal-d’Anglade & Amalia Vidal-Gorosquieta

  28. German Archaeological Institute, Central Department, Berlin, Germany

    Norbert Benecke

  29. Lauresham Laboratory for Experimental Archaeology, UNESCO-Welterbestätte Kloster Lorsch, Lorsch, Germany

    Claus Kropp

  30. Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russian Federation

    Sergei P. Grushin & Alexey A. Tishkin

  31. Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan

    Ilja Merts & Viktor Merts

  32. Department of Archaeology and History, University of Exeter, Exeter, UK

    Alan K. Outram

  33. Department of Archaeology and Ancient History, Lund University, Lund, Sweden

    Erika Rosengren

  34. Centre for Palaeogenetics, Stockholm, Sweden

    Erika Rosengren

  35. Lund University Historical Museum, Lund, Sweden

    Erika Rosengren

  36. Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation

    Pavel Kosintsev

  37. Department of History, Institute of Humanities, Ural Federal University, Ekaterinburg, Russian Federation

    Pavel Kosintsev

  38. Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russian Federation

    Mikhail Sablin

  39. Archaeology Stable Isotope Laboratory, Institute of Pre- and Protohistoric Archaeology, University of Kiel, Kiel, Germany

    Cheryl A. Makarewicz

  40. University of Haifa, Haifa, Israel

    Cheryl A. Makarewicz

Authors
  1. Conor Rossi

    You can also search for this author inPubMed Google Scholar

  2. Mikkel-Holger S. Sinding

    You can also search for this author inPubMed Google Scholar

  3. Victoria E. Mullin

    You can also search for this author inPubMed Google Scholar

  4. Amelie Scheu

    You can also search for this author inPubMed Google Scholar

  5. Jolijn A. M. Erven

    You can also search for this author inPubMed Google Scholar

  6. Marta Pereira Verdugo

    You can also search for this author inPubMed Google Scholar

  7. Kevin G. Daly

    You can also search for this author inPubMed Google Scholar

  8. Marta Maria Ciucani

    You can also search for this author inPubMed Google Scholar

  9. Valeria Mattiangeli

    You can also search for this author inPubMed Google Scholar

  10. Matthew D. Teasdale

    You can also search for this author inPubMed Google Scholar

  11. Deborah Diquelou

    You can also search for this author inPubMed Google Scholar

  12. Aurélie Manin

    You can also search for this author inPubMed Google Scholar

  13. Pernille Bangsgaard

    You can also search for this author inPubMed Google Scholar

  14. Matthew Collins

    You can also search for this author inPubMed Google Scholar

  15. Tom C. Lord

    You can also search for this author inPubMed Google Scholar

  16. Viktor Zeibert

    You can also search for this author inPubMed Google Scholar

  17. Roberto Zorzin

    You can also search for this author inPubMed Google Scholar

  18. Michael Vinter

    You can also search for this author inPubMed Google Scholar

  19. Zena Timmons

    You can also search for this author inPubMed Google Scholar

  20. Andrew C. Kitchener

    You can also search for this author inPubMed Google Scholar

  21. Martin Street

    You can also search for this author inPubMed Google Scholar

  22. Ashleigh F. Haruda

    You can also search for this author inPubMed Google Scholar

  23. Kristina Tabbada

    You can also search for this author inPubMed Google Scholar

  24. Greger Larson

    You can also search for this author inPubMed Google Scholar

  25. Laurent A. F. Frantz

    You can also search for this author inPubMed Google Scholar

  26. Birgit Gehlen

    You can also search for this author inPubMed Google Scholar

  27. Francesca Alhaique

    You can also search for this author inPubMed Google Scholar

  28. Antonio Tagliacozzo

    You can also search for this author inPubMed Google Scholar

  29. Mariagabriella Fornasiero

    You can also search for this author inPubMed Google Scholar

  30. Luca Pandolfi

    You can also search for this author inPubMed Google Scholar

  31. Nadezhda Karastoyanova

    You can also search for this author inPubMed Google Scholar

  32. Lasse Sørensen

    You can also search for this author inPubMed Google Scholar

  33. Kirill Kiryushin

    You can also search for this author inPubMed Google Scholar

  34. Jonas Ekström

    You can also search for this author inPubMed Google Scholar

  35. Maria Mostadius

    You can also search for this author inPubMed Google Scholar

  36. Aurora Grandal-d’Anglade

    You can also search for this author inPubMed Google Scholar

  37. Amalia Vidal-Gorosquieta

    You can also search for this author inPubMed Google Scholar

  38. Norbert Benecke

    You can also search for this author inPubMed Google Scholar

  39. Claus Kropp

    You can also search for this author inPubMed Google Scholar

  40. Sergei P. Grushin

    You can also search for this author inPubMed Google Scholar

  41. M. Thomas P. Gilbert

    You can also search for this author inPubMed Google Scholar

  42. Ilja Merts

    You can also search for this author inPubMed Google Scholar

  43. Viktor Merts

    You can also search for this author inPubMed Google Scholar

  44. Alan K. Outram

    You can also search for this author inPubMed Google Scholar

  45. Erika Rosengren

    You can also search for this author inPubMed Google Scholar

  46. Pavel Kosintsev

    You can also search for this author inPubMed Google Scholar

  47. Mikhail Sablin

    You can also search for this author inPubMed Google Scholar

  48. Alexey A. Tishkin

    You can also search for this author inPubMed Google Scholar

  49. Cheryl A. Makarewicz

    You can also search for this author inPubMed Google Scholar

  50. Joachim Burger

    You can also search for this author inPubMed Google Scholar

  51. Daniel G. Bradley

    You can also search for this author inPubMed Google Scholar

Contributions

D.G.B. and M.-H.S.S. conceived the project. Laboratory work was done by C.R., M.-H.S.S., V.E.M., A.S., M.P.V., K.G.D., M.M.C., V.M., D.D. A.M. and P.B. C.R. processed and analysed the data with contributions from M.-H.S.S., V.E.M., J.A.M.E. and K.G.D. All other authors gave access to samples, provided archaeological and osteological context and aided in the interpretation of results. The manuscript was written by D.G.B., C.R., M,-H.S.S. and V.E.M., with contributions from all co-authors.

Corresponding authors

Correspondence toMikkel-Holger S. Sinding orDaniel G. Bradley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Three genomic groups within European aurochs.

a, Heat map of pairwise IBS distance values between European aurochsen drawn using pheatmap (https://github.com/raivokolde/pheatmap). European aurochs cluster into geographically coherent groups; western Europe, Italy and the Balkans. Genomes from Iberia cluster within the western European group, consistent with the Iberian glacial refugium being a source of postglacial recolonization. The lowest pairwise IBS distances are observed in a tight Scandinavian cluster of five genomes in the top left corner.b, Best-fitting model estimated using AdmixtureGraph allowingm = 2 admixture edges. This infers a closely shared evolutionary history among western European genomes (Iberia, Britain, Germany, Scandinavia). Italians derive from a more basal European source but also have ~12% admixture contribution of a Southwest Asian population. Balkans genomes are modelled as having ~41% Southwest Asian contribution.

Extended Data Fig. 2 MSMC2 cross-population analysis.

MSMC2 was used to perform cross-population analysis to determine the approximate divergence time between four putative postglacial Eurasian populations; European aurochsen, North Asian aurochsen, Southwest Asian aurochsen (represented by the Anatolian Neolithic, Sub1), South AsianBos namadicus (represented by their descendants, South Asian indicine). The relative cross-coalescence rate (CCR) was computed between all population pairings of the four populations of aurochs and the split time between two populations was estimated as the time interval at the relative CCR of 0.5. Three splits were observed; first European aurochs versus Near Eastern aurochs during the LGM, second European and Southwest Asian/Near Eastern aurochs versus north Asian aurochs during MIS 5, third allBos primigenius populations versusBos indicus (proxy forBos namadicus). The timings of these splits reflect the phylogenetic relationship of the populations.

Extended Data Fig. 3 Summary of analyses timing the divergence of Southwest Asian and European aurochs populations versus North Asian aurochs populations.

The top panel displays the range of estimates observed when X chromosome divergence began based on pseudodiploid X chromosome analysis of 10 pairs of North Asian-Southwest Asian/European samples (Supplementary Information Section 4). The second panel displays the range of split time between Southwest Asian/European aurochsen and North Asian aurochsen estimated by MSMC2 cross-population analysis (Extended Data Fig.2). The third panel displays the 95% HPD interval of major mtDNA haplogroup divergences associated with Southwest Asian/European aurochsen and North Asian aurochsen splits. The final panel displays the LR04 stack of benthic d18O records89 overlaid with MIS periods21. Interglacial periods (MIS 1, MIS 5e) are coloured red, stadial periods (MIS 2-4, MIS 5b, MIS 5d) are coloured blue and interstadial periods (MIS 5a and 5c) are coloured yellow. All divergence estimates overlap with the final interstadial of MIS 5.

Extended Data Fig. 4 NGSadmixK = 4 composition, mitochondrial haplogroups and14C dates of 16 HoloceneBos sampled from Asia.

Pleistocene North Asian samples (Tula1, Baikal1, Gyu1) display an unadmixed ancestral profile that stretches from ~41.5 to ~12.2 ka. By contrast, Holocene Asian aurochsen display an admixed ancestral profile and four separate wild maternal lineages, including the EuropeanP haplogroup and the Southwest AsianQ. The advent of Central Asian domestic taurine cattle during the Bronze Age presents a different ancestral profile, where animals are modelled mostly with the Southwest Asian ancestral component typical ofBos taurus, although also with minor North Asian and Europe wild components reflecting introgression from local wild herds (Supplementary Information Section 6). Domestic maternal haplotypes (T3) are detected in 4 of 5 Central Asian domesticates.

Extended Data Fig. 5 Unequal Bovini allele sharing inBos.

We explicitly tested allele sharing ofBos populations (East Asian indicine,n = 3; South Asian indicine,n = 4; North Asia,n = 3; Rhine,n = 2; North Africa wild,n = 1; Neolithic Anatolia,n = 3; Southwest Asia wild,n = 1). with wild Eurasian Bovini (Banteng,n = 4; Gaur,n = 3; Wild Yak,n = 3; Wisent,n = 1) relative to western European aurochs (n = 12) usingD (water buffalo (n = 3), Bovini sp.; western Europe,Bos test) using SNPs called on Bovini outgroups. We repeatedly observed significant excess allele sharing between indicine and outgroup Bovini species compared to western European populations. All otherBos primigenius/Bos taurus populations suggest clade integrity, except Pleistocene North Asia which displayed slightly higher allele sharing with Bovini outgroups, but at an order of magnitude lower than that shown byBos indicus. Error bars depict the standard error of each test multiplied by 3.

Extended Data Fig. 6 Sex bias in domestic introgression.

We explicitly tested allele sharing ofBos populations with aurochsen (n = 15) relative to Neolithic Anatolian cattle (n = 3) with (D (water buffalo (n = 3), aurochs population; Neolithic Anatolia, test sample) using two pseudohaploid datasets (SNPs called on the autosome and SNPs called on the X chromosome). In domestic samples (n = 21) there is a pattern of increased autosomal contribution relative to the X chromosome, suggesting introgression was male biased. This contrasts with the patterns observed in wild populations, where the minor component is more often female-biased. Error bars depict the standard error of each test multiplied by 3.

Extended Data Fig. 7 Maximum likelihood phylogeny constructed from Y chromosomal sequences of 206 ancient and modernBos samples.

Patterns within the phylogeny reveal thatBos taurus andBos primigenius Y chromosomal variation were not reciprocally monophyletic. Haplotypes of ancient and modern domestic cattle were found in six distinct clades and in one solitary individual, suggesting that there were at least seven male contributions toBos taurus.

Supplementary information

Supplementary Information

Supplementary Information sections 1–6 including Supplementary Figs 1–29, Supplementary Tables 1– 5 and Supplementary References – see contents for details.

Supplementary Data

Supplementary Data 1–6 – see Supplementary Information for full descriptions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, C., Sinding, MH.S., Mullin, V.E.et al. The genomic natural history of the aurochs.Nature635, 136–141 (2024). https://doi.org/10.1038/s41586-024-08112-6

Download citation

Access through your institution
Buy or subscribe

Associated content

The genetic legacy of the wild ancestors of modern cattle

  • Anna Linderholm
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2025 Movatter.jp