- Review Article
- Published:
The diversity of CD8+ T cell dysfunction in cancer and viral infection
- Lorenzo Galluzzi ORCID:orcid.org/0000-0003-2257-85001,
- Kellie N. Smith ORCID:orcid.org/0000-0002-6295-89302,3,
- Adrian Liston ORCID:orcid.org/0000-0002-6272-40854 &
- …
- Abhishek D. Garg ORCID:orcid.org/0000-0002-9976-99225
Nature Reviews Immunologyvolume 25, pages662–679 (2025)Cite this article
13kAccesses
32Citations
64Altmetric
Abstract
CD8+ T cells that are repeatedly exposed to antigenic stimulation, such as in the context of progressing neoplasms and chronic viral infections, acquire a dysfunctional or hypofunctional state that is generally known as exhaustion. There have been considerable efforts to develop therapeutic strategies that prevent exhaustion in these pathological scenarios, but there has been limited success. This may be because exhaustion is not the only source of T cell hypofunction in cancer and chronic viral infection. Here, we discuss the molecular and spatiotemporal mechanisms beyond exhaustion that underlie the inability of CD8+ T cells to eradicate malignant or chronically infected cells. We also propose a framework to enhance our understanding of these mechanisms — which include tolerization, anergy, senescence, cell death, exclusion and ignorance — with the ultimate aim of informing novel approaches to improve the clinical management of cancer and chronic viral infection.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Kroemer, G., Chan, T. A., Eggermont, A. M. M. & Galluzzi, L. Immunosurveillance in clinical cancer management.CA Cancer J. Clin.74, 187–202 (2024).
Berry, R., Watson, G. M., Jonjic, S., Degli-Esposti, M. A. & Rossjohn, J. Modulation of innate and adaptive immunity by cytomegaloviruses.Nat. Rev. Immunol.20, 113–127 (2020).
Lam, N., Lee, Y. & Farber, D. L. A guide to adaptive immune memory.Nat. Rev. Immunol.24, 810–829 (2024).
Pritykin, Y. et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection.Mol. Cell81, 2477–2493.e10 (2021).
Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer.Sci. Transl. Med.15, eadd1016 (2023).This study uses comprehensive multi-omics and spatial mapping to differentiate canonical CD8+T cell exhaustion from other hypofunctional CD8+T cell states such as tolerization in human cancers.
Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy.Cancer Discov.8, 1069–1086 (2018).
McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer.Annu. Rev. Immunol.37, 457–495 (2019).
Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy.Nat. Rev. Clin. Oncol.19, 775–790 (2022).
Collier, J. L., Weiss, S. A., Pauken, K. E., Sen, D. R. & Sharpe, A. H. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity.Nat. Immunol.22, 809–819 (2021).
Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells.Immunity48, 1029–1045.e5 (2018).This study uses transcriptomic and epigenetic approaches to define core as well as disease-specific molecular features of T cell exhaustion in HIV and human cancers.
Kinget, L. et al. A spatial architecture-embedding HLA signature to predict clinical response to immunotherapy in renal cell carcinoma.Nat. Med.30, 1667–1679 (2024).This study reveals how spatially defined antigenic niches, enriching pre-exhausted and exhausted CD8+T cells, distinguish immunotherapy responses in real-world patients with kidney cancer.
Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy.Nat. Rev. Immunol.18, 635–647 (2018).
Chechlinska, M., Kowalewska, M. & Nowak, R. Systemic inflammation as a confounding factor in cancer biomarker discovery and validation.Nat. Rev. Cancer10, 2–3 (2010).
Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy.Nat. Rev. Immunol.20, 7–24 (2020).
Lei, X. et al. CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment.Nat. Commun.14, 217 (2023).
Mempel, T. R., Lill, J. K. & Altenburger, L. M. How chemokines organize the tumour microenvironment.Nat. Rev. Cancer24, 28–50 (2024).
Galluzzi, L. et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death.J. Immunother. Cancer8, e000337 (2020).
Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy.Nat. Rev. Clin. Oncol.19, 237–253 (2022).
Huang, Y., Jiang, W. & Zhou, R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways.Nat. Rev. Immunol.24, 703–719 (2024).
Yang, K., Halima, A. & Chan, T. A. Antigen presentation in cancer — mechanisms and clinical implications for immunotherapy.Nat. Rev. Clin. Oncol.20, 604–623 (2023).
Takada, K. & Jameson, S. C. Naive T cell homeostasis: from awareness of space to a sense of place.Nat. Rev. Immunol.9, 823–832 (2009).
ElTanbouly, M. A. & Noelle, R. J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey.Nat. Rev. Immunol.21, 257–267 (2021).
Brown, C. C. & Rudensky, A. Y. Spatiotemporal regulation of peripheral T cell tolerance.Science380, 472–478 (2023).
Ashby, K. M. & Hogquist, K. A. A guide to thymic selection of T cells.Nat. Rev. Immunol.24, 103–117 (2024).
Stern, L. J., Clement, C., Galluzzi, L. & Santambrogio, L. Non-mutational neoantigens in disease.Nat. Immunol.25, 29–40 (2024).
Tanchot, C. et al. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance.Cancer Microenviron.6, 147–157 (2013).
Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer.Nat. Rev. Immunol.22, 209–223 (2022).
Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & López-Soto, A. The hallmarks of successful anticancer immunotherapy.Sci. Transl. Med.10, eaat7807 (2018).
Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies.Nat. Rev. Drug Discov.18, 197–218 (2019).
Galassi, C., Chan, T. A., Vitale, I. & Galluzzi, L. The hallmarks of cancer immune evasion.Cancer Cell42, 1825–1863 (2024).
Golstein, P. & Griffiths, G. M. An early history of T cell-mediated cytotoxicity.Nat. Rev. Immunol.18, 527–535 (2018).
Vanderlugt, C. L. & Miller, S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy.Nat. Rev. Immunol.2, 85–95 (2002).
Woodland, D. L. & Kohlmeier, J. E. Migration, maintenance and recall of memory T cells in peripheral tissues.Nat. Rev. Immunol.9, 153–161 (2009).
Shakiba, M. et al. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion.J. Exp. Med.219, e20201966 (2022).
van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis.Nat. Rev. Cancer20, 218–232 (2020).
Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. Antigen-driven effector CD8 T cell function regulated by T-bet.Proc. Natl Acad. Sci. USA100, 15818–15823 (2003).
Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity.Nat. Commun.12, 5217 (2021).
Lee, K. P., Epstein, B., Lake, C. M. & Snow, A. L. Molecular and temporal control of restimulation-induced cell death (RICD) in T lymphocytes.Front. Cell Death2, 1281137 (2023).
Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells.Nat. Immunol.4, 1191–1198 (2003).
Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells.Nature552, 404–409 (2017).
Oliveira, G. & Wu, C. J. Dynamics and specificities of T cells in cancer immunotherapy.Nat. Rev. Cancer23, 295–316 (2023).
Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy.Nat. Med.27, 212–224 (2021).
Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells.Science374, abe6474 (2021).
Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation.Nature571, 270–274 (2019).This study identifies the nuclear factor TOX as a key regulator of tumour-specific dysfunctional T cells as well as T cell exhaustion in the context of chronic viral infection.
Sekine, T. et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells.Sci. Immunol.5, eaba7918 (2020).
Blank, C. U. et al. Defining ‘T cell exhaustion’.Nat. Rev. Immunol.19, 665–674 (2019).
Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming.Nature545, 452–456 (2017).This study highlights two distinct chromatin states in tumoural T cells — a plastic dysfunctional state that can be rejuvenated and a fixed dysfunctional state that is irreversible.
Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors.Cell184, 4996–5014.e26 (2021).
Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections.Immunity45, 415–427 (2016).This study is among the few early studies that document a TCF1+stem-like T cell population that could have been a prime target for disease-resolving therapeutic interventions.
Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision.Immunity51, 840–855.e5 (2019).
Gebhardt, T., Park, S. L. & Parish, I. A. Stem-like exhausted and memory CD8+ T cells in cancer.Nat. Rev. Cancer23, 780–798 (2023).
Meiser, P. et al. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity.Cancer Cell41, 1498–1515.e10 (2023).
Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy.Immunity50, 195–211.e10 (2019).
Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.Nature537, 417–421 (2016).This study documents the self-renewal and maintenance capacities of stem-like CD8+T cells as well as their high sensitivity towards proliferative burst induced by PD1 blockade.
Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles.Nat. Immunol.17, 1187–1196 (2016).
Levin, N. et al. Neoantigen-specific stimulation of tumor-infiltrating lymphocytes enables effective TCR isolation and expansion while preserving stem-like memory phenotypes.J. Immunother. Cancer12, e008645 (2024).
Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors.J. Exp. Med.215, 2520–2535 (2018).
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumor-infiltrating T cells.Immunity50, 181–194.e6 (2019).
Murgaski, A. et al. Efficacy of CD40 agonists is mediated by distinct cDC subsets and subverted by suppressive macrophages.Cancer Res.82, 3785–3801 (2022).
Hanna, B. S. et al. Interleukin-10 receptor signaling promotes the maintenance of a PD-1int TCF-1+CD8+ T cell population that sustains anti-tumor immunity.Immunity54, 2825–2841.e10 (2021).
Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells.Nat. Immunol.22, 370–380 (2021).
Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer.Cell184, 1262–1280.e22 (2021).
Beltra, J.-C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms.Immunity52, 825–841.e8 (2020).This study uses molecular, transcriptional and epigenetic analyses to reveal a four-stage developmental hierarchy for exhausted T cells, coordinated by TCF1, T-bet and TOX.
Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection.Nat. Immunol.21, 1256–1266 (2020).
Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes.Cell185, 4049–4066.e25 (2022).
Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response.Sci. Immunol.6, eabg7836 (2021).
Borràs, D. M. et al. Single cell dynamics of tumor specificity vs bystander activity in CD8+ T cells define the diverse immune landscapes in colorectal cancer.Cell Discov.9, 114 (2023).
Gill, A. L. et al. PD-1 blockade increases the self-renewal of stem-like CD8 T cells to compensate for their accelerated differentiation into effectors.Sci. Immunol.8, eadg0539 (2023).
Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade.Nat. Immunol.20, 326–336 (2019).
Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival.J. Exp. Med.213, 1819–1834 (2016).
Ghorani, E. et al. The T cell differentiation landscape is shaped by tumour mutations in lung cancer.Nat. Cancer1, 546–561 (2020).
Hu, Y. et al. TGF-β regulates the stem-like state of PD-1+TCF-1+ virus-specific CD8 T cells during chronic infection.J. Exp. Med.219, e20211574 (2022).
Marx, A.-F. et al. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1+CD8+ T cells in chronic viral infection.Immunity56, 813–828.e10 (2023).
Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection.Immunity54, 1698–1714.e5 (2021).
Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen.Nat. Immunol.21, 1022–1033 (2020).
Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer.Immunity51, 1028–1042.e4 (2019).
Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses.Cell184, 6101–6118.e13 (2021).
Beltra, J.-C. et al. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection.Proc. Natl Acad. Sci. USA113, E5444–E5453 (2016).
Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness.Sci. Immunol.1, eaai8593 (2016).
Lukhele, S. et al. The transcription factor IRF2 drives interferon-mediated CD8+ T cell exhaustion to restrict anti-tumor immunity.Immunity55, 2369–2385.e10 (2022).
Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8+ T cell differentiation and development of dysfunction in the tumor microenvironment.Immunity53, 658–671.e6 (2020).
Sun, Q. et al. BCL6 promotes a stem-like CD8+ T cell program in cancer via antagonizing BLIMP1.Sci. Immunol.8, eadh1306 (2023).
Lacher, S. B. et al. PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells.Nature629, 417–425 (2024).
Sprooten, J. et al. Lymph node and tumor-associated PD-L1+ macrophages antagonize dendritic cell vaccines by suppressing CD8+ T cells.Cell Rep. Med.5, 101377 (2024).
Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion.Nature571, 211–218 (2019).
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection.Nature571, 265–269 (2019).
Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection.PLoS Pathog.10, e1004251 (2014).
Jin, H.-T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection.Proc. Natl Acad. Sci. USA107, 14733–14738 (2010).
Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function.Cancer Cell26, 923–937 (2014).
Vignali, P. D. A. et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity.Nat. Immunol.24, 267–279 (2023).
Zhang, Z. et al. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy.EBioMedicine83, 104207 (2022).
Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells.Immunity42, 265–278 (2015).
Curdy, N., Lanvin, O., Laurent, C., Fournié, J.-J. & Franchini, D.-M. Regulatory mechanisms of inhibitory immune checkpoint receptors expression.Trends Cell Biol.29, 777–790 (2019).
Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions.Annu. Rev. Med.69, 301–318 (2018).
Peralta, R. M. et al. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism.Nat. Immunol.25, 2297–2307 (2024).
Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion.Nat. Immunol.22, 205–215 (2021).
Wang, C. et al. Circadian tumor infiltration and function of CD8+ T cells dictate immunotherapy efficacy.Cell187, 2690–2702.e17 (2024).
Bader, J. E. et al. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity.Nature630, 968–975 (2024).
Gallerano, D. et al. Genetically driven CD39 expression shapes human tumor-infiltrating CD8+ T-cell functions.Int. J. Cancer147, 2597–2610 (2020).
Baessler, A. & Vignali, D. A. A. T cell exhaustion.Annu. Rev. Immunol.42, 179–206 (2024).
Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers.Nat. Med.26, 566–576 (2020).
Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation.Nat. Immunol.22, 1008–1019 (2021).
Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans.Nat. Immunol.22, 1020–1029 (2021).
Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy.Nat. Cancer3, 143–155 (2022).
Lee, H., Jeong, S. & Shin, E.-C. Significance of bystander T cell activation in microbial infection.Nat. Immunol.23, 13–22 (2022).
Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers.Nat. Genet.48, 725–732 (2016).
Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers.Nature596, 126–132 (2021).This study uses functional and transcriptomic analyses to differentiate neoantigen-specific T cells from virus-specific bystander T cells in during neoadjuvant PD1 blockade in patients with lung cancer.
Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma.Nature596, 119–125 (2021).This study shows how the cellular phenotype of tumoural T cells and the antigenic specificity of their TCRs together shape immunotherapy responsiveness in patients with melanoma.
Maurice, N. J., Taber, A. K. & Prlic, M. The ugly duckling turned to swan: a change in perception of bystander-activated memory CD8 T cells.J. Immunol.206, 455–462 (2021).
Low, J. S. et al. Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses.J. Exp. Med.217, e20192291 (2020).
Steinbach, P. et al. Influenza virus infection enhances tumour-specific CD8+ T-cell immunity, facilitating tumour control.PLoS Pathog.20, e1011982 (2024).
Le, C. T. et al. Regulation of human and mouse bystander T cell activation responses by PD-1.JCI Insight8, e173287 (2023).
Isaacs, J. F. et al. CD39 is expressed on functional effector and tissue-resident memory CD8+ T cells.J. Immunol.213, 588–599 (2024).
Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates.Nature557, 575–579 (2018).A study that comprehensively highlights the underappreciated molecular role and immunological impact of bystander CD8+T cells in human cancers.
Gavil, N. V. et al. Chronic antigen in solid tumors drives a distinct program of T cell residence.Sci. Immunol.8, eadd5976 (2023).
Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells.Proc. Natl Acad. Sci. USA114, E2776–E2785 (2017).
Chen, X. et al. An oncolytic virus delivering tumor-irrelevant bystander T cell epitopes induces anti-tumor immunity and potentiates cancer immunotherapy.Nat. Cancer5, 1063–1081 (2024).
Goebeler, M.-E., Stuhler, G. & Bargou, R. Bispecific and multispecific antibodies in oncology: opportunities and challenges.Nat. Rev. Clin. Oncol.21, 539–560 (2024).
Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy.Nat. Commun.10, 567 (2019).
Nüssing, S., Trapani, J. A. & Parish, I. A. Revisiting T cell tolerance as a checkpoint target for cancer immunotherapy.Front. Immunol.11, 589641 (2020).
Zehn, D. & Bevan, M. J. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity.Immunity25, 261–270 (2006).
Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion.Immunity13, 829–840 (2000).
Hernandez, J., Aung, S., Redmond, W. L. & Sherman, L. A. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen.J. Exp. Med.194, 707–717 (2001).
Redmond, W. L. & Sherman, L. A. Peripheral tolerance of CD8 T lymphocytes.Immunity22, 275–284 (2005).
Schietinger, A., Delrow, J. J., Basom, R. S., Blattman, J. N. & Greenberg, P. D. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state.Science335, 723–727 (2012).
Van Der Byl, W. et al. The CD8+ T cell tolerance checkpoint triggers a distinct differentiation state defined by protein translation defects.Immunity57, 1324–1344.e8 (2024).
Rivoltini, L. et al. Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1.J. Immunol.154, 2257–2265 (1995).
Coulie, P. G. et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas.J. Exp. Med.180, 35–42 (1994).
Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics.Cell Rep.1, 191–199 (2012).
Bai, A., Higham, E., Eisen, H. N., Wittrup, K. D. & Chen, J. Rapid tolerization of virus-activated tumor-specific CD8+ T cells in prostate tumors of TRAMP mice.Proc. Natl Acad. Sci. USA105, 13003–13008 (2008).
Teague, R. M. et al. Peripheral CD8+ T cell tolerance to self-proteins is regulated proximally at the T cell receptor.Immunity28, 662–674 (2008).
Woroniecka, K. et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma.Clin. Cancer Res.24, 4175–4186 (2018).
Damo, M. et al. PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens.Nature619, 151–159 (2023).
Nelson, C. E. et al. Reprogramming responsiveness to checkpoint blockade in dysfunctional CD8 T cells.Proc. Natl Acad. Sci. USA116, 2640–2645 (2019).
Nelson, C. E. et al. Robust iterative stimulation with self-antigens overcomes CD8+ T cell tolerance to self- and tumor antigens.Cell Rep.28, 3092–3104.e5 (2019).
Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen.Nature458, 211–214 (2009).
Shimizu, K. et al. PD-1 preferentially inhibits the activation of low-affinity T cells.Proc. Natl Acad. Sci. USA118, e2107141118 (2021).
Mattila, J. et al. Analysis of thymic generation of shared T-cell receptor α repertoire associated with recognition of tumor antigens shows no preference for neoantigens over wild-type antigens.Cancer Med.12, 13486–13496 (2023).
Komuro, H. et al. Single-cell sequencing on CD8+ TILs revealed the nature of exhausted T cells recognizing neoantigen and cancer/testis antigen in non-small cell lung cancer.J. Immunother. Cancer11, e007180 (2023).
Black, C. M., Armstrong, T. D. & Jaffee, E. M. Apoptosis-regulated low-avidity cancer-specific CD8+ T cells can be rescued to eliminate HER2/neu-expressing tumors by costimulatory agonists in tolerized mice.Cancer Immunol. Res.2, 307–319 (2014).
Li, S. et al. Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies.Proc. Natl Acad. Sci. USA118, e2025570118 (2021).
Mi, T. et al. Conserved epigenetic hallmarks of T cell aging during immunity and malignancy.Nat. Aging4, 1053–1063 (2024).
Quinn, K. M. et al. Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells.Cell Rep.23, 3512–3524 (2018).
Liu, X. et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition.Nat. Commun.9, 249 (2018).
Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+CD28− and CD8+CD57+ T cells and their role in health and disease.Immunology134, 17–32 (2011).
Vallejo, A. N. CD28 extinction in human T cells: altered functions and the program of T-cell senescence.Immunol. Rev.205, 158–169 (2005).
Koh, J.-Y., Kim, D.-U., Moon, B.-H. & Shin, E.-C. Human CD8+ T-cell populations that express natural killer receptors.Immune Netw.23, e8 (2023).
Ahuja, S. K. et al. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection.Nat. Commun.14, 3286 (2023).
Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity.Nature614, 762–766 (2023).
Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ.25, 486–541 (2018).
Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance.Nat. Med.29, 1550–1562 (2023).A study that comprehensively highlights the underappreciated enrichment of stressed or dying T cells in human cancers and their negative impact on immunotherapy responsiveness.
DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy.Nat. Rev. Immunol.21, 785–797 (2021).
Sanmamed, M. F. et al. A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy.Cancer Discov.11, 1700–1715 (2021).
Zhu, J. et al. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes.Nat. Commun.8, 1404 (2017).
Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death.Nature434, 88–93 (2005).
Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors.Nat. Med.20, 607–615 (2014).
Wolkers, M. C., Bensinger, S. J., Green, D. R., Schoenberger, S. P. & Janssen, E. M. Interleukin-2 rescues helpless effector CD8+ T cells by diminishing the susceptibility to TRAIL mediated death.Immunol. Lett.139, 25–32 (2011).
Morotti, M. et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function.Nature629, 426–434 (2024).
Cullen, J. G. et al. CD4+ T help promotes influenza virus-specific CD8+ T cell memory by limiting metabolic dysfunction.Proc. Natl Acad. Sci. USA116, 4481–4488 (2019).
Hashimoto, M. et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program.Nature610, 173–181 (2022).
Pai, C.-C. S. et al. Clonal deletion of tumor-specific T cells by interferon-γ confers therapeutic resistance to combination immune checkpoint blockade.Immunity50, 477–492.e8 (2019).
Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion.Nat. Med.19, 465–472 (2013).
Schenkel, J. M. & Pauken, K. E. Localization, tissue biology and T cell state — implications for cancer immunotherapy.Nat. Rev. Immunol.23, 807–823 (2023).
Zenke, S. et al. Quorum Regulation via nested antagonistic feedback circuits mediated by the receptors CD28 and CTLA-4 confers robustness to T cell population dynamics.Immunity52, 313–327.e7 (2020).
Roberts, A. D. & Woodland, D. L. Cutting edge: effector memory CD8+ T cells play a prominent role in recall responses to secondary viral infection in the lung.J. Immunol.172, 6533–6537 (2004).
Vanderbeke, L. et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity.Nat. Commun.12, 4117 (2021).
Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages.Cell Res.31, 272–290 (2021).
Rodríguez-Ubreva, J. et al. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation.Nat. Commun.15, 10344 (2024).
Chu, T. et al. Precursors of exhausted T cells are preemptively formed in acute infection.Nature,https://doi.org/10.1038/s41586-024-08451-4 (2025).
McManus, D. T. et al. An early precursor CD8 T cell that adapts to acute or chronic viral infection.Nature,https://doi.org/10.1038/41586-024-08562-y (2025).
Jadhav, R. R. et al. Epigenetic signature of PD-1+TCF1+CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade.Proc. Natl Acad. Sci. USA116, 14113–14118 (2019).
Kanev, K. & Zehn, D. Origin and fine-tuning of effector CD8 T cell subpopulations in chronic infection.Curr. Opin. Virol.46, 27–35 (2021).
Hoffmann, M. et al. Exhaustion of activated CD8 T cells predicts disease progression in primary HIV-1 infection.PLoS Pathog.12, e1005661 (2016).
Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection.Immunity27, 670–684 (2007).
Holder, A. M. et al. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours.Nat. Rev. Cancer24, 498–512 (2024).
Anagnostou, V., Bardelli, A., Chan, T. A. & Turajlic, S. The status of tumor mutational burden and immunotherapy.Nat. Cancer3, 652–656 (2022).
Łuksza, M. et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer.Nature606, 389–395 (2022).
Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers.Nat. Med.25, 89–94 (2019).This study highlights that actionable tumour-specific T cells are relatively rare and variable, thereby highlighting the need to balance T cell quantity versus quality during immunotherapy.
Verdegaal, E. M. E. et al. Neoantigen landscape dynamics during human melanoma–T cell interactions.Nature536, 91–95 (2016).
Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival.Nat. Commun.12, 4098 (2021).
Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer.Nature624, 154–163 (2023).
Westcott, P. M. K. et al. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity.Nat. Genet.55, 1686–1695 (2023).
Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.Nature523, 231–235 (2015).
Wu, S. et al. The antitumor effects of vaccine-activated CD8+ T cells associate with weak TCR signaling and induction of stem-like memory T cells.Cancer Immunol. Res.5, 908–919 (2017).
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat. Rev. Immunol.20, 651–668 (2020).
Lopez de Rodas, M. & Schalper, K. A. Tumour antigen-induced T cell exhaustion — the archenemy of immune-hot malignancies.Nat. Rev. Clin. Oncol.18, 749–750 (2021).
Westcott, P. M. K. et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer.Nat. Cancer2, 1071–1085 (2021).
Lu, K. H.-N. et al. T cell receptor dynamic and transcriptional determinants of T cell expansion in glioma-infiltrating T cells.Neurooncol. Adv.4, vdac140 (2022).
Agudo, J. & Miao, Y. Stemness in solid malignancies: coping with immune attack.Nat. Rev. Cancer25, 27–40 (2024).
Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease.Cell187, 1589–1616 (2024).
Khalili, J. S. et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma.Clin. Cancer Res.18, 5329–5340 (2012).
Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy.Cancer Discov.6, 202–216 (2016).
Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.Science359, 770–775 (2018).
Roelands, J. et al. Oncogenic states dictate the prognostic and predictive connotations of intratumoral immune response.J. Immunother. Cancer8, e000617 (2020).
Kumagai, S. et al. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells.Immunity53, 187–203.e8 (2020).
Tsakonas, G. & Ekman, S. Oncogene-addicted non-small cell lung cancer and immunotherapy.J. Thorac. Dis.10, S1547–S1555 (2018).
Coulton, A. et al. Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response.Nat. Commun.15, 5665 (2024).
Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment.Nat. Commun.13, 6619 (2022).
Pan, X. et al. Tumour vasculature at single-cell resolution.Nature632, 429–436 (2024).
Takahashi, M. et al. Intratumoral antigen signaling traps CD8+ T cells to confine exhaustion to the tumor site.Sci. Immunol.9, eade2094 (2024).
Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop.Cancer Cell41, 226 (2023).
de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth.Cancer Cell41, 374–403 (2023).
Im, S. J. et al. Characteristics and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in chronic viral infection and cancer.Proc. Natl Acad. Sci. USA120, e2221985120 (2023).
Espinosa-Carrasco, G. et al. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors.Cancer Cell42, 1202–1216.e8 (2024).
Magen, A. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma.Nat. Med.29, 1389–1399 (2023).
Bala, N. et al. T cell activation niches-optimizing T cell effector function in inflamed and infected tissues.Immunol. Rev.306, 164–180 (2022).
Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer.Cell184, 4734–4752.e20 (2021).
Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells.Nature576, 465–470 (2019).This is among some early studies that highlight a role for spatial niches that enrich stem-like T cells within the tumours as key regulators of T cell infiltration and patient prognosis.
Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment.Cell184, 4512–4530.e22 (2021).
Chen, J. H. et al. Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy.Nat. Immunol.25, 644–658 (2024).
Gaglia, G. et al. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma.Cancer Cell41, 871–886.e10 (2023).
Kasikova, L. et al. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer.Nat. Commun.15, 2528 (2024).
Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy.Sci. Immunol.7, eabk1692 (2022).
Lynch, K. T. et al. Heterogeneity in tertiary lymphoid structure B-cells correlates with patient survival in metastatic melanoma.J. Immunother. Cancer9, e000617 (2021).
Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response.Nature577, 549–555 (2020).
Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma.Nature577, 561–565 (2020).
Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma.Nature577, 556–560 (2020).
Rahim, M. K. et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes.Cell186, 1127–1143.e18 (2023).
Opzoomer, J. W. et al. Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression.Sci. Adv.7, eabg9518 (2021).
Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function.Nature537, 539–543 (2016).
Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism.Science363, eaau0135 (2019).
De Martino, M., Rathmell, J. C., Galluzzi, L. & Vanpouille-Box, C. Cancer cell metabolism and antitumour immunity.Nat. Rev. Immunol.24, 654–669 (2024).
Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance.Nature515, 568–571 (2014).
Scolaro, T. et al. Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance.Nat. Cancer5, 1206–1226 (2024).
Vanmeerbeek, I. et al. Targeting conserved TIM3+VISTA+ tumor-associated macrophages overcomes resistance to cancer immunotherapy.Sci. Adv.10, eadm8660 (2024).
Xiao, Z. et al. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors.Nat. Commun.14, 5110 (2023).
Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment.Proc. Natl Acad. Sci. USA115, E4041–E4050 (2018).
Zhang, J. et al. Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor.Cell187, 3409–3426.e24 (2024).
Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination.Nat. Med.27, 152–164 (2021).
Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer.Nat. Commun.11, 5583 (2020).
Grout, J. A. et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T-cell exclusion in human lung tumors.Cancer Discov.12, 2606–2625 (2022).
Park, H.-R. et al. Angiopoietin-2-dependent spatial vascular destabilization promotes T-cell exclusion and limits immunotherapy in melanoma.Cancer Res.83, 1968–1983 (2023).
Croizer, H. et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer.Nat. Commun.15, 2806 (2024).
Yang, F. et al. An immunosuppressive vascular niche drives macrophage polarization and immunotherapy resistance in glioblastoma.Sci. Adv.10, eadj4678 (2024).
Sussman, J. H. et al. Multiplexed imaging mass cytometry analysis characterizes the vascular niche in pancreatic cancer.Cancer Res.84, 2364–2376 (2024).
Kinker, G. S. et al. Mature tertiary lymphoid structures are key niches of tumour-specific immune responses in pancreatic ductal adenocarcinomas.Gut72, 1927–1941 (2023).
Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors.J. Immunother. Cancer6, 157 (2018).
Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition.Cell184, 596–614.e14 (2021).
Laureano, R. S. et al. The cell stress and immunity cycle in cancer: toward next generation of cancer immunotherapy.Immunol. Rev.321, 71–93 (2024).
Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma.Nat. Med.25, 477–486 (2019).
Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma.Nat. Med.25, 470–476 (2019).
Randall, L. M. et al. Niraparib and dostarlimab for the treatment of recurrent platinum-resistant ovarian cancer: results of a Phase II study (MOONSTONE/GOG-3032).Gynecol. Oncol.178, 161–169 (2023).
Mosalem, O. et al. A real-world experience of pembrolizumab monotherapy in microsatellite instability-high and/or tumor mutation burden-high metastatic castration-resistant prostate cancer: outcome analysis.Prostate Cancer Prostatic Dis.28, 138–144 (2024).
Fabian, K. P., Padget, M. R., Fujii, R., Schlom, J. & Hodge, J. W. Differential combination immunotherapy requirements for inflamed (warm) tumors versus T cell excluded (cool) tumors: engage, expand, enable, and evolve.J. Immunotherapy. Cancer9, e001691 (2021).
Sayour, E. J., Boczkowski, D., Mitchell, D. A. & Nair, S. K. Cancer mRNA vaccines: clinical advances and future opportunities.Nat. Rev. Clin. Oncol.21, 489–500 (2024).
Hensler, M. et al. Peripheral gene signatures reveal distinct cancer patient immunotypes with therapeutic implications for autologous DC-based vaccines.Oncoimmunology11, 2101596 (2022).
Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M. & Veiseh, O. Engineering the next generation of cell-based therapeutics.Nat. Rev. Drug. Discov.21, 655–675 (2022).
Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease.Sci. Immunol.5, eabb9726 (2020).
Huff, W. X., Kwon, J. H., Henriquez, M., Fetcko, K. & Dey, M. The evolving role of CD8+CD28− immunosenescent T cells in cancer immunology.Int. J. Mol. Sci.20, 2810 (2019).
Zebley, C. C., Zehn, D., Gottschalk, S. & Chi, H. T cell dysfunction and therapeutic intervention in cancer.Nat. Immunol.25, 1344–1354 (2024).
Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer.Cancer Cell33, 547–562 (2018).
Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment.Curr. Opin. Immunol.25, 214–221 (2013).
Rodríguez-Rodríguez, N., Rosetti, F. & Crispín, J. C. CD8 is down(regulated) for tolerance.Trends Immunol.45, 442–453 (2024).
Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy.Cell185, 2918–2935.e29 (2022).
Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade.Nat. Med.25, 1251–1259 (2019).This study highlights a key role of intratumoural T cell clonal replacement from extratumoural, peritumoural or tumour margins in regulating immunotherapy responsiveness.
Zhou, W. et al. Stem-like progenitor and terminally differentiated TFH-like CD4+ T cell exhaustion in the tumor microenvironment.Cell Rep.43, 113797 (2024).
Tooley, K. A., Escobar, G. & Anderson, A. C. Spatial determinants of CD8+ T cell differentiation in cancer.Trends Cancer8, 642–654 (2022).
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma.Cell175, 998–1013.e20 (2018).This is one of the early studies that used single-cell omics to reveal the positioning of different T cell states within patients with melanoma who responded or remained resistant to immunotherapy.
Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors.Nat. Commun.9, 2724 (2018).
Vick, L. V. et al. PD-1 signaling serves a dual role in suppressing T cell activation but also in protecting from activation-induced cell death.J. Immunol.210, 226.11 (2023).
Vanmeerbeek, I. et al. Early memory differentiation and cell death resistance in T cells predicts melanoma response to sequential anti-CTLA4 and anti-PD1 immunotherapy.Genes. Immun.22, 108–119 (2021).
Dyikanov, D. et al. Comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics in patients with cancer.Cancer Cell42, 759–779.e12 (2024).
Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer.Nat. Cancer3, 108–121 (2022).
Cascone, T. et al. Perioperative nivolumab in resectable lung cancer.N. Engl. J. Med.390, 1756–1769 (2024).
Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.N. Engl. J. Med.373, 23–34 (2015).
Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma.N. Engl. J. Med.386, 24–34 (2022).
Serritella, A. V. & Shenoy, N. K. Nivolumab plus ipilimumab vs nivolumab alone in advanced cancers other than melanoma: a meta-analysis.JAMA Oncol.9, 1441–1446 (2023).
Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial.Nat. Med.25, 920–928 (2019).
Yokosuka, T. et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation.Immunity33, 326–339 (2010).
Pedicord, V. A., Montalvo, W., Leiner, I. M. & Allison, J. P. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance.Proc. Natl Acad. Sci. USA108, 266–271 (2011).
Tietze, J. K. et al. Delineation of antigen-specific and antigen-nonspecific CD8+ memory T-cell responses after cytokine-based cancer immunotherapy.Blood119, 3073–3083 (2012).
Braun, M. et al. IL12-mediated sensitizing of T-cell receptor-dependent and -independent tumor cell killing.Oncoimmunology5, e1188245 (2016).
Roetman, J. J. et al. Tumor-reactive CD8+ T cells enter a TCF1+PD-1− dysfunctional state.Cancer Immunol. Res.11, 1630–1641 (2023).
Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death.Nat. Immunol.23, 487–500 (2022).
Leone, P. et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells.J. Natl Cancer Inst.105, 1172–1187 (2013).
Sim, J. H. et al. IL-7RαlowCD8+ T cells from healthy individuals are anergic with defective glycolysis.J. Immunol.205, 2968–2978 (2020).
Chikuma, S. et al. PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo.J. Immunol.182, 6682–6689 (2009).
Clavijo, P. E. & Frauwirth, K. A. Anergic CD8+ T lymphocytes have impaired NF-κB activation with defects in p65 phosphorylation and acetylation.J. Immunol.188, 1213–1221 (2012).
Zippelius, A. et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance.Cancer Res.64, 2865–2873 (2004).
Pittet, M. J. et al. High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals.J. Exp. Med.190, 705–715 (1999).
Acknowledgements
A.D.G. is supported by Research Foundation Flanders (Fundamental Research grants G0B4620N, G026325N, G026225N), KU Leuven (C1 grant C14/24/122 and C3 grant C3/23/067), VLIR-UOS (iBOF grant, iBOF/21/048, for ‘MIMICRY’ consortium), Olivia Hendrickx Research Foundation (OHRF) and a European Union (EU) Mission Cancer grant for the GLIOMATCH consortium (project no. 101136670). L.G. is or has been supported (as a PI unless otherwise indicated) by one R01 grant from the NIH/NCI (CA271915), by two Breakthrough Level 2 grants from the US DoD BCRP (BC180476P1, BC210945), by a Transformative Breast Cancer Consortium grant from the US DoD BCRP (W81XWH2120034, PI: Formenti), by a U54 grant from NIH/NCI (CA274291, PIs: Deasy, Formenti, Weichselbaum).
Author information
Authors and Affiliations
Cancer Signalling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
Lorenzo Galluzzi
Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
Kellie N. Smith
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
Kellie N. Smith
Department of Pathology, University of Cambridge, Cambridge, UK
Adrian Liston
Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
Abhishek D. Garg
- Lorenzo Galluzzi
Search author on:PubMed Google Scholar
- Kellie N. Smith
Search author on:PubMed Google Scholar
- Adrian Liston
Search author on:PubMed Google Scholar
- Abhishek D. Garg
Search author on:PubMed Google Scholar
Contributions
A.D.G. conceived the article. A.D.G. and L.G. wrote the manuscript with critical input from A.L. and K.N.S. A.D.G. prepared the display items. All authors approved the submitted version of the article.
Corresponding authors
Correspondence toLorenzo Galluzzi orAbhishek D. Garg.
Ethics declarations
Competing interests
A.D.G. received consulting/advisory/lecture honoraria or R&D contracts from Boehringer Ingelheim (Germany), Miltenyi Biotec (Germany), Novigenix (Switzerland), Sotio (Czech Republic) and IsoPlexis (USA). L.G. holds or has held research contracts with Lytix Biopharma, Promontory and Onxeo, has received consulting or advisory honoraria from Boehringer Ingelheim, AstraZeneca, OmniSEQ, Onxeo, The Longevity Labs, Inzen, Imvax, Sotio, Promontory, Noxopharm, EduCom, AbbVie and the Luke Heller TECPR2 Foundation, and holds Promontory stock options. K.N.S. has received honoraria from Adaptive Biotechnologies and Illumina, Inc., has received research support from AbbVie, Bristol Myers Squibb and AstraZeneca, holds several patents related to the MANAFEST technology and TCR discovery, and is a scientific founder of Clasp Therapeutics. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Immunology thanks Jason Schenkel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Galluzzi, L., Smith, K.N., Liston, A.et al. The diversity of CD8+ T cell dysfunction in cancer and viral infection.Nat Rev Immunol25, 662–679 (2025). https://doi.org/10.1038/s41577-025-01161-6
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Regulators of CD8+ T cell exhaustion
- Qinli Sun
- Chen Dong
Nature Reviews Immunology (2026)
Melanosomes support immune evasion in melanoma
- Yash Chhabra
- Kasturee R. Jagirdar
- Lorenzo Galluzzi
Cellular & Molecular Immunology (2026)
Antigen-specific CD8+CD39+ cytotoxic T cell density in the microenvironment of hepatocellular carcinoma predicts patient survival
- Konstantina Dimopoulou
- Aris Spathis
- Periklis G. Foukas
British Journal of Cancer (2026)
Immunosuppressive mechanisms and therapeutic interventions shaping glioblastoma immunity
- Pilar M. Moreno-Sanchez
- Mahsa Rezaeipour
- Anna Golebiewska
Nature Cancer (2026)
Context-dependent impact of type I interferon signaling in cancer
- Ainhoa Ruiz-Iglesias
- Emma Guilbaud
- Santos Mañes
Molecular Cancer (2025)


