Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Large-scale migration into Britain during the Middle to Late Bronze Age

Naturevolume 601pages588–594 (2022)Cite this article

Subjects

Abstract

Present-day people from England and Wales have more ancestry derived from early European farmers (EEF) than did people of the Early Bronze Age1. To understand this, here we generated genome-wide data from 793 individuals, increasing data from the Middle to the Late Bronze Age and Iron Age in Britain by 12-fold, and western and central Europe by 3.5-fold. Between 1000 and 875bc, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of people of England and Wales from the Iron Age, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to the Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2,3,4,5,6. There was comparatively less gene flow from continental Europe during the Iron Age, and the independent genetic trajectory in Britain is also reflected in the rise of the allele conferring lactase persistence to approximately 50% by this time compared to approximately 7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ancient DNA dataset.
Fig. 2: Increase in EEF ancestry during the MBA to LBA.
Fig. 3: By-individual analysis of the southern Britain time transect.
Fig. 4: Genetic change in Britain in the context of Europe-wide trends.

Similar content being viewed by others

Data availability

The raw data are available as aligned sequences (.bam files) through the European Nucleotide Archive under accession numberPRJEB47891. The newly generated genotype data are available as a Supplementary Data file. The previously published data co-analysed with our newly reported data can be obtained as described in the original publications, which are all referenced in Supplementary Table3; a compiled dataset that includes the merged genotypes used in this paper is available as the Allen Ancient DNA Resource athttps://reich.hms.harvard.edu/allen-ancient-dna-resourceaadr-downloadable-genotypes-present-day-and-ancient-dna-data. Any other relevant data are available from the corresponding authors on reasonable request.

Code availability

This study uses publicly available software, which we fully reference.

References

  1. Galinsky, K. J., Loh, P. R., Mallick, S., Patterson, N. J. & Price, A. L. Population structure of UK Biobank and ancient Eurasians reveals adaptation at genes influencing blood pressure.Am. J. Hum. Genet.99, 1130–1139 (2016).

    Article CAS  Google Scholar 

  2. Cunliffe, B.Britain Begins (Oxford Univ. Press, 2013).

  3. Koch, J. T. & Cunliffe, B. W. (eds)Celtic from the West 2: Rethinking the Bronze Age and the Arrival of Indo-European in Atlantic Europe (Oxbow Books, 2013).

  4. Needham, S. & Bowman, S. Flesh-hooks, technological complexity and the Atlantic Bronze Age feasting complex.Eur. J. Archaeol.8, 93–136 (2005).

    Article  Google Scholar 

  5. Marcigny, C., Bourgeois, J. & Talon, M. inRythmes et Contours de la Geographie Culturelle sur le Littoral de la Manche Entre le IIIe et le Debut du Ier Millenaire (eds Lehoerff, A. & Talon, M.) 63–78 (Oxbow Books, 2017).

  6. Marcigny, C. inLes Anglais in Normandie 47–54 (2011).

  7. Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome.Proc. Natl Acad. Sci. USA113, 368–373 (2016).

    Article ADS CAS  Google Scholar 

  8. Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe.Nature555, 190–196 (2018).

    Article ADS CAS  Google Scholar 

  9. Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic Britain.Nat. Ecol. Evol.3, 765–771 (2019).

    Article  Google Scholar 

  10. Schiffels, S. et al. Iron Age and Anglo-Saxon genomes from East England reveal British migration history.Nat. Commun.7, 10408 (2016).

    Article ADS CAS  Google Scholar 

  11. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history.Nature461, 489–494 (2009).

    Article ADS CAS  Google Scholar 

  12. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014).

    Article ADS CAS  Google Scholar 

  13. Evans, J. A., Chenery, C. A. & Montgomery, J. A summary of strontium and oxygen isotope variation in archaeological human tooth enamel excavated from Britain.J. Anal. At. Spectrom.27, 754–764 (2012).

    Article CAS  Google Scholar 

  14. Fitzpatrick, A. P.The Amesbury Archer and the Boscombe Bowmen: Early Bell Beaker Burials at Boscombe Down, Amesbury, Wiltshire, Great Britain: Excavations at Boscombe Down Vol. 1 (Wessex Archaeology, 2011).

  15. Millard, A. R. inCliffs End Farm, Isle of Thanet, Kent: A Mortuary and Ritual Site of the Bronze Age, Iron Age and Anglo-Saxon Period With Evidence for Long-Distance Maritime Mobility (eds McKinley, J. I. et al.) 135–146 (Wessex Archaeology, 2014).

  16. Champion, T. C., Haselgrove, C., Armit, I., Creighton, J. & Gwilt, A.Understanding the British Iron Age: An Agenda for Action. A Report for the Iron Age Research Seminar and the Council of the Prehistoric Society (Trust for Wessex Archaeology, 2001).

  17. Ringbauer, H., Novembre, J. & Steinrucken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA.Nat. Commun.12, 5425 (2021).

    Article ADS CAS  Google Scholar 

  18. Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years.Science363, 1230–1234 (2019).

    Article ADS CAS  Google Scholar 

  19. Busby, G. B. J. et al. The peopling of Europe and the cautionary tale of Y chromosome lineage R-M269.Proc. Biol. Sci.279, 884–892 (2012).

    PubMed  Google Scholar 

  20. Halkon, P.The Arras Culture of Eastern Yorkshire: Celebrating the Iron Age (Oxbow Books, 2020).

  21. Bellwood, P. S. & Renfrew, C.Examining the Farming/Language Dispersal Hypothesis (McDonald Institute for Archaeological Research, 2002).

  22. Sims-Williams, P. An alternative to ‘Celtic from the East’ and ‘Celtic from the West’.Cambridge Archaeol. J.30, 511–529 (2020).

    Article  Google Scholar 

  23. Mallory, J. P.The Origins of the Irish (Thames & Hudson, 2013).

  24. Rodway, S. The Ogham inscriptions of Scotland and Brittonic Pictish.J. Celt. Linguist.21, 173–234 (2020).

    Article  Google Scholar 

  25. Herm, G.The Celts: The People Who Came Out of the Darkness (Weidenfeld and Nicolson, 1976).

  26. Guggisberg, M. inOxford Handbook of the European Iron Age (eds Rebay-Sailsbury, K., Haselgrove, C. & Wells, P.) (Oxford Univ. Press, 2018).

  27. Booth, T. J. A stranger in a strange land: a perspective on archaeological responses to the palaeogenetic revolution from an archaeologist working amongst palaeogeneticists.World Archaeol.51, 586–601 (2019).

    Article  Google Scholar 

  28. Anthony, D. W. Migration in archeology: the baby and the bathwater.Am. Anthropol.92, 895 – 914 (1990).

    Article  Google Scholar 

  29. Vander Linden, M. Population history in third-millennium-bc Europe: assessing the contribution of genetics.World Archaeol.48, 714–728 (2016).

    Article  Google Scholar 

  30. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe.Nature522, 207–211 (2015).

    Article ADS CAS  Google Scholar 

  31. Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis.Nat. Protoc.14, 1194–1205 (2019).

    Article CAS  Google Scholar 

  32. the cranial base for ancient DNA analysis.Biotechniques62, 283–289 (2017).

  33. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.Proc. Natl Acad. Sci. USA110, 15758–15763 (2013).

    Article ADS CAS  Google Scholar 

  34. Korlevic, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth.Biotechniques59, 87–93 (2015).

    Article CAS  Google Scholar 

  35. Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing.Nat. Protoc.13, 2447–2461 (2018).

    Article CAS  Google Scholar 

  36. Gansauge, M. T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase.Nucleic Acids Res.45, e79 (2017).

    Article CAS  Google Scholar 

  37. Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA.Nat. Protoc.15, 2279–2300 (2020).

    Article CAS  Google Scholar 

  38. Briggs, A. & Heyn, P. inMethods in Molecular Biology Vol. 840 143–154 (Springer, 2012).

  39. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA.Phil. Trans. R. Soc. B370, 20130624 (2015).

    Article  Google Scholar 

  40. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.Proc. Natl Acad. Sci. USA110, 2223–2227 (2013).

    Article ADS CAS  Google Scholar 

  41. Maricic, T., Whitten, M. & Paabo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products.PLoS ONE5, e14004 (2010).

    Article ADS  Google Scholar 

  42. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor.Nature524, 216–219 (2015).

    Article ADS CAS  Google Scholar 

  43. Behar, D. M. et al. A "Copernican" reassessment of the human mitochondrial DNA tree from its root.Am. J. Hum. Genet.90, 675–684 (2012).

    Article CAS  Google Scholar 

  44. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760 (2009).

    Article CAS  Google Scholar 

  45. Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing.Nucleic Acids Res.44, W58–W63 (2016).

    Article CAS  Google Scholar 

  46. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes.Curr. Biol.23, 553–559 (2013).

    Article CAS  Google Scholar 

  47. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data.BMC Bioinformatics15, 356 (2014).

    Article  Google Scholar 

  48. Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Paabo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.PLoS ONE7, e34131 (2012).

    Article ADS CAS  Google Scholar 

  49. Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal.Proc. Natl Acad. Sci. USA111, 2229–2234 (2014).

    Article ADS CAS  Google Scholar 

  50. Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012).

    Article  Google Scholar 

  51. Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty.Nat. Commun.8, 14115 (2017).

    Article ADS CAS  Google Scholar 

  52. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians.Nature528, 499–503 (2015).

    Article ADS CAS  Google Scholar 

  53. Bronk Ramsey, C. Bayesian analysis of radiocarbon dates.Radiocarbon51, 337–360 (2009).

    Article  Google Scholar 

  54. Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP).Radiocarbon62, 725–757 (2020).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Csengeri, T. de Rider, M. Giesen, E. Melis, A. Parkin and A. Schmitt for their contribution to sample selection and collection of archaeological data; R. Crellin, J. Koch, K. Kristiansen and G. Kroonen for comments on the manuscript; A. Williamson for manually revising Y chromosome haplogroup determinations and making corrections to nine; and M. Lee for assistance with data entry. This work was funded in part by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 834087; the COMMIOS Project to I.A.). M.N. was supported by the Croatian Science Fund grant (HRZZ IP-2016-06-1450). P.V., M.Dobeš and Z.V. were supported by the Ministry of Culture of the Czech Republic (DKRVO 2019-2023/7.I.c, 00023272). M.E. was supported by Czech Academy of Sciences award Praemium Academiae. M.Dobisíková and A.Danielisová were supported by the grant RVO 67985912 of the Institute of Archaeology of the Czech Academy of Sciences. M.G.B.F. was funded by The Leverhulme Trust via a Doctoral Scholarship scheme awarded to M.Pala and M.B.R. Support to M.Legge came from the South, West & Wales Doctoral Training Partnership. M.G.’s osteological analyses were funded by Culture Vannin. A.S.-N. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. T.H., T.S. and K.K.’s work was supported by a grant from the Hungarian Research, Development and Innovation Office (project number: FK128013). We acknowledge support for radiocarbon dating and stable isotope analyses as well as access to skeletal material from Manx National Heritage and A. Fox. Dating analysis was funded by Leverhulme Trust grant RPG-388. M.G.T. and I.B. were supported by a Wellcome Trust Investigator Award (project 100713/Z/12/Z). I.O. was supported by a Ramón y Cajal grant from Ministerio de Ciencia e Innovación, Spanish Government (RYC2019-027909-I). The research directed at Harvard was funded by NIH grants GM100233 and HG012287, by John Templeton Foundation grant 61220, by a gift from Jean-François Clin, and by the Allen Discovery Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family Foundation. D.R. is also an Investigator of the Howard Hughes Medical Institute.

Author information

Author notes
  1. These authors contributed equally: Nick Patterson, Michael Isakov, Thomas Booth, Lindsey Büster, Claire-Elise Fischer

Authors and Affiliations

  1. Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA

    Nick Patterson, Harald Ringbauer, Ali Akbari, Iosif Lazaridis & David Reich

  2. Broad Institute of MIT and Harvard, Cambridge, MA, USA

    Nick Patterson, Harald Ringbauer, Matthew Mah, Swapan Mallick, Adam Micco, Nadin Rohland & David Reich

  3. Harvard College, Cambridge, MA, USA

    Michael Isakov

  4. Department of Earth Sciences, Natural History Museum, London, UK

    Thomas Booth, Selina Brace & Ian Barnes

  5. Department of Archaeology, University of York, York, UK

    Lindsey Büster, Claire-Elise Fischer, Madeleine Bleasdale, Helen Goodchild, Oliver Craig & Ian Armit

  6. Department of Genetics, Harvard Medical School, Boston, MA, USA

    Iñigo Olalde, Ali Akbari, Nicole Adamski, Rebecca Bernardos, Nasreen Broomandkhoshbacht, Kimberly Callan, Elizabeth Curtis, Aisling Kearns, Ann Marie Lawson, Iosif Lazaridis, Matthew Mah, Swapan Mallick, Adam Micco, Megan Michel, Jonas Oppenheimer, Lijun Qiu, Kristin Stewardson, J. Noah Workman, Fatma Zalzala, Zhao Zhang, Alfredo Coppa, Nadin Rohland & David Reich

  7. BIOMICs Research Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain

    Iñigo Olalde

  8. Ikerbasque—Basque Foundation of Science, Bilbao, Spain

    Iñigo Olalde

  9. Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria

    Olivia Cheronet, Lea Demetz, Kellie Sara Duffett Carlson, Daniel M. Fernandes, Suzanne Freilich, Kirsten Mandl, Guillermo Bravo Morante, Kadir Toykan Özdoğan, Constanze Schattke, Alfredo Coppa, Maria Teschler-Nicola & Ron Pinhasi

  10. Howard Hughes Medical Institute, Boston, MA, USA

    Nicole Adamski, Nasreen Broomandkhoshbacht, Kimberly Callan, Elizabeth Curtis, Ann Marie Lawson, Matthew Mah, Swapan Mallick, Megan Michel, Jonas Oppenheimer, Kristin Stewardson, Fatma Zalzala & David Reich

  11. Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands

    Eveline Altena & Peter de Knijff

  12. Servizio di Bioarcheologia, Museo delle Civiltà, Rome, Italy

    Francesca Candilio

  13. Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA, USA

    Brendan Culleton

  14. Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK

    Ceiridwen J. Edwards

  15. CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal

    Daniel M. Fernandes, M. George B. Foody, Maria Pala & Martin B. Richards

  16. INSITU S.C.P. Centelles, Barcelona, Spain

    Bibiana Agustí

  17. Oxford Archaeology, Oxford, UK

    Tim Allen, Fraser Brown, Alex Davies, Chris Hayden, Gill Hey, Louise Loe & Lauren McIntyre

  18. Městské Muzeum v Čelákovicích, Čelákovice, Czech Republic

    Katalin Almássy

  19. National Museum of Antiquities, Leiden, Netherlands

    Luc Amkreutz

  20. Faculty of Archaeology, Leiden University, Leiden, Netherlands

    Luc Amkreutz & Harry Fokkens

  21. Independent Researcher, Soham, Ely, UK

    Abigail Ash

  22. Institut National de Recherches Archéologiques Préventives (INRAP), Paris, France

    Christèle Baillif-Ducros, Sylvain Canet, Sébastien Chauvin & Cécile Paresys

  23. Cotswold Archaeology, Cirencester, UK

    Alistair Barclay, Pippa Bradley & Sharon Clough

  24. Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden

    László Bartosiewicz

  25. Leeds Museums and Galleries, Leeds Discovery Centre, Leeds, UK

    Katherine Baxter

  26. Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary

    Zsolt Bernert, Tamás Hajdu & Tamás Szeniczey

  27. Institute of Preservation of Archaeological Heritage of Northwest Bohemia, Most, Czech Republic

    Jan Blažek

  28. Stratum Ltd, Seget Donji, Croatia

    Mario Bodružić

  29. TRACES, Ecole des Hautes Etudes en Sciences Sociales, Toulouse, France

    Philippe Boissinot

  30. School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK

    Clive Bonsall, Manuel Fernández-Götz, Kathleen McSweeney & Catriona Pickard

  31. Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK

    Marcus Brittain, Christopher Evans, Mark Knight, Benjamin Neil, Ricky Patten, Jonathan Tabor & Rob Wiseman

  32. Corinium Museum, Cirencester, UK

    Alison Brookes & James Harris

  33. Wiltshire Museum, Devizes, UK

    Lisa Brown

  34. South West Heritage Trust, Somerset Heritage Centre, Taunton, UK

    Richard Brunning, Amal Khreisheh & Steve Minnitt

  35. Department of Historical, Philosophical and Religious Studies, Umeå University, Umeå, Sweden

    Chelsea Budd & Malcolm Lillie

  36. Kaducej Ltd, Split, Croatia

    Josip Burmaz & Dženi Los

  37. Instituto de Medicina Legal y Ciencias Forenses de Cantabria, Santander, Spain

    Silvia Carnicero-Cáceres

  38. Université de Franche Comté/UMR Chrono-Environnement, Besançon, France

    Morana Čaušević-Bully

  39. School of Earth and Environmental Sciences, University of Manchester, Manchester, UK

    Andrew Chamberlain

  40. Archaeological Museum Zadar, Zadar, Croatia

    Natalija Čondić

  41. Department of Environmental Biology, University of Rome, La Sapienza, Rome, Italy

    Alfredo Coppa

  42. Department of Archaeology, Centre for Interdisciplinary Research in Archaeology, Faculty of Arts, Ljubljana, Slovenia

    Matija Črešnar, Milan Horňák & Biba Teržan

  43. Institute for the Protection of Cultural Heritage of Slovenia, Conservation Centre, Centre for Preventive Archaeology, Ljubljana, Slovenia

    Matija Črešnar & Philip Mason

  44. School of Natural Sciences, University of Central Lancashire, Preston, UK

    Vicki Cummings

  45. Hungarian National Museum, Budapest, Hungary

    Szabolcs Czifra

  46. Institute of Archaeology of the Czech Academy of Sciences, Prague, Prague, Czech Republic

    Alžběta Danielisová, Miroslav Dobeš & Michal Ernée

  47. Tees Archaeology, Hartlepool, UK

    Robin Daniels

  48. Guernsey Museums & Galleries, St Peter Port, UK

    Philip de Jersey

  49. Amgueddfa Cymru—National Museum Wales, Cardiff, UK

    Jody Deacon

  50. Kuny Domokos Museum, Tata, Hungary

    Csilla Deminger

  51. Research Laboratory for Archaeology, School of Archaeology, University of Oxford, Oxford, UK

    Peter W. Ditchfield

  52. Institute of Archaeology, Zagreb, Croatia

    Marko Dizdar

  53. Department of Anthropology, The National Museum, Prague, Prague, Czech Republic

    Miluše Dobisíková, Petr Veleminsky & Zdeněk Vytlačil

  54. Department of Archaeology, Dobó István Castle Museum, Eger, Hungary

    László Domboróczki

  55. The Orkney Museum, Kirkwall, UK

    Gail Drinkall

  56. Archaeological Museum in Zagreb, Zagreb, Croatia

    Ana Đukić

  57. British Geological Survey, Keyworth Nottingham, Nottinghamshire, UK

    Jane Evans

  58. Archaeological Museum Osijek, Osijek, Croatia

    Slavica Filipović

  59. Archaeology and Ancient History, University of Leicester, Leicester, UK

    Andrew Fitzpatrick

  60. School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne, UK

    Chris Fowler

  61. Manx National Heritage, Eiraght Ashoonagh Vannin, Manx Museum, Douglas, UK

    Allison Fox

  62. Ásatárs Ltd, Kecskemét, Hungary

    Zsolt Gallina

  63. Heritage and Archaeological Research Practice (HARP), Edinburgh, UK

    Michelle Gamble

  64. Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Santander, Spain

    Manuel R. González Morales

  65. Grupo EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain

    Borja González-Rabanal & Ana B. Marín-Arroyo

  66. The Salisbury Museum, Salisbury, UK

    Adrian Green

  67. Department of Biological Anthropology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary

    Katalin Gyenesei

  68. VUhbs Archaeology, VU University, Amsterdam, Netherlands

    Diederick Habermehl

  69. Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary

    Tamás Hajdu & Tamás Szeniczey

  70. Scottish Universities Environmental Research Centre (SUERC), East Kilbride, UK

    Derek Hamilton

  71. Bureau Archeologie en Bodemkwaliteit, Gemeente Nijmegen, Nijmegen, Netherlands

    Joep Hendriks

  72. Musée Saint-Remi, Ville de Reims, Reims, France

    Bénédicte Hernu

  73. Independent Researcher, Mesterháza, Hungary

    Gábor Ilon

  74. Jósa András Museum, Nyíregyháza, Hungary

    Eszter Istvánovits

  75. Cornwall Archaeology Unit, Truro, UK

    Andy M. Jones

  76. Faculty of Humanities, University of Primorska, Koper, Slovenia

    Martina Blečić Kavur

  77. Musée de La Cour d’Or, Metz, France

    Kevin Kazek & Julien Trapp

  78. East Dorset Antiquarian Society (EDAS), Dorset, UK

    Robert A. Kenyon

  79. Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary

    Gabriella Kulcsár, Balázs G. Mende & Anna Szécsényi-Nagy

  80. Groningen Institute of Archaeology, Groningen University, Groningen, Netherlands

    Jos Kleijne

  81. Geology and Geochemistry Cluster, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

    Lisette M. Kootker

  82. Damjanich János Museum, Szolnok, Hungary

    Péter F. Kovács

  83. Archaeological Institute of the Slovak Academy of Sciences, Nitra, Slovakia

    Anita Kozubová

  84. University of Szeged, Faculty of Arts, Department of Archaeology, Szeged, Hungary

    Valéria Kulcsár

  85. Musee d’Histoire et d’Archeologie, Vannes, France

    Christophe Le Pennec

  86. School of History, Archaeology and Religion, Cardiff University, Cardiff, UK

    Michael Legge

  87. Wessex Archaeology, Salisbury, UK

    Matt Leivers

  88. Group EcoPast. CRETUS. Area of Archaeology, Department of History, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

    Olalla López-Costas & Jacqueline McKinley

  89. Lower Winskill Farm, Langcliffe, UK

    Tom Lord

  90. Geophiz.biz, West Heslerton, UK

    James Lyall

  91. Zavičajni Muzej Grada Rovinja, Rovinj, Croatia

    Damir Matošević

  92. Royal Pavilion and Museums Trust, Brighton, UK

    Andy Maxted

  93. Walcherse Archeologische Dienst, Middelburg, Netherlands

    Bernard Meijlink

  94. Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest, Hungary

    Viktória Kiss

  95. Conservation Department in Šibenik, Ministry of Culture of the Republic of Croatia, Šibenik, Croatia

    Marko Menđušić

  96. Museum of West Bohemia, Department of Prehistory, Pilsen, Czech Republic

    Milan Metlička

  97. Royal Cornwall Museum, Truro, Cornwall, UK

    Sophie Meyer

  98. Archaeological Museum of Istria, Pula, Croatia

    Kristina Mihovilić

  99. National Museum of Kikinda, Kikinda, Serbia

    Lidija Milasinovic

  100. Department of Archaeology, Durham University, Durham, UK

    Joanna Moore

  101. MOLES Archaeology, Courtwood House, Sheffield, UK

    Geoff Morley

  102. University of Bristol Spelaeological Society, Bristol, UK

    Graham Mullan & Linda Wilson

  103. Municipal Monument Preservation Institute Bratislava, Bratislava, Slovakia

    Margaréta Musilová & Branislav Resutík

  104. Archaeological and Forensic Sciences, University of Bradford, Bradford, UK

    Rebecca Nicholls

  105. Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia

    Mario Novak

  106. National Trust, Dorset & Wiltshire, Tisbury, UK

    Martin Papworth

  107. Archaeological Museum, Dubrovnik Museums, Dubrovnik, Croatia

    Domagoj Perkić

  108. Rómer Flóris Museum of Art and History, Győr, Hungary

    Krisztina Pesti & Ferenc Ujvári

  109. Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallés, Spain

    Alba Petit

  110. The City of Prague Museum, Prague, Czech Republic

    Katarína Petriščáková & Miroslava Šmolíková

  111. Musée Le Vergeur, Reims, France

    Coline Pichon

  112. Independent researcher, Budapest, Hungary

    Zoltán Pilling

  113. Department of Anthropology, University of Wisconsin-Madison, Madison, WI, USA

    T. Douglas Price

  114. Institute for Quaternary Palaeontology and Geology, Croatian Academy of Sciences and Arts, Zagreb, Croatia

    Siniša Radović

  115. Centre for Human Bioarchaeology, Museum of London, London, UK

    Rebecca Redfern

  116. National Trust For Scotland, Hermiston Quay, Edinburgh, UK

    Daniel T. Rhodes

  117. The Novium Museum, Chichester, UK

    Amy Roberts

  118. Provinciaal Archeologisch Depot Noord-Holland, Castricum, Netherlands

    Jean Roefstra

  119. Department of Prehistory and Classical Antiquity, The National Museum, Prague, Prague, Czech Republic

    Pavel Sankot

  120. Slovak National Museum—Natural History Museum, Bratislava, Slovakia

    Alena Šefčáková

  121. National Museums Scotland, Edinburgh, UK

    Alison Sheridan

  122. The Dock Museum, Barrow-in-Furness, UK

    Sabine Skae

  123. Rippl-Rónai Museum, Kaposvár, Hungary

    Krisztina Somogyi

  124. Katona József Museum Hungary, Kecskemét, Hungary

    Ágnes Somogyvári

  125. MAP Archaeological Practice, Malton, UK

    Mark Stephens & Paula Ware

  126. Wosinsky Mór Museum, Szekszárd, Hungary

    Géza Szabó

  127. MTA—ELTE Research Group for Interdisciplinary Archaeology, Eötvös Loránd University, Budapest, Hungary

    Károly Tankó

  128. Museo del Hombre Dominicano, Santo Domingo, Dominican Republic

    Clenis Tavarez Maria

  129. Craven Museum and Gallery, Skipton, UK

    Rachel Terry

  130. Department of Anthropology, Natural History Museum Vienna, Vienna, Austria

    Maria Teschler-Nicola

  131. Instituto Monte Bernorio de Estudios de la Antigüedad del Cantábrico (IMBEAC), Universidad Complutense de Madrid, Facultad de Geografía e Historia, Departamento de Prehistoria, Historia Antigua y Arqueología, Madrid, Spain

    Jesús F. Torres-Martínez

  132. Hampshire Cultural Trust, Winchester, UK

    Ross Turle

  133. Rijksdienst voor het Cultureel Erfgoed, Amersfoort, Netherlands

    Menno van der Heiden

  134. Maritime Cultures Research Institute, Department of Art, Sciences, and Archaeology, Vrije Universiteit Brussel, Brussels, Belgium

    Barbara Veselka

  135. Research Unit: Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium

    Barbara Veselka

  136. Archaeological Research Services, Bakewell, UK

    Clive Waddington

  137. Swale and Thames Archaeological Survey Company, Faversham, UK

    Paul Wilkinson

  138. Keswick Museum, Keswick, UK

    Eilidh Young

  139. Krka National Park, Šibenik, Croatia

    Joško Zaninović

  140. AA AVALA s.r.o., Bratislava, Slovakia

    Andrej Žitňan

  141. Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain

    Carles Lalueza-Fox

  142. Department of History, University of Hull, Hull, UK

    Peter Halkon

  143. Research Department of Genetics, Evolution and Environment, University College London, London, UK

    Mark G. Thomas

  144. Department of Anthropology, University of California, Santa Barbara, CA, USA

    Douglas J. Kennett

  145. Institute of Archaeology, University of Oxford, Oxford, UK

    Barry Cunliffe

  146. Department of Geography, Geology and Environment, University of Hull, Hull, UK

    Malcolm Lillie

  147. Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria

    Ron Pinhasi

Authors
  1. Nick Patterson
  2. Michael Isakov
  3. Thomas Booth
  4. Lindsey Büster
  5. Claire-Elise Fischer
  6. Iñigo Olalde
  7. Harald Ringbauer
  8. Ali Akbari
  9. Olivia Cheronet
  10. Madeleine Bleasdale
  11. Nicole Adamski
  12. Eveline Altena
  13. Rebecca Bernardos
  14. Selina Brace
  15. Nasreen Broomandkhoshbacht
  16. Kimberly Callan
  17. Francesca Candilio
  18. Brendan Culleton
  19. Elizabeth Curtis
  20. Lea Demetz
  21. Kellie Sara Duffett Carlson
  22. Ceiridwen J. Edwards
  23. Daniel M. Fernandes
  24. M. George B. Foody
  25. Suzanne Freilich
  26. Helen Goodchild
  27. Aisling Kearns
  28. Ann Marie Lawson
  29. Iosif Lazaridis
  30. Matthew Mah
  31. Swapan Mallick
  32. Kirsten Mandl
  33. Adam Micco
  34. Megan Michel
  35. Guillermo Bravo Morante
  36. Jonas Oppenheimer
  37. Kadir Toykan Özdoğan
  38. Lijun Qiu
  39. Constanze Schattke
  40. Kristin Stewardson
  41. J. Noah Workman
  42. Fatma Zalzala
  43. Zhao Zhang
  44. Bibiana Agustí
  45. Tim Allen
  46. Katalin Almássy
  47. Luc Amkreutz
  48. Abigail Ash
  49. Christèle Baillif-Ducros
  50. Alistair Barclay
  51. László Bartosiewicz
  52. Katherine Baxter
  53. Zsolt Bernert
  54. Jan Blažek
  55. Mario Bodružić
  56. Philippe Boissinot
  57. Clive Bonsall
  58. Pippa Bradley
  59. Marcus Brittain
  60. Alison Brookes
  61. Fraser Brown
  62. Lisa Brown
  63. Richard Brunning
  64. Chelsea Budd
  65. Josip Burmaz
  66. Sylvain Canet
  67. Silvia Carnicero-Cáceres
  68. Morana Čaušević-Bully
  69. Andrew Chamberlain
  70. Sébastien Chauvin
  71. Sharon Clough
  72. Natalija Čondić
  73. Alfredo Coppa
  74. Oliver Craig
  75. Matija Črešnar
  76. Vicki Cummings
  77. Szabolcs Czifra
  78. Alžběta Danielisová
  79. Robin Daniels
  80. Alex Davies
  81. Philip de Jersey
  82. Jody Deacon
  83. Csilla Deminger
  84. Peter W. Ditchfield
  85. Marko Dizdar
  86. Miroslav Dobeš
  87. Miluše Dobisíková
  88. László Domboróczki
  89. Gail Drinkall
  90. Ana Đukić
  91. Michal Ernée
  92. Christopher Evans
  93. Jane Evans
  94. Manuel Fernández-Götz
  95. Slavica Filipović
  96. Andrew Fitzpatrick
  97. Harry Fokkens
  98. Chris Fowler
  99. Allison Fox
  100. Zsolt Gallina
  101. Michelle Gamble
  102. Manuel R. González Morales
  103. Borja González-Rabanal
  104. Adrian Green
  105. Katalin Gyenesei
  106. Diederick Habermehl
  107. Tamás Hajdu
  108. Derek Hamilton
  109. James Harris
  110. Chris Hayden
  111. Joep Hendriks
  112. Bénédicte Hernu
  113. Gill Hey
  114. Milan Horňák
  115. Gábor Ilon
  116. Eszter Istvánovits
  117. Andy M. Jones
  118. Martina Blečić Kavur
  119. Kevin Kazek
  120. Robert A. Kenyon
  121. Amal Khreisheh
  122. Viktória Kiss
  123. Jos Kleijne
  124. Mark Knight
  125. Lisette M. Kootker
  126. Péter F. Kovács
  127. Anita Kozubová
  128. Gabriella Kulcsár
  129. Valéria Kulcsár
  130. Christophe Le Pennec
  131. Michael Legge
  132. Matt Leivers
  133. Louise Loe
  134. Olalla López-Costas
  135. Tom Lord
  136. Dženi Los
  137. James Lyall
  138. Ana B. Marín-Arroyo
  139. Philip Mason
  140. Damir Matošević
  141. Andy Maxted
  142. Lauren McIntyre
  143. Jacqueline McKinley
  144. Kathleen McSweeney
  145. Bernard Meijlink
  146. Balázs G. Mende
  147. Marko Menđušić
  148. Milan Metlička
  149. Sophie Meyer
  150. Kristina Mihovilić
  151. Lidija Milasinovic
  152. Steve Minnitt
  153. Joanna Moore
  154. Geoff Morley
  155. Graham Mullan
  156. Margaréta Musilová
  157. Benjamin Neil
  158. Rebecca Nicholls
  159. Mario Novak
  160. Maria Pala
  161. Martin Papworth
  162. Cécile Paresys
  163. Ricky Patten
  164. Domagoj Perkić
  165. Krisztina Pesti
  166. Alba Petit
  167. Katarína Petriščáková
  168. Coline Pichon
  169. Catriona Pickard
  170. Zoltán Pilling
  171. T. Douglas Price
  172. Siniša Radović
  173. Rebecca Redfern
  174. Branislav Resutík
  175. Daniel T. Rhodes
  176. Martin B. Richards
  177. Amy Roberts
  178. Jean Roefstra
  179. Pavel Sankot
  180. Alena Šefčáková
  181. Alison Sheridan
  182. Sabine Skae
  183. Miroslava Šmolíková
  184. Krisztina Somogyi
  185. Ágnes Somogyvári
  186. Mark Stephens
  187. Géza Szabó
  188. Anna Szécsényi-Nagy
  189. Tamás Szeniczey
  190. Jonathan Tabor
  191. Károly Tankó
  192. Clenis Tavarez Maria
  193. Rachel Terry
  194. Biba Teržan
  195. Maria Teschler-Nicola
  196. Jesús F. Torres-Martínez
  197. Julien Trapp
  198. Ross Turle
  199. Ferenc Ujvári
  200. Menno van der Heiden
  201. Petr Veleminsky
  202. Barbara Veselka
  203. Zdeněk Vytlačil
  204. Clive Waddington
  205. Paula Ware
  206. Paul Wilkinson
  207. Linda Wilson
  208. Rob Wiseman
  209. Eilidh Young
  210. Joško Zaninović
  211. Andrej Žitňan
  212. Carles Lalueza-Fox
  213. Peter de Knijff
  214. Ian Barnes
  215. Peter Halkon
  216. Mark G. Thomas
  217. Douglas J. Kennett
  218. Barry Cunliffe
  219. Malcolm Lillie
  220. Nadin Rohland
  221. Ron Pinhasi
  222. Ian Armit
  223. David Reich

Contributions

D.J.K., B.Cunliffe, N.R., R.Pinhasi, I.A. and D.R. supervised the study. T.B., L.Büster, C.-E.F., O.Cheronet, S.B., B.A., T.A., K.A., L.A., A.Ash, C.B.-D., A.Barclay, L.Bartosiewicz, K.B., Z.B., J.Blažek, M.Bodružić, P.Boissinot, C.Bonsall, P.Bradley, M.Brittain, A.Brookes, F.B., L.Brown, R.Brunning, C.Budd, J.Burmaz, S.Canet, S.C.-C., M.Č.-B., A.Chamberlain, S.Chauvin, S.Clough, N.Č., A.Coppa, O.Craig, M.Č., V.C., S.Czifra, A.Danielisová, R.D., A.Davis, P.d.J., J.D., C.D., P.W.D., M.Dizdar, M.Dobeš, M.Dobisíková, L.Domboróczki, G.D., A.Đukić, C.J.E., M.E., C.E., J.E., M.F.-G., S.Filipović, A.Fitzpatrick, H.F., C.F., A.Fox, Z.G., M.G., M.R.G.M., B.G.-R., A.G., K.G., D.Habermehl, T.H., D.Hamilton, J.Harris, C.H., J.Hendriks, B.H., G.H., M.H., G.I., E.I., A.M.J., M.B.K., K.K., R.A.K., A.Khreisheh, V.Kiss, J.K., M.K., L.M.K., P.F.K., A.Kozubová, G.K., V.Kulcsár, C.L.P., M.Legge, M.Leivers, L.L., O.L.-C., T.L., D.L., J.L., A.B.M.-A., P.M., D.M., A.Maxted, L.McIntyre, J.McKinley, K.McSweeney, B.M., B.G.M., M.Menđušić, M.Metlička, S.Meyer, K.Mihovilić, L.Milasinovic, S.Minnitt, J.Moore, G.Morley, G.Mullan, M.Musilová, B.N., R.N., M.N., M.Pala, M.Papworth, C.Paresys, R.Patten, D.P., K.Pesti, A.P., K.Petriščáková, C.Pichon, C.Pickard, Z.P., T.D.P., S.R., R.R., B.R., D.T.R., M.B.R., A.R., J.R., P.S., A.Šefčáková, A.Sheridan, S.S., K.Somogyi M.Šmolíková, Á.Somogyvári, M.Stephens, G.S., A.S.-N., T.S., J.Tabor, C.T.M., R.Terry, B.T., M.T.-N., J.F.T.-M., J.Trapp, R.Turle, F.U., M.v.d.H., P.V., B.V., Z.V., C.W., P.Ware, P.Wilkinson, L.W., R.W., E.Y., J.Z., A.Ž., C.L.-F., P.H., B.Cunliffe, M.Lillie, R.Pinhasi and I.A. excavated or curated samples and provided archaeological contextualization. T.B., O.Cheronet, M.Bleasdale, N.A., E.A., S.B., N.B., K.C., F.C., B.Culleton, E.C., L.Demetz, K.S.D.C., D.M.F., M.G.B.F., S.Freilich, A.Kearns, A.M.L., K.Mandl, M.Michel, G.B.M., J.O., K.T.Ö., L.Q., C.S., K.Stewardson, J.N.W., F.Z., C.J.E., D.J.K. and N.R. generated the data through sample preparation or laboratory work. N.P., M.I., L.Büster, C.-E.F., I.O., H.R., A.Akbari, O.Cheronet, M.Bleasdale, R.Bernardos, H.G., I.L., M.Mah, S.Mallick, A.Micco, Z.Z. and D.R. curated and analysed the data. N.P., M.I., T.B., L.Büster, C.-E.F., I.O., M.Bleasdale, I.A. and D.R. wrote substantial sections of the paper.

Corresponding authors

Correspondence toRon Pinhasi,Ian Armit orDavid Reich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature thanks Daniel Bradley, Daniel Lawson, Patrick Sims-Williams, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Post-MBA Britain was not a mix of earlier British populations.

a,qpAdm p-values for modelling British groups as a mix of Neolithic and Chalcolithic/EBA populations from England and Wales or Scotland (outgroups OldAfrica, OldSteppe, Turkey_N, CzechRepublic.Slovakia.Germany_3800.to.2700BP, Netherlands_C.EBA, Poland_Globular_Amphora, Spain.Portugal_4425.to.3800BP, CzechRepublic.Slovakia.Germany_4465.to.3800.BP, Sardinia_4100.to.2700BP, Sardinia_8100.to.4100BP, Spain.Portugal_6500.to.4425BP). We highlight p<0.05 (yellow) or p<0.005 (red). Both sources and target populations in this analysis remove outlier individuals (“Filter 2” in Supplementary Table5); we obtain qualitatively similar results when outlier individuals are not removed (not shown).b, To obtain insight into the source of the new ancestry in Britain in the IA, we computed f4(England.and.Wales_IA, α(England.and.Wales_N) + (1-α)(England.Wales_C.EBA); R1, R2) for different (R1, R2) population pairs. If England.and.Wales_IA is a simple mixture of England.and.Wales_N and England.and.Wales_C.EBA without additional ancestry, then for some mixture proportion the statistic will be consistent with zero for all (R1, R2 pairs). When (R1, R2) = (OldAfrica, OldSteppe) feasible Z-scores (Z1 in the plot) are observed when α0.85, showing that ~85% ancestry from England.and.Wales_C.EBA ancestry is needed to contribute the observed proportion of Steppe ancestry in England.and.Wales_IA. However, when (R1, R2) is (Balkan_N, Sardinian_8100.to.4100BP), we get infeasible Z-scores (Z2) of <−6 across the range where Z1 is remotely feasible. Thus, Iron Age people from England and Wales must have ancestry from an additional population deeply related to Sardinian Early Neolithic groups.

Extended Data Fig. 2 By-individual analysis of the British time transect.

Version of Fig.3 with the time transect extended into the Neolithic, and adding in individuals from Scotland. We plot mean estimates of EEF ancestry and one standard error bars from a Block Jackknife for all individuals in the time transect that pass basic quality control, that fit to a three-way admixture model (EEF + WHG + Yamnaya) at p>0.01 usingqpAdm, and for the Neolithic period that fit a two-way admixture model (EEF + WHG) at p>0.01. Individuals that fit the main cluster of their time are shown in blue (southern Britain) and green (Scotland), while red and orange respectively show outliers at the ancestry tails (identified either as p<0.005 based on aqpWave test from the main cluster of individuals from their period and |Z|>3 for a difference in their EEF ancestry proportion from the period, or alternatively p<0.1 and |Z|>3.5). The averages for the main clusters in both southern Britain and Scotland in each archaeological period (Neolithic, C/EBA, MBA, LBA and IA) are shown in dashed lines.

Extended Data Fig. 3 Changes in the size of the mate pool over time.

Close kin unions were rare at all periods as reflected in the paucity of individuals harbouring >50 centimorgans (cM) of their genome in runs of homozygosity (ROH) of >12 cM (red dots in top panel). The number of ROH of size 4–8 cM per individual (bottom panel) reflects the rate at which distant relatives have children, providing information about the sizes of mate pools (Ne) averaged over the hundreds of years prior to when individuals lived; thus, the broad trend of an approximately fourfold drop in Ne from the Neolithic to the IA is robust, but we may miss fluctuations on a time scale of centuries. The thick black lines represent the mean Ne obtained by fitting a mathematical model of a Gaussian process with a 600-year smoothing kernel (gray area 95% confidence interval). The horizontal grey lines show period averages from maximum likelihood which can differ from the mean obtained through the mathematical modelling if the counts do not conform well to a Gaussian process. We interrupt the fitted line for periods with too little data for accurate inference (<10 individuals in a 400-year interval centered on the point).

Extended Data Fig. 4 Frequency change over time at two phenotypically important alleles.

Present-day frequencies are shown by the red dashed lines; sample sizes for each period are labelled at the bottom of each plot; and we show means along with 95% confidence intervals (Supplementary Table8). (ad/Top) Lactase persistence allele at rs4988235. (eh/Bottom) Light skin pigmentation allele at rs16891982. In Britain the rise in frequency of the lactase persistence allele occurred earlier than in central Europe. This analysis is based on direct observation of alleles; imputation results are qualitatively consistent (Fig.4b).

Extended Data Fig. 5 Y chromosome haplogroup frequency changes over time.

Estimated frequency of the characteristically British Y chromosome haplogroup R1b-P312/L21/M529 in all individuals for which we are able to make a determination and which are not first-degree relatives of a higher coverage individual in the dataset. Sample sizes for each period are labelled at the bottom, and we show means and one standard error bars from a binominal distribution. The frequency increases significantly from ~0% in the whole island Neolithic, to 89±4% in the whole island C/EBA. It declines non-significantly to 79±9% in the MBA and LBA (from this time onward restricting to England and Wales because of the autosomal evidence of a change in EEF ancestry in the south but not the north). It further declines to 68±4% in the IA, a significant reduction relative to the C/EBA (P=0.014 by a two-sided chi-square contingency test). There is additional reduction from this time to the present, when the proportion is 43±3% in Wales and the west of England (P=5x10−6 for a reduction relative to the IA), and 14±2% in the center and east of England (P=3x10−32 for a reduction relative to the IA).

Extended Data Fig. 6 Version of Fig.3a contrasting Kent to the rest of southern Britain.

We show the period 2450-1 BCE. Each point corresponds to a single individual and we show means and one standard error bars from a Block Jackknife. All the high EEF outliers during the M-LBA are from Kent—the part of the island closest to France—and in addition all the individuals from 1000-875 BCE from the group of samples showing the ramp-up from MBA to IA levels of EEF ancestry are from Kent (5 from Cliffs End Farm and 3 from East Kent Access Road). This suggests the possibility that this small region was the gateway for migration to Britain during the M-LBA. Further sampling from the rest of Britain during the M-LBA is critical in order to understand the dynamics of how this ancestry spread more broadly. However, the fact that the only sample from the second half of the LBA that is not from Kent—I12624 from Blackberry Field in Potterne in Wiltshire at 950-750 BCE—already has a proportion of EEF ancestry typical of the IA in southern Britain—suggests that this ancestry began spreading more broadly by the second half of the LBA.

Extended Data Table 1 Ancestry change over time in Britain
Extended Data Table 2 Fine genetic structure in Iron Age Britain

Supplementary information

Supplementary Information

This file contains supplementary sections 1–8 (see SI guide on page 1 for TOC).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, N., Isakov, M., Booth, T.et al. Large-scale migration into Britain during the Middle to Late Bronze Age.Nature601, 588–594 (2022). https://doi.org/10.1038/s41586-021-04287-4

Download citation

This article is cited by

Comments

Commenting on this article is now closed.

  1. Michael St. Clair

    I very much disagree with the methodological approach undertaken by the researchers to model the prehistory of Europe and Celtic languages. They utilize statistical analysis of ancient autosomal markers. This frequently leads to conclusions that are flagrantly inconsistent with the archaeological record, such as a massive invasion of steppe nomads into Europe during the Bronze Age. Moreover, their subdivision of the human genetic history into “ancestry” components is substandard. A more reliable methodology utilizes the
    contemporary distribution of Y-chromosome single nucleotide polymorphism as the primary data source. Rather than statistical analysis, the genetic data should
    be interpreted with the archeological record, the paleoclimatic record, linguistic
    data, phylogenetic relationships, and other genetic perspectives such as
    ancient DNA. In summary, I think it is time to move beyond statistical models
    and to formulate better models based on hard empirical data.

    Michael St.Clair

    Genetic-Linguistic Interface
    mstclair@genlininterface.com
    https://genlinginterface.com/

Access through your institution
Buy or subscribe

Associated content

Bronze Age genomes reveal migration to Britain

  • Daniel G. Bradley
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp