Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells

Naturevolume 620pages881–889 (2023)Cite this article

Subjects

Abstract

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α–NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activation of HIF-1α by lactate inhibits the pro-inflammatory activities of DCs.
Fig. 2: HIF-1α-induced NDUFA4L2 limits the production of mtROS.
Fig. 3: L-LA limits the mtROS-driven activation of XBP1 in DCs.
Fig. 4: Activating HIF-1α–NDUFA4L2 with engineered probiotics ameliorates EAE.

Similar content being viewed by others

ArticleOpen access20 December 2022

Data availability

All raw and processed deep -sequencing data have been deposited at the Gene Expression Omnibus (GEO) with accession codeGSE188504.

References

  1. Anderson, D. A.III, Dutertre, C. A., Ginhoux, F. & Murphy, K. M. Genetic models of human and mouse dendritic cell development and function.Nat. Rev. Immunol.21, 101–115 (2021).

    Article CAS PubMed  Google Scholar 

  2. Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis, E. S. C. Dendritic cells revisited.Annu. Rev. Immunol.39, 131–166 (2021).

    Article CAS PubMed  Google Scholar 

  3. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes.Nature593, 238–243 (2021).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  4. Saevarsdottir, S. et al.FLT3 stop mutation increases FLT3 ligand level and risk of autoimmune thyroid disease.Nature584, 619–623 (2020).

    Article ADS CAS PubMed  Google Scholar 

  5. Dixon, K. O. et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation.Nature595, 101–106 (2021).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  6. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity.Nature584, 624–629 (2020).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  7. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity.Cell169, 570–586 (2017).

  8. Du, X. et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells.Nature558, 141–145 (2018).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  9. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells.Nature581, 475–479 (2020).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  10. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics.Nat. Med.25, 716–729 (2019).

    Article CAS PubMed  Google Scholar 

  11. Buffington, S. A. et al. Dissecting the contribution of host genetics and the microbiome in complex behaviors.Cell184, 1740–1756 (2021).

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy.Nature598, 662–666 (2021).

    Article ADS CAS PubMed  Google Scholar 

  13. Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease.Nat. Med.27, 1212–1222 (2021).

    Article CAS PubMed  Google Scholar 

  14. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.Nature513, 559–563 (2014).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  15. Benoun, J. M. et al. Optimal protection againstSalmonella infection requires noncirculating memory.Proc. Natl Acad. Sci. USA115, 10416–10421 (2018).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  16. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α.Nature496, 238–242 (2013).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  17. Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production.Proc. Natl Acad. Sci. USA103, 105–110 (2006).

    Article ADS CAS PubMed  Google Scholar 

  18. Bosshart, P. D., Kalbermatter, D., Bonetti, S. & Fotiadis, D. Mechanistic basis ofl-lactate transport in the SLC16 solute carrier family.Nat. Commun.10, 2649 (2019).

    Article ADS PubMed PubMed Central  Google Scholar 

  19. Brown, T. P. et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment.Oncogene39, 3292–3304 (2020).

    Article CAS PubMed  Google Scholar 

  20. Levitt, M. D. & Levitt, D. G. Quantitative evaluation ofd-lactate pathophysiology: new insights into the mechanisms involved and the many areas in need of further investigation.Clin. Exp. Gastroenterol.13, 321–337 (2020).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Colgan, S. P., Furuta, G. T. & Taylor, C. T. Hypoxia and innate immunity: keeping up with the HIFsters.Annu. Rev. Immunol.38, 341–363 (2020).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Tello, D. et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting complex I activity.Cell Metab.14, 768–779 (2011).

  23. Mogilenko, D. A. et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR.Cell177, 1201–1216 (2019).

    Article CAS PubMed  Google Scholar 

  24. Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease.Nat. Commun.11, 102 (2020).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  25. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages.Nat. Immunol.11, 411–418 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis.Cell161, 1527–1538 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Puurunen, M. K. et al. Safety and pharmacodynamics of an engineeredE. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study.Nat. Metab.3, 1125–1132 (2021).

    Article CAS PubMed  Google Scholar 

  28. Kurtz, C. B. et al. An engineeredE. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans.Sci. Transl. Med.11, eaau7975 (2019).

    Article CAS PubMed  Google Scholar 

  29. Castano-Cerezo, S. et al. An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node inEscherichia coli.Microb. Cell Fact.8, 54 (2009).

    Article PubMed PubMed Central  Google Scholar 

  30. Enjalbert, B., Millard, P., Dinclaux, M., Portais, J. C. & Letisse, F. Acetate fluxes inEscherichia coli are determined by the thermodynamic control of the Pta–AckA pathway.Sci. Rep.7, 42135 (2017).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  31. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination.Nature479, 538–541 (2011).

    Article ADS CAS PubMed  Google Scholar 

  32. Hiltensperger, M. et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity.Nat. Immunol.22, 880–892 (2021).

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Schnell, A. et al. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity.Cell184, 6281–6298 (2021).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice.Proc. Natl Acad. Sci. USA105, 10871–10876 (2008).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  35. D’Ignazio, L., Bandarra, D. & Rocha, S. NF-κB and HIF crosstalk in immune responses.FEBS J.283, 413–424 (2016).

    Article PubMed  Google Scholar 

  36. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists.Nat. Rev. Immunol.16, 553–565 (2016).

    Article PubMed PubMed Central  Google Scholar 

  37. Aste-Amezaga, M., Ma, X., Sartori, A. & Trinchieri, G. Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10.J. Immunol.160, 5936–5944 (1998).

    Article CAS PubMed  Google Scholar 

  38. Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39.Nat. Immunol.14, 1054–1063 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Lawless, S. J. et al. Glucose represses dendritic cell-induced T cell responses.Nat. Commun.8, 15620 (2017).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  40. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation.Nature574, 575–580 (2019).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  41. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity.Science345, 1250684 (2014).

    Article PubMed PubMed Central  Google Scholar 

  42. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid.Nature591, 645–651 (2021).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  43. Sanmarco, L. M. et al. Identification of environmental factors that promote intestinal inflammation.Nature611, 801–809 (2022).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  44. Schiering, C. et al. Feedback control of AHR signalling regulates intestinal immunity.Nature542, 242–245 (2017).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  45. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor.Nature478, 197–203 (2011).

    Article ADS CAS PubMed  Google Scholar 

  46. Takenaka, M. C. et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39.Nat. Neurosci.22, 729–740 (2019).

    Article CAS PubMed PubMed Central  Google Scholar 

  47. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease.Nat. Rev. Immunol.19, 184–197 (2019).

    Article CAS PubMed  Google Scholar 

  48. Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α.Nat. Med.21, 638–646 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Kenison, J. E. et al. Tolerogenic nanoparticles suppress central nervous system inflammation.Proc. Natl Acad. Sci. USA117, 32017–32028 (2020).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  50. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis.Science371, 145–153 (2021).

    Article ADS CAS PubMed  Google Scholar 

  51. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis.J. Exp. Med.197, 1073–1081 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes.Nature590, 473–479 (2021).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  53. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation.Nature578, 593–599 (2020).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  54. Eberhardt, N. et al. Deficiency of CD73 activity promotes protective cardiac immunity againstTrypanosoma cruzi infection but permissive environment in visceral adipose tissue.Biochim. Biophys. Acta Mol. Basis Dis.1866, 165592 (2020).

    Article CAS PubMed  Google Scholar 

  55. Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation.Cell176, 581–596 (2019).

    Article CAS PubMed PubMed Central  Google Scholar 

  56. Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity.Nat. Commun.11, 2739 (2020).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  57. Trombetta, J. J. et al. Preparation of single-cell RNA-seq libraries for next generation sequencing.Curr. Protoc. Mol. Biol.107, 4.22.1–4.22.17 (2014).

    Article PubMed  Google Scholar 

  58. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification.Nat. Biotechnol.34, 525–527 (2016).

    Article CAS PubMed  Google Scholar 

  59. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression.Nat. Methods14, 417–419 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  60. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences.Bioinformatics35, 2084–2092 (2019).

    Article CAS PubMed  Google Scholar 

  61. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl Acad. Sci. USA102, 15545–15550 (2005).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  62. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.Nat. Genet.34, 267–273 (2003).

    Article CAS PubMed  Google Scholar 

  63. Illouz, T., Madar, R., Hirsh, T., Biragyn, A. & Okun, E. Induction of an effective anti-Amyloid-β humoral response in aged mice.Vaccine39, 4817–4829 (2021).

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Illouz, T. et al. Maternal antibodies facilitate Amyloid-β clearance by activating Fc-receptor-Syk-mediated phagocytosis.Commun. Biol.4, 329 (2021).

    Article CAS PubMed PubMed Central  Google Scholar 

  65. Haralick, R. M. & Shapiro, L. G. inComputer and Robot Vision Vol. 1 (eds Haralick, R. M. & Shapiro, L. G.) 28–48 (Addison-Wesley, 1992).

  66. Motulsky, H. J., & Brown, R. E. Detecting outliers when fitting data with nonlinear regression–a new method based on robust nonlinear regression and the false discovery rate.BMC Bioinformatics7, 123 (2006).

    Article PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NS102807, ES02530, ES029136 and AI126880 from the National Institutes of Health (NIH); RG4111A1 and JF2161-A-5 from the National Multiple Sclerosis Society; RSG-14-198-01-LIB from the American Cancer Society; and PA-160408459 from the International Progressive MS Alliance (to F.J.Q.). C.M.P. was supported by a fellowship from FAPESP BEPE (2019/13731-0) and by the Herbert R. & Jeanne C. Mayer Foundation; G.F.L. received support from a grant from the Swedish Research Council (2021-06735); C.G.-V. was supported by an Alfonso Martin Escudero Foundation postdoctoral fellowship and by a postdoctoral fellowship (ALTF 610-2017) from the European Molecular Biology Organization; C.-C.C. received support from a postdoctoral research abroad program (104-2917-I-564-024) from the Ministry of Science and Technology, Taiwan; C.M.R.-G. was supported by a predoctoral F.P.U. fellowship from the Ministry of Economy and Competitiveness and by the European Union FEDERER program; M.A.W. was supported by NIH (1K99NS114111, F32NS101790 and T32CA207201), the Program in Interdisciplinary Neuroscience and the Women’s Brain Initiative at Brigham and Women’s Hospital; T.I. was supported by an EMBO postdoctoral fellowship (ALTF: 1009–2021) and H.-G.L. was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14039088). We thank L. Glimcher and J. R. Cubillos Ruiz for sharingItgaxCreXbp1flox mice; S. McSorley for providing theS. typhimurium strain; H. Xu and M. Lehtinen for providing training on CSF extraction; all members of the F.J.Q. laboratory for advice and discussions; R. Krishnan for technical assistance with flow cytometry studies; and the NeuroTechnology Studio at Brigham and Women’s Hospital for providing access to Seahorse instruments.

Author information

Authors and Affiliations

  1. Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA

    Liliana M. Sanmarco, Joseph M. Rone, Carolina M. Polonio, Gonzalo Fernandez Lahore, Federico Giovannoni, Kylynne Ferrara, Cristina Gutierrez-Vazquez, Agustin Plasencia, Camilo Faust Akl, Payal Nanda, Evelin S. Heck, Zhaorong Li, Hong-Gyun Lee, Chun-Cheih Chao, Claudia M. Rejano-Gordillo, Pedro H. Fonseca-Castro, Tomer Illouz, Mathias Linnerbauer, Jessica E. Kenison, Rocky M. Barilla, Daniel Farrenkopf, Nikolas A. Stevens, Gavin Piester, Elizabeth N. Chung, Vijay K. Kuchroo, Michael A. Wheeler, Roni Nowarski & Francisco J. Quintana

  2. Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA

    Joseph M. Rone, Gonzalo Fernandez Lahore, Rocky M. Barilla, Vijay K. Kuchroo & Roni Nowarski

  3. Synlogic Therapeutics, Cambridge, MA, USA

    Ning Li, Anna Sokolovska, David Hava & Jose M. Lora

  4. Broad Institute of MIT and Harvard, Cambridge, MA, USA

    Lucas Dailey, Michael A. Wheeler, Clary Clish & Francisco J. Quintana

  5. Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain

    Eduardo Balsa

Authors
  1. Liliana M. Sanmarco
  2. Joseph M. Rone
  3. Carolina M. Polonio
  4. Gonzalo Fernandez Lahore
  5. Federico Giovannoni
  6. Kylynne Ferrara
  7. Cristina Gutierrez-Vazquez
  8. Ning Li
  9. Anna Sokolovska
  10. Agustin Plasencia
  11. Camilo Faust Akl
  12. Payal Nanda
  13. Evelin S. Heck
  14. Zhaorong Li
  15. Hong-Gyun Lee
  16. Chun-Cheih Chao
  17. Claudia M. Rejano-Gordillo
  18. Pedro H. Fonseca-Castro
  19. Tomer Illouz
  20. Mathias Linnerbauer
  21. Jessica E. Kenison
  22. Rocky M. Barilla
  23. Daniel Farrenkopf
  24. Nikolas A. Stevens
  25. Gavin Piester
  26. Elizabeth N. Chung
  27. Lucas Dailey
  28. Vijay K. Kuchroo
  29. David Hava
  30. Michael A. Wheeler
  31. Clary Clish
  32. Roni Nowarski
  33. Eduardo Balsa
  34. Jose M. Lora
  35. Francisco J. Quintana

Contributions

L.M.S., J.M.R., C.M.P., G.F.L., F.G., K.F., C.G.-V., N.L., A.S., A.P., C.F.A., P.N., E.S.H., H.-G.L., C.-C.C., C.M.R.-G., P.H.F.-C., M.L., J.E.K., R.M.B., D.F., G.P., E.N.C., N.A.S. and L.D. performed in vitro and in vivo experiments, FACS and genomic experiments. L.M.S., Z.L. and M.A.W. performed bioinformatic analyses. T.I. performed unbiased quantification of histology samples. J.M.R., C.C., V.K.K. and R.N. contributed reagents. L.M.S., N.L., D.H., A.S., J.M.L. and F.J.Q. designed and generated engineered probiotics. L.M.S., E.B. and F.J.Q. discussed and interpreted findings and wrote the manuscript with input from the other co-authors. F.J.Q. designed and supervised the study and edited the manuscript.

Corresponding author

Correspondence toFrancisco J. Quintana.

Ethics declarations

Competing interests

N.L., A.S., D.H. and J.M.L. were employees of Synlogic Therapeutics during some of this study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature thanks Greg Delgoffe, Lawrence Steinman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Analysis of HIF-1Itgax mice during EAE.

a, Uniform manifold approximation and projection (UMAP) displaying CNS DCs analysed by scRNA-seq during EAE.b, GSEA of hypoxia activation in DC subsets (cDC1, cDC2 and pDC) from scRNA-seq dataset53.c,d, Representative dot plot (c) and flow cytometry analysis (d) of HIF-1α expression in splenic cDC1s (CD8+CD11b), cDC2s (CD8CD11b) and pDCs (B220+) 25 days after EAE induction in WT mice (n = 5 mice per group).e, Gating strategy used to analyse CD4+ T cells in the CNS of mice subjected to EAE.f, IFNγ+, IFNγ+IL-17+ CD4+ T cells in spleens of WT (n = 5) and HIF-1αItgax (n = 4) mice subjected to EAE.g,h, Cytokine production (20 μg/mL MOG33–55) (g) and proliferative recall response to ex vivo MOG35–55 restimulation (h) of splenocytes isolated from mice from (f (n = 3 for WT IFNγ,n = 4 for HIF-1αItgax IFNγ, IL-17 and WT GM-CSF,n = 5 otherwise).i, Absolute number of DCs in CNS from WT and HIF-1αItgax mice (n = 5 mice per group).jl, Heat map (j), IPA (k) and GSEA analysis (l) of RNA-seq of DCs isolated from the CNS of WT or HIF-1αItgax mice subjected to EAE. Statistical analysis was performed using unpaired Student’st-test forf andg and two-way ANOVA followed by Šídák’s multiple comparisons test forh. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 2 Effects of HIF-1α in DCs.

a, mRNA expression of shown genes in BMDCs isolated from WT mice treated with either vehicle or LPS and subjected to normoxia or hypoxia (n = 3 per group)b, mRNA expression of shown genes in BMDCs isolated from WT mice treated with LPS and ML228, DFX, or afterVhl knockdown (siVhl) (n = 3-forIl1b after LPS,Il12a andTnf for siVhl,n = 4 otherwise).c,Vhl expression in siVhl-treated BMDCs fromb (n = 3 for siNT,n = 4 for siVhl).d,Ifng andIl17a expression in 2D2+ CD4+ T cells co-cultured with WT BMDCs pre-stimulated with LPS and ML228, DFX or siVhl (n = 4 per group).e,f, HIF-1α MFI (e) and frequency of viable cells (f) of BMDCs following LPS stimulation and subjected to normoxia or hypoxia (n = 6 for viability after hypoxia,n = 4 otherwise).g,h, Experimental design (g) andS. thyphimurium CFU quantification (h) in caecum from WT (n = 4) and HIF-1αItgax (n = 5) mice 14 days after infection.i,j, S2W1 Tetramer-specific (i) and IFNγ+ and IL-17+ (j) CD4+ T cells in colon from mice fromh. Statistical analysis was performed using one-way ANOVA with Tukey’s, Dunnett’s or Šídák’s post-hoc test for selected multiple comparisons fora,b,df, or unpaired Student’st-test forc,h-j. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 3 Effects of HIF-1α activation by L-LA on DCs.

a,b, Representative histogram (a) and MFI (b) of HIF-1α expression in BMDCs isolated from WT mice and treated with vehicle, LPS, L-LA, or both LPS and L-LA (n = 3 for vehicle,n = 4 otherwise).c, HIF-1α luciferase activity in BMDCs isolated from FVB.129S6-Gt(ROSA)26Sortm2(HIF1A/luc)Kael/J mice and treated with L-LA (n = 5 per group).d,Hif1a expression in BMDCs treated with vehicle or LPS (n = 3 per group).e, L-LA production of WT mouse BMDCs treated with vehicle or LPS and subjected to normoxia or hypoxia conditions (n = 4 per group).f, mRNA expression of shown genes in WT mouse BMDCs treated with vehicle or LPS and varying concentrations of L-LA (n = 4 for Il1b LPS+LA 0.1mM, Il23a LPS+LA 0.1, 1 and 10 mM and Tnf LPS+LA 1mM, n = 4 otherwise).g, mRNA expression of shown genes in human DCs afterHIF1A knockdown (siHIF1A) or control (siNT) treated with LPS and L-LA or D-LA (n = 3 per group).hj, mRNA expression of shown genes in WT mouse BMDCs afterSlc16a1 knockdown (siSlc16a1) or control (siNT) (h,i) or treatment with the MCT1-antagonist AZD3965 (j) treated LPS and L-LA (n = 3 per group). Statistical analysis was performed using one-way ANOVA with Tukey’s, Šídák’s or Holm-Šídák’s post-hoc test for selected multiple comparisons forb,eh,j, or unpaired Student’st-test forc,d,i. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 4 Effects of HIF-1α activation by D-LA on DCs.

a, mRNA expression of shown genes in splenic DCs isolated from WT or HIF-1αItgax mice stimulated with LPS or LPS and L-LA (n = 3–4 per group).b,c, mRNA expression ofHif1a (b) orHIF1A (c) after knockdown in mouse BMDCs (b) and human DCs (c) (n = 4 for siHif1 in BMDCs,n = 3 otherwise).d, Absolute numbers of HIF-1α+ DCs following treatment with D-LA or LPS with D-LA (n = 3 for media and LPS+D-LA 1 mM,n = 4 otherwise).e, mRNA expression of shown genes in splenic DCs from WT mice after LPS treatment with or without D-LA (1mM) treatment for 6h (n = 7 forIl12a in LPS treatment, n = 3 for Il23a in LPS and LPS+D-LA and Tnf in LPS, n = 4 otherwise).f,Ifng andIl17a expression in 2D2+ CD4+ T cells co-cultured DCs pre-treated with LPS or LPS and D-LA (1mM) (n = 3 for LPS-treated cells, n = 4 otherwise). Statistical analysis was performed using one-way ANOVA with Tukey’s, Šídák’s or Dunnett’s post-hoc test for selected multiple comparisons fora andd, or unpaired Student’st-test forb,c,e,f. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 5 Effects of HIF-1α on DC metabolism.

a, ECAR in BMDCs isolated from WT or HIF-1αItgax mice after glucose, oligomycin and 2-DG treatment (n = 10 WT and 20 HIF-1α KO replicate wells).b, Glycolysis and glycolytic capacity in WT and HIF-1αItgax BMDCs froma (n = 10 WT and 17 HIF-1α KO replicate wells).c, 2-NBDG uptake andSlc2a1 expression in BMDCs isolated from WT and HIF-1αItgax mice and stimulated with LPS (n = 4–6 per group).d, Transactivation ofNdufa4l2 promoter in Ndufa4l2-luciferase transfected DC2.4 cells treated with L-LA or LPS for 24 h (n = 3 per group).e, OCR in BMDCs isolated from WT or HIF-1αItgax mice and transfected with either an empty orNdufa4l2-overexpression plasmid (n = 6 for WT,n = 5 otherwise).f,Ndufa4l2 expression after transfection withNdufa4l2-oxerexpression plasmid or silencing with siRNA (n = 3 per group).g, mRNA expression of shown genes in WT mouse BMDCs afterNdufa4l2 knockdown (siNdufa4l2) or controls (siNT) stimulated with LPS and treated with or without D-LA for 6 h (n = 5 forIl23a siNT LPS + D-LA,n = 6 otherwise). Statistical analysis was performed using unpaired Student’st-test forb,c,f and one-way ANOVA with Šídák’s or Holm-Šídák’s post-hoc test for selected multiple comparisons ford,e,g. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 6 Incorporation of L-LA into TCA intermediates.

a, mRNA expression of shown genes in BMDCs isolated from WT mice and stimulated with LPS and mitoPQ or L-LA for 6 h (n = 3–4 per group).b, mRNA expression of shown genes in BMDCs isolated from WT mice and treated with mitoPQ for 6 h (n = 4–5 per group).c,13C incorporation into TCA intermediates in BMDCs isolated from WT mice and treated with uniformly labelled13C-lactate (L-LA*), L-LA or LPS for 1 h (n = 3 per group).d, Pyruvate intracellular levels in WT BMDCs after treatment with LPS, L-LA or D-LA for 1 h (n = 4 per group).e,f, mtROS production (e) and mRNA expression of shown genes (f) in WT BMDCs pre-treated with LDH-inhibitor oxamate, L-LA or LPS (n = 3–4 per group).g, mRNA expression of shown genes in splenic DCs isolated from WT or HIF-1αItgax mice then treated with LPS or pyruvate for 6 h (n = 3–4 per group). Statistical analysis was performed using one-way ANOVA with Tukey’s, Šídák’s or Dunnett’s post-hoc test for selected multiple comparisons fora,eg and unpaired Student’st-test forb. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 7 Control of DCs by XBP1.

a,b,sXbp1/Xbp1 mRNA ratio in BMDCs isolated from WT mice and treated with LPS or LPS+D-LA (a) and LPS, mitoPQ or mitoTempo (MitoTP) (b) for 6 h (n = 4 per group).c,d, XBP1 recruitment to theIl1b,Il6 andIl23a promoters in WT BMDCs treated with LPS and mitoPQ (c) or LPS and ML228 (d) for 6h.e, Total numbers of IFNγ+ and IL-17+ CD4+ splenic T cells in WT (n = 3–4) and Xbp1Itgax (n = 4) mice 30 days after EAE induction.f,g, Heat map (f) and IPA (g) in CNS DCs from WT (n = 4) and Xbp1Itgax (n = 5) mice 30 days after EAE induction. Statistical analysis was performed using unpaired Student’st-test fora,c-e and one-way ANOVA with Šídák’s post-hoc test for selected multiple comparisons forb. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 8 Effect of lactate on EAE.

a, EAE development of mice after vehicle injection (n = 9), intraperitoneal (ip) (n = 10), nasal, or intravenous (iv) (n = 5 per group) L-LA or D-LA administration.b, IFNγ+, IFNγ+IL-17+ and IL-17+ CD4+ T cells in CNS isolated from mice froma 28 days after EAE induction (n = 3–4 per group).cf, Heat map (c), GSEA (d) and IPA (e,f) analysis of RNA-seq of splenic DCs isolated from mice treated with vehicle, L-LA (e) and D-LA (f) 28 days after EAE induction. Statistical analysis was performed using two-way ANOVA fora and one-way ANOVA with Dunnett’s post-hoc test for selected multiple comparisons forb. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 9 EcNLac characterization.

a, L-LA and D-LA concentration in plasma taken from naive and peak EAE WT mice (n = 5 per group).b, Schematic depicting the genome sequencing of EcNLac and parental EcN strains.c, Schematic for the plasmid used to induceldhA expression in the EcNLac engineered strain.d, EcNGFP reporter strain.e, GFP expression in EcNGFP after activation at 37C.f,g, D-LA concentration in plasma (f) and colon tissue (g) after EcNLac or EcN administration (n = 5–9 mice per group).h, D-LA concentration in CSF and CNS lysate from naive (n = 4–5) and EAE (n = 3) WT mice after EcNLac administration, shown relative to D-LA concentration levels in EcN-treated mice.i, Percentage of HIF-1α+ DCs out of total DCs isolated from small intestine and colon tissue from EcN (n = 3–5) or EcNLac (n = 3–4) treated mice.j,k, Heat map (j) and GSEA (k) analysis of RNA-seq of DCs isolated from the small intestine of EcN (n = 3) or EcNLac (n = 4) treated mice.l,m, EcNLac CFUs in blood isolated from naive and peak EAE mice treated with EcNLac daily for a week (l) and EcNGFP in blood 1, 4 and 24 h after oral gavage (m). Small intestine CFU levels are shown as positive controls (n = 4–5 per group).n, Experimental design to assess the effect of EcNLac daily or weekly administration on EAE disease course. Statistical analysis was performed using two-way ANOVA with Šídák’s post-hoc test fore,f, and one-way ANOVA with Dunnett’s post-hoc test for selected multiple comparisons fori. Data shown as mean ± s.e.m.

Source data

Extended Data Fig. 10 Effects of EcNLac on EAE andS. thyphimurium infection.

a, Splenic IFNγ+ and IL-17+CD4+ T cells isolated 20 days after EAE induction from WT mice treated with EcN (n = 5–6) or EcNLac (n = 5) and HIF-1αItgax mice treated with EcN (n = 3) or EcNLac (n = 3).b,c, Proliferative recall response to ex vivo MOG35–55 restimulation (b) and cytokine production (20 μg ml−1 MOG33–55) (c) of splenocytes isolated 20 days after EAE induction from WT mice dosed daily with EcN (n = 4–8) or EcNLac (n = 3–8).dg, EAE development (d), IFNγ+ and IL-17+CD4+ T cells in CNS (e) and spleen (f), and splenocyte proliferation recall response (g) to ex vivo MOG35–55 restimulation of WT mice treated weekly with EcN (n = 4–5) or EcNLac (n = 4–5).h, CFUs in liver and caecum from WT mice infected withS. thyphimurium after daily or weekly administration of EcN (n = 5) or EcNLac (n = 4–5).ik, Percentage of S2W1 tetramer+ out of total CD4 T cells in colon (i), and liver (j) and representative S2W1 tetramer staining of CD4 T cells in liver (k) in mice fromh.l,m, HIF-1α MFI in neutrophils, monocytes and T cells (l), and number of HIF-1α+ DCs (m) in small intestine as a result of daily EcN (n = 5–8) or EcNLac (n = 5) treatment of WT mice for one week. Statistical analysis was performed using one-way ANOVA with Dunnett’s post-hoc test for selected multiple comparisons fora, two-way ANOVA followed by Šídák’s multiple comparisons test forb,d,g and unpaired Student’st-test forc,e,f,m. Data shown as mean ± s.e.m.

Source data

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanmarco, L.M., Rone, J.M., Polonio, C.M.et al. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells.Nature620, 881–889 (2023). https://doi.org/10.1038/s41586-023-06409-6

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Orally delivered lactate-producing bacteria limit CNS autoimmunity

  • Kirsty Minton
Nature Reviews ImmunologyResearch Highlight

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp