- Article
- Published:
The timing and effect of the earliest human arrivals in North America
Naturevolume 584, pages93–97 (2020)Cite this article
17kAccesses
85Citations
1056Altmetric
Abstract
The peopling of the Americas marks a major expansion of humans across the planet. However, questions regarding the timing and mechanisms of this dispersal remain, and the previously accepted model (termed ‘Clovis-first’)—suggesting that the first inhabitants of the Americas were linked with the Clovis tradition, a complex marked by distinctive fluted lithic points1—has been effectively refuted. Here we analyse chronometric data from 42 North American and Beringian archaeological sites using a Bayesian age modelling approach, and use the resulting chronological framework to elucidate spatiotemporal patterns of human dispersal. We then integrate these patterns with the available genetic and climatic evidence. The data obtained show that humans were probably present before, during and immediately after the Last Glacial Maximum (about 26.5–19 thousand years ago)2,3 but that more widespread occupation began during a period of abrupt warming, Greenland Interstadial 1 (about 14.7–12.9 thousand years beforead 2000)4. We also identify the near-synchronous commencement of Beringian, Clovis and Western Stemmed cultural traditions, and an overlap of each with the last dates for the appearance of 18 now-extinct faunal genera. Our analysis suggests that the widespread expansion of humans through North America was a key factor in the extinction of large terrestrial mammals.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others

Environmental conditions associated with initial northern expansion of anatomically modern humans

Constraining the chronology and ecology of Late Acheulean and Middle Palaeolithic occupations at the margins of the monsoon

Climate influence on the early human occupation of South America during the late Pleistocene
Data availability
The data that support the findings of this study are available in the Article and its Supplementary Information.
Code availability
Code for OxCal is noted in the Supplementary Information.
References
Meltzer, D. J.The Great Paleolithic War: How Science Forged an Understanding of America’s Ice Age Past (Univ. Chicago Press, 2015).
Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the Ice Age: land, oceans, glaciers (EPILOG).Quat. Sci. Rev.20, 627–657 (2001).
Clark, P. U. et al. The Last Glacial Maximum.Science325, 710–714 (2009).
Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy.Quat. Sci. Rev.106, 14–28 (2014).
Waters, M. R. & Stafford, T. W. Jr. Redefining the age of Clovis: implications for the peopling of the Americas.Science315, 1122–1126 (2007).
Dillehay, T. D.Monte Verde, a Late Pleistocene Settlement in Chile: The Archaeological Context and Interpretation (Smithsonian Institution Press, 1997).
Williams, T. J. et al. Evidence of an early projectile point technology in North America at the Gault site, Texas, USA.Sci. Adv.4, eaar5954 (2018).
Waters, M. R. et al. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas–implications for the Late Pleistocene peopling of the Americas.Sci. Adv.4, eaat4505 (2018).
Haynes, G. The millennium before Clovis.PaleoAmerica1, 134–162 (2015).
Sandweiss, D. H. et al. Quebrada Jaguay: early South American maritime adaptations.Science281, 1830–1832 (1998).
Goebel, T. & Keene, J. L. inArchaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler (eds Parezo, N. J. & Janetski, J. C.) 35–60 (Univ. Utah Press, 2014).
Méndez, C., Jackson, D., Seguel, R. & Delaunay, A. N. Early high-quality lithic procurement in the semiarid north of Chile.Curr. Res. Pleistocene27, 19–21 (2010).
Méndez, C. & Jackson, D. Terminal Pleistocene lithic technology and use of space in Central Chile.Chungara (Arica)47, 53–65 (2015).
Jones, K. B., Hodgins, G. W. L. & Sandweiss, D. H. Radiocarbon chronometry of site QJ-280, Quebrada Jaguay, a Terminal Pleistocene to Early Holocene fishing site in southern Peru.J. Island Coast. Archaeol.14, 82–100 (2017).
Davis, L. G. et al. Late Upper Paleolithic occupation at Cooper’s Ferry, Idaho, USA shows Americas settled before ~16,000 years ago.Science365, 891–897 (2019).
Braje, T. J., Dillehay, T. D., Erlandson, J. M., Klein, R. G. & Rick, T. C. Finding the first Americans.Science358, 592–594 (2017).
Potter, B. A. et al. Current evidence allows multiple models for the peopling of the Americas.Sci. Adv.4, eaat5473 (2018).
Bronk Ramsey, C. Development of the radiocarbon program OxCal.Radiocarbon43, 355–363 (2001).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates.Radiocarbon51, 337–360 (2009).
Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination.J. Geophys. Res.111, D06102 (2006).
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP.Radiocarbon55, 1869–1887 (2013).
Adolphi, F. et al. Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events.Clim. Past14, 1755–1781 (2018).
Ray, N. & Adams, J. A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP).Internet Archaeol.11,https://doi.org/10.11141/ia.11.2 (2001).
Jackson, S. T. et al. Vegetation and environment in Eastern North America during the Last Glacial Maximum.Quat. Sci. Rev.19, 489–508 (2000).
Williams, J. W. Variations in tree cover in North America since the Last Glacial Maximum.Global Planet. Change35, 1–23 (2003).
Lyle, M. et al. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States.Science337, 1629–1633 (2012).
Goebel, T., Hockett, B., Adams, K. D., Rhode, D. & Graf, K. Climate, environment, and humans in North America’s Great Basin during the Younger Dryas, 12,900–11,600 calendar years ago.Quat. Int.242, 479–501 (2011).
Menking, K. M., Anderson, R. Y., Shafike, N. G., Syed, K. H. & Allen, B. D. Wetter or colder during the Last Glacial Maximum? Revisiting the pluvial lake question in southwestern North America.Quat. Res.62, 280–288 (2004).
Kirby, M. E. et al. A late Wisconsin (32–10k cal a BP) history of pluvials, droughts and vegetation in the Pacific south-west United States (Lake Elsinore, CA).J. Quat. Sci.33, 238–254 (2018).
Ibarra, D. E. et al. Warm and cold wet states in the western United States during the Pliocene–Pleistocene.Geology46, 355–358 (2018).
Feakins, S. J., Wu, M. S., Ponton, C. & Tierney, J. E. Biomarkers reveal abrupt switches in hydroclimate during the last glacial in southern California.Earth Planet. Sci. Lett.515, 164–172 (2019).
Stanford, D. J. & Bradley, B. A.Across Atlantic Ice: The Origin of America’s Clovis Culture (Univ of California Press, 2013).
Aubry, T. & Almeida, M. Analyse critique des bases chronostratigraphiques de la structuration du Solutréen.Le Solutréen40, 37e52 (2013).
Eren, M. I., Patten, R. J., O’Brien, M. J. & Meltzer, D. J. Refuting the technological cornerstone of the Ice-Age Atlantic crossing hypothesis.J. Archaeol. Sci.40, 2934–2941 (2013).
Raff, J. A. & Bolnick, D. A. Does mitochondrial haplogroup X indicate ancient trans-Atlantic migration to the Americas? A critical re-evaluation.PaleoAmerica1, 297–304 (2015).
Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records.Paleoceanography20, PA1003 (2005).
Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack.Clim. Past12, 1079–1092 (2016).
Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta.Quat. Sci. Rev.152, 72–79 (2016).
Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary.Nat. Commun.10, 3713 (2019).
Dalton, A. S., Finkelstein, S. A., Barnett, P. J. & Forman, S. L. Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Hudson Bay Lowlands, Canada.Quat. Sci. Rev.146, 288–299 (2016).
Pico, T., Mitrovica, J. X. & Mix, A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event.Sci. Adv.6, eaay2935 (2020).
Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada.Develop. Quat. Sci.2, 373–424 (2004).
Lesnek, A. J., Briner, J. P., Lindqvist, C., Baichtal, J. F. & Heaton, T. H. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas.Sci. Adv.4, eaar5040 (2018).
Tamm, E. et al. Beringian standstill and spread of Native American founders.PLoS ONE2, e829 (2007).
Moreno-Mayar, J. V. et al. Early human dispersals within the Americas.Science362, eaav2621 (2018).
Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans.Nature553, 203–207 (2018).
Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum.Nature https://doi.org/10.1038/s41586-020-2509-0 (2020).
Goodyear, A. C. inPaleoamerican Origins: Beyond Clovis (eds. Bonnichesen, R. et al.) 103–112 (Centre for the Study of the First Americans, 2005).
Llamas, B. et al. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas.Sci. Adv.2, e1501385 (2016).
Pinotti, T. et al. Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of Native American founders.Curr. Biol.29, 149–157.e3 (2019).
Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes.Science367, eaay5012 (2020).
Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans.Science349, aab3884 (2015).
Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana.Nature506, 225–229 (2014).
Reich, D. et al. Reconstructing Native American population history.Nature488, 370–374 (2012).
Scheib, C. L. et al. Ancient human parallel lineages within North America contributed to a coastal expansion.Science360, 1024–1027 (2018).
Erlandson, J. M. & Braje, T. J. From Asia to the Americas by boat? Paleogeography, paleoecology, and stemmed points of the northwest Pacific.Quat. Int.239, 28–37 (2011).
Williams, T. J. & Madsen, D. B. The Upper Paleolithic of the Americas.PaleoAmerica6, 4–22 (2019).
Gilbert, M. T. P. et al. DNA from pre-Clovis human coprolites in Oregon, North America.Science320, 786–789 (2008).
Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor.Nature537, 45–49 (2016).
Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the ice free corridor in western Canada.Proc. Natl Acad. Sci. USA113, 8057–8063 (2016).
Darvill, C. M., Menounos, B., Goehring, B. M., Lian, O. B. & Caffee, M. W. Retreat of the western Cordilleran Ice Sheet margin during the last deglaciation.Geophys. Res. Lett.45, 9710–9720 (2018).
Taylor, M. A., Hendy, I. L. & Pak, D. K. Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific Ocean.Earth Planet. Sci. Lett.403, 89–98 (2014).
Martin, P. S. The discovery of America.Science179, 969–974 (1973).
Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna.Proc. Natl Acad. Sci. USA113, 886–891 (2016).
Robinson, G. S., Pigott Burney, L. & Burney, D. A. Landscape paleoecology and megafaunal extinction in southwestern New York state.Ecol. Monogr.75, 295–315 (2005).
Guthrie, R. D. New carbon dates link climatic change with human colonization and Pleistocene extinctions.Nature441, 207–209 (2006).
Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans.Nature479, 359–364 (2011).
Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining Late Quaternary megafaunal extinctions.Proc. Natl Acad. Sci. USA109, 4527–4531 (2012).
Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover.Science349, 602–606 (2015).
Araujo, B. B. A., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. S. Bigger kill than chill: the uneven roles of humans and climate on Late Quaternary megafaunal extinctions.Quat. Int.431, 216–222 (2017).
Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling.Proc. Natl Acad. Sci. USA104, 16016–16021 (2007).
Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions.Nat. Commun.9, 5441 (2018).
Grayson, D. K. & Meltzer, D. J. Revisiting Paleoindian exploitation of extinct North American mammals.J. Archaeol. Sci.56, 177–193 (2015).
Buck, C. E. & Bard, E. A calendar chronology for Pleistocene mammoth and horse extinction in North America based on Bayesian radiocarbon calibration.Quat. Sci. Rev.26, 2031–2035 (2007).
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments.Science356, 605–608 (2017).
Bueno, L., Politis, G., Prates, L. & Steele, J. A Late Pleistocene/early Holocene archaeological14C database for Central and South America: palaeoenvironmental contexts and demographic interpretations.Quat. Int.301, 1–158 (2013).
Bond, J. D. Paleodrainage map of Beringia, Yukon Geological Survey, open file 2019-2. http://data.geology.gov.yk.ca/Reference/81642#InfoTab (2019).
Clark, G. A. inThe Settlement of the American Continents (ed. Barton, C. M. et al.) 103–112 (Univ. Arizona Press, 2004).
Harris, E. C.Principles of Archaeological Stratigraphy (Elsevier, 2014).
Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities.J. Am. Stat. Assoc.85, 398–409 (1990).
Gilks, W. R., Richardson, S. & Spiegelhalter, D.Markov Chain Monte Carlo in Practice (Chapman and Hall/CRC, 1995).
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program.Radiocarbon37, 425–430 (1995).
Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating.Radiocarbon51, 1023–1045 (2009).
Rosenblatt, M. Remarks on some nonparametric estimates of a density function.Ann. Math. Stat.27, 832–837 (1956).
Parzen, E. On estimation of a probability density function and mode.Ann. Math. Stat.33, 1065–1076 (1962).
Bronk Ramsey, C. Methods for summarizing radiocarbon datasets.Radiocarbon59, 1809–1833 (2017).
Silverman, B. W.Density Estimation for Statistics and Data Analysis (Chapman & Hall, 1986).
Bronk Ramsey, C. OxCal 4.3 Manual. https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html (2020).
Stafford, T. W. Jr, Duhamel, R. C., Haynes, C. V. Jr & Brendel, K. Isolation of proline and hydroxyproline from fossil bone.Life Sci.31, 931–938 (1982).
Stafford, T. W., Brendel, K. & Duhamel, R. C. Radiocarbon,13C and15N analysis of fossil bone: removal of humates with XAD-2 resin.Geochim. Cosmochim. Acta52, 2257–2267 (1988).
Deviese, T., Comeskey, D., McCullagh, J., Bronk Ramsey, C. & Higham, T. New protocol for compound-specific radiocarbon analysis of archaeological bones.Rapid Commun. Mass Spectrom.32, 373–379 (2018).
Devièse, T. et al. Increasing accuracy for the radiocarbon dating of sites occupied by the first Americans.Quat. Sci. Res.198, 171–180 (2018).
Becerra-Valdivia, L. et al. Reassessing the chronology of the archaeological site of Anzick.Proc. Natl Acad. Sci. USA115, 7000–7003 (2018).
Waters, M. R., Stafford, T. W. Jr, Kooyman, B. & Hills, L. V. Late Pleistocene horse and camel hunting at the southern margin of the ice-free corridor: reassessing the age of Wally’s Beach, Canada.Proc. Natl Acad. Sci. USA112, 4263–4267 (2015).
Bronk Ramsey, C., Housley, R. A., Lane, C. S., Smith, V. C. & Pollard, A. M. The RESET tephra database and associated analytical tools.Quat. Sci. Rev.118, 33–47 (2015).
Derek Hamilton, W. & Krus, A. M. The myths and realities of Bayesian chronological modeling revealed.Am. Antiq.83, 187–203 (2018).
Acknowledgements
Without implying their agreement with the content of this article, we thank E. Jacob, G. Wali, J. Swift, C. Bronk Ramsey, J. Lee-Thorp, K. Graf and K. Douka for their feedback on versions of the manuscript. We are grateful to the staff of the Oxford Radiocarbon Accelerator Unit, University of Oxford. Funding was provided by the Clarendon Fund Scholarship, University of Oxford.
Author information
Authors and Affiliations
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
Lorena Becerra-Valdivia & Thomas Higham
Chronos 14C-Cycle Facility, SSEAU, University of New South Wales, Sydney, New South Wales, Australia
Lorena Becerra-Valdivia
- Lorena Becerra-Valdivia
You can also search for this author inPubMed Google Scholar
- Thomas Higham
You can also search for this author inPubMed Google Scholar
Contributions
L.B.-V. compiled archaeological and chronometric data and built Bayesian age models. L.B.-V. and T.H. analysed modelled output and wrote the manuscript.
Corresponding author
Correspondence toLorena Becerra-Valdivia.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review informationNature thanks Loren G. Davis, Christopher L. Hill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Bayesian age model and start boundary for the Beringian tradition (14,955–13,895 cal.bp).
Right, estimate rounded to 50. Outlier analysis output (O) is noted as ‘posterior probability/prior probability’. δ18O data are according to the Greenland ice-core timescale (GICC05)20.
Extended Data Fig. 2 Bayesian age model and start boundary for the Western Stemmed tradition (14,860–13,065 cal.bp).
Outlier analysis output (O) is noted as ‘posterior probability/prior probability’. δ18O data are according to the Greenland ice-core timescale (GICC05)20.
Extended Data Fig. 3 Bayesian age model and start boundary for Clovis tradition (14,210–13,495 cal.bp).
Outlier analysis output (O) is noted as ‘posterior probability/prior probability’. δ18O data are according to the Greenland ice core timescale (GICC05)20.
Extended Data Fig. 4 Spatio-temporal slices of chronometric data belonging to the cultural components analysed, with a spatial KDE analysis.
a–f, Coloured circles (following colour scheme in Fig.1) denote chronometric data (n = 387 dates) and white outlines reflect the spatial KDE analysis. Chronometric data were summarized using aKDE_Model analysis (Methods). For each date, differences in circle size reflect increasing or decreasing probabilities at a 95.4% confidence interval. The spatial KDE analysis shows a marked increase in the frequency and distribution of the data immediately, before and during GI-1.
Supplementary information
Supplementary Information
This Supplementary Information file contains a description of the archaeological traditions discussed, information on the archaeological sites included in the analyses and notes on their Bayesian age modelling (including OxCal code), data tabulations tables (S1 and S2), a brief discussion on excluded archaeological sites, and the results of sensitivity testing and ‘Difference’ queries. Readers are guided by a hyperlinked Table of Contents, at the beginning of the document.
Rights and permissions
About this article
Cite this article
Becerra-Valdivia, L., Higham, T. The timing and effect of the earliest human arrivals in North America.Nature584, 93–97 (2020). https://doi.org/10.1038/s41586-020-2491-6
Received:
Accepted:
Published:
Issue Date: