Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Immunology
  • Review Article
  • Published:

The diversity of CD8+ T cell dysfunction in cancer and viral infection

Nature Reviews Immunologyvolume 25pages662–679 (2025)Cite this article

Subjects

Abstract

CD8+ T cells that are repeatedly exposed to antigenic stimulation, such as in the context of progressing neoplasms and chronic viral infections, acquire a dysfunctional or hypofunctional state that is generally known as exhaustion. There have been considerable efforts to develop therapeutic strategies that prevent exhaustion in these pathological scenarios, but there has been limited success. This may be because exhaustion is not the only source of T cell hypofunction in cancer and chronic viral infection. Here, we discuss the molecular and spatiotemporal mechanisms beyond exhaustion that underlie the inability of CD8+ T cells to eradicate malignant or chronically infected cells. We also propose a framework to enhance our understanding of these mechanisms — which include tolerization, anergy, senescence, cell death, exclusion and ignorance — with the ultimate aim of informing novel approaches to improve the clinical management of cancer and chronic viral infection.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effective immunity and crucial determinants of CD8+ T cell hypofunction or exclusion.
Fig. 2: Diversity of T cell hypofunctional states across disease states.
Fig. 3: Spatial determinants of tumoural T cell dysfunction or exclusion.
Fig. 4: CD8+ T cell trajectories following treatment of T cell hot or pseudo-hot solid tumours with immune checkpoint inhibitors.
Fig. 5: CD8+ T cell trajectories following treatment of T cell cold or pseudo-cold solid tumours with immune checkpoint inhibitors.

Similar content being viewed by others

References

  1. Kroemer, G., Chan, T. A., Eggermont, A. M. M. & Galluzzi, L. Immunosurveillance in clinical cancer management.CA Cancer J. Clin.74, 187–202 (2024).

    PubMed  Google Scholar 

  2. Berry, R., Watson, G. M., Jonjic, S., Degli-Esposti, M. A. & Rossjohn, J. Modulation of innate and adaptive immunity by cytomegaloviruses.Nat. Rev. Immunol.20, 113–127 (2020).

    Article PubMed CAS  Google Scholar 

  3. Lam, N., Lee, Y. & Farber, D. L. A guide to adaptive immune memory.Nat. Rev. Immunol.24, 810–829 (2024).

    Article PubMed CAS  Google Scholar 

  4. Pritykin, Y. et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection.Mol. Cell81, 2477–2493.e10 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  5. Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer.Sci. Transl. Med.15, eadd1016 (2023).This study uses comprehensive multi-omics and spatial mapping to differentiate canonical CD8+T cell exhaustion from other hypofunctional CD8+T cell states such as tolerization in human cancers.

    Article PubMed CAS  Google Scholar 

  6. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy.Cancer Discov.8, 1069–1086 (2018).

    Article PubMed  Google Scholar 

  7. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer.Annu. Rev. Immunol.37, 457–495 (2019).

    Article PubMed CAS  Google Scholar 

  8. Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy.Nat. Rev. Clin. Oncol.19, 775–790 (2022).

    Article PubMed PubMed Central  Google Scholar 

  9. Collier, J. L., Weiss, S. A., Pauken, K. E., Sen, D. R. & Sharpe, A. H. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity.Nat. Immunol.22, 809–819 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  10. Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells.Immunity48, 1029–1045.e5 (2018).This study uses transcriptomic and epigenetic approaches to define core as well as disease-specific molecular features of T cell exhaustion in HIV and human cancers.

    Article PubMed PubMed Central CAS  Google Scholar 

  11. Kinget, L. et al. A spatial architecture-embedding HLA signature to predict clinical response to immunotherapy in renal cell carcinoma.Nat. Med.30, 1667–1679 (2024).This study reveals how spatially defined antigenic niches, enriching pre-exhausted and exhausted CD8+T cells, distinguish immunotherapy responses in real-world patients with kidney cancer.

    Article PubMed CAS  Google Scholar 

  12. Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy.Nat. Rev. Immunol.18, 635–647 (2018).

    Article PubMed CAS  Google Scholar 

  13. Chechlinska, M., Kowalewska, M. & Nowak, R. Systemic inflammation as a confounding factor in cancer biomarker discovery and validation.Nat. Rev. Cancer10, 2–3 (2010).

    Article PubMed CAS  Google Scholar 

  14. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy.Nat. Rev. Immunol.20, 7–24 (2020).

    Article PubMed CAS  Google Scholar 

  15. Lei, X. et al. CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment.Nat. Commun.14, 217 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  16. Mempel, T. R., Lill, J. K. & Altenburger, L. M. How chemokines organize the tumour microenvironment.Nat. Rev. Cancer24, 28–50 (2024).

    Article PubMed CAS  Google Scholar 

  17. Galluzzi, L. et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death.J. Immunother. Cancer8, e000337 (2020).

    Article PubMed PubMed Central  Google Scholar 

  18. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy.Nat. Rev. Clin. Oncol.19, 237–253 (2022).

    Article PubMed CAS  Google Scholar 

  19. Huang, Y., Jiang, W. & Zhou, R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways.Nat. Rev. Immunol.24, 703–719 (2024).

    Article PubMed CAS  Google Scholar 

  20. Yang, K., Halima, A. & Chan, T. A. Antigen presentation in cancer — mechanisms and clinical implications for immunotherapy.Nat. Rev. Clin. Oncol.20, 604–623 (2023).

    Article PubMed CAS  Google Scholar 

  21. Takada, K. & Jameson, S. C. Naive T cell homeostasis: from awareness of space to a sense of place.Nat. Rev. Immunol.9, 823–832 (2009).

    Article PubMed CAS  Google Scholar 

  22. ElTanbouly, M. A. & Noelle, R. J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey.Nat. Rev. Immunol.21, 257–267 (2021).

    Article PubMed CAS  Google Scholar 

  23. Brown, C. C. & Rudensky, A. Y. Spatiotemporal regulation of peripheral T cell tolerance.Science380, 472–478 (2023).

    Article PubMed CAS  Google Scholar 

  24. Ashby, K. M. & Hogquist, K. A. A guide to thymic selection of T cells.Nat. Rev. Immunol.24, 103–117 (2024).

    Article PubMed CAS  Google Scholar 

  25. Stern, L. J., Clement, C., Galluzzi, L. & Santambrogio, L. Non-mutational neoantigens in disease.Nat. Immunol.25, 29–40 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  26. Tanchot, C. et al. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance.Cancer Microenviron.6, 147–157 (2013).

    Article PubMed CAS  Google Scholar 

  27. Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer.Nat. Rev. Immunol.22, 209–223 (2022).

    Article PubMed CAS  Google Scholar 

  28. Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & López-Soto, A. The hallmarks of successful anticancer immunotherapy.Sci. Transl. Med.10, eaat7807 (2018).

    Article PubMed  Google Scholar 

  29. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies.Nat. Rev. Drug Discov.18, 197–218 (2019).

    Article PubMed CAS  Google Scholar 

  30. Galassi, C., Chan, T. A., Vitale, I. & Galluzzi, L. The hallmarks of cancer immune evasion.Cancer Cell42, 1825–1863 (2024).

    Article PubMed CAS  Google Scholar 

  31. Golstein, P. & Griffiths, G. M. An early history of T cell-mediated cytotoxicity.Nat. Rev. Immunol.18, 527–535 (2018).

    Article PubMed CAS  Google Scholar 

  32. Vanderlugt, C. L. & Miller, S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy.Nat. Rev. Immunol.2, 85–95 (2002).

    Article PubMed CAS  Google Scholar 

  33. Woodland, D. L. & Kohlmeier, J. E. Migration, maintenance and recall of memory T cells in peripheral tissues.Nat. Rev. Immunol.9, 153–161 (2009).

    Article PubMed CAS  Google Scholar 

  34. Shakiba, M. et al. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion.J. Exp. Med.219, e20201966 (2022).

    Article PubMed CAS  Google Scholar 

  35. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis.Nat. Rev. Cancer20, 218–232 (2020).

    Article PubMed PubMed Central  Google Scholar 

  36. Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. Antigen-driven effector CD8 T cell function regulated by T-bet.Proc. Natl Acad. Sci. USA100, 15818–15823 (2003).

    Article PubMed PubMed Central CAS  Google Scholar 

  37. Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity.Nat. Commun.12, 5217 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  38. Lee, K. P., Epstein, B., Lake, C. M. & Snow, A. L. Molecular and temporal control of restimulation-induced cell death (RICD) in T lymphocytes.Front. Cell Death2, 1281137 (2023).

    Article PubMed PubMed Central  Google Scholar 

  39. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells.Nat. Immunol.4, 1191–1198 (2003).

    Article PubMed CAS  Google Scholar 

  40. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells.Nature552, 404–409 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  41. Oliveira, G. & Wu, C. J. Dynamics and specificities of T cells in cancer immunotherapy.Nat. Rev. Cancer23, 295–316 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  42. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy.Nat. Med.27, 212–224 (2021).

    Article PubMed CAS  Google Scholar 

  43. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells.Science374, abe6474 (2021).

    Article PubMed  Google Scholar 

  44. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation.Nature571, 270–274 (2019).This study identifies the nuclear factor TOX as a key regulator of tumour-specific dysfunctional T cells as well as T cell exhaustion in the context of chronic viral infection.

    Article PubMed PubMed Central CAS  Google Scholar 

  45. Sekine, T. et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells.Sci. Immunol.5, eaba7918 (2020).

    Article PubMed CAS  Google Scholar 

  46. Blank, C. U. et al. Defining ‘T cell exhaustion’.Nat. Rev. Immunol.19, 665–674 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  47. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming.Nature545, 452–456 (2017).This study highlights two distinct chromatin states in tumoural T cells — a plastic dysfunctional state that can be rejuvenated and a fixed dysfunctional state that is irreversible.

    Article PubMed PubMed Central CAS  Google Scholar 

  48. Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors.Cell184, 4996–5014.e26 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  49. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections.Immunity45, 415–427 (2016).This study is among the few early studies that document a TCF1+stem-like T cell population that could have been a prime target for disease-resolving therapeutic interventions.

    Article PubMed CAS  Google Scholar 

  50. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision.Immunity51, 840–855.e5 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  51. Gebhardt, T., Park, S. L. & Parish, I. A. Stem-like exhausted and memory CD8+ T cells in cancer.Nat. Rev. Cancer23, 780–798 (2023).

    Article PubMed CAS  Google Scholar 

  52. Meiser, P. et al. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity.Cancer Cell41, 1498–1515.e10 (2023).

    Article PubMed CAS  Google Scholar 

  53. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy.Immunity50, 195–211.e10 (2019).

    Article PubMed CAS  Google Scholar 

  54. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.Nature537, 417–421 (2016).This study documents the self-renewal and maintenance capacities of stem-like CD8+T cells as well as their high sensitivity towards proliferative burst induced by PD1 blockade.

    Article PubMed PubMed Central CAS  Google Scholar 

  55. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles.Nat. Immunol.17, 1187–1196 (2016).

    Article PubMed CAS  Google Scholar 

  56. Levin, N. et al. Neoantigen-specific stimulation of tumor-infiltrating lymphocytes enables effective TCR isolation and expansion while preserving stem-like memory phenotypes.J. Immunother. Cancer12, e008645 (2024).

    Article PubMed PubMed Central  Google Scholar 

  57. Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors.J. Exp. Med.215, 2520–2535 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  58. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumor-infiltrating T cells.Immunity50, 181–194.e6 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  59. Murgaski, A. et al. Efficacy of CD40 agonists is mediated by distinct cDC subsets and subverted by suppressive macrophages.Cancer Res.82, 3785–3801 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  60. Hanna, B. S. et al. Interleukin-10 receptor signaling promotes the maintenance of a PD-1int TCF-1+CD8+ T cell population that sustains anti-tumor immunity.Immunity54, 2825–2841.e10 (2021).

    Article PubMed CAS  Google Scholar 

  61. Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells.Nat. Immunol.22, 370–380 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  62. Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer.Cell184, 1262–1280.e22 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  63. Beltra, J.-C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms.Immunity52, 825–841.e8 (2020).This study uses molecular, transcriptional and epigenetic analyses to reveal a four-stage developmental hierarchy for exhausted T cells, coordinated by TCF1, T-bet and TOX.

    Article PubMed PubMed Central CAS  Google Scholar 

  64. Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection.Nat. Immunol.21, 1256–1266 (2020).

    Article PubMed CAS  Google Scholar 

  65. Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes.Cell185, 4049–4066.e25 (2022).

    Article PubMed CAS  Google Scholar 

  66. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response.Sci. Immunol.6, eabg7836 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  67. Borràs, D. M. et al. Single cell dynamics of tumor specificity vs bystander activity in CD8+ T cells define the diverse immune landscapes in colorectal cancer.Cell Discov.9, 114 (2023).

    Article PubMed PubMed Central  Google Scholar 

  68. Gill, A. L. et al. PD-1 blockade increases the self-renewal of stem-like CD8 T cells to compensate for their accelerated differentiation into effectors.Sci. Immunol.8, eadg0539 (2023).

    Article PubMed PubMed Central  Google Scholar 

  69. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade.Nat. Immunol.20, 326–336 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  70. Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival.J. Exp. Med.213, 1819–1834 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  71. Ghorani, E. et al. The T cell differentiation landscape is shaped by tumour mutations in lung cancer.Nat. Cancer1, 546–561 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  72. Hu, Y. et al. TGF-β regulates the stem-like state of PD-1+TCF-1+ virus-specific CD8 T cells during chronic infection.J. Exp. Med.219, e20211574 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  73. Marx, A.-F. et al. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1+CD8+ T cells in chronic viral infection.Immunity56, 813–828.e10 (2023).

    Article PubMed CAS  Google Scholar 

  74. Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection.Immunity54, 1698–1714.e5 (2021).

    Article PubMed CAS  Google Scholar 

  75. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen.Nat. Immunol.21, 1022–1033 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  76. Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer.Immunity51, 1028–1042.e4 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  77. Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses.Cell184, 6101–6118.e13 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  78. Beltra, J.-C. et al. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection.Proc. Natl Acad. Sci. USA113, E5444–E5453 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  79. Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness.Sci. Immunol.1, eaai8593 (2016).

    Article PubMed PubMed Central  Google Scholar 

  80. Lukhele, S. et al. The transcription factor IRF2 drives interferon-mediated CD8+ T cell exhaustion to restrict anti-tumor immunity.Immunity55, 2369–2385.e10 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  81. Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8+ T cell differentiation and development of dysfunction in the tumor microenvironment.Immunity53, 658–671.e6 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  82. Sun, Q. et al. BCL6 promotes a stem-like CD8+ T cell program in cancer via antagonizing BLIMP1.Sci. Immunol.8, eadh1306 (2023).

    Article PubMed CAS  Google Scholar 

  83. Lacher, S. B. et al. PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells.Nature629, 417–425 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  84. Sprooten, J. et al. Lymph node and tumor-associated PD-L1+ macrophages antagonize dendritic cell vaccines by suppressing CD8+ T cells.Cell Rep. Med.5, 101377 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  85. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion.Nature571, 211–218 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  86. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection.Nature571, 265–269 (2019).

    Article PubMed CAS  Google Scholar 

  87. Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection.PLoS Pathog.10, e1004251 (2014).

    Article PubMed PubMed Central  Google Scholar 

  88. Jin, H.-T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection.Proc. Natl Acad. Sci. USA107, 14733–14738 (2010).

    Article PubMed PubMed Central CAS  Google Scholar 

  89. Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function.Cancer Cell26, 923–937 (2014).

    Article PubMed CAS  Google Scholar 

  90. Vignali, P. D. A. et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity.Nat. Immunol.24, 267–279 (2023).

    Article PubMed CAS  Google Scholar 

  91. Zhang, Z. et al. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy.EBioMedicine83, 104207 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  92. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells.Immunity42, 265–278 (2015).

    Article PubMed PubMed Central CAS  Google Scholar 

  93. Curdy, N., Lanvin, O., Laurent, C., Fournié, J.-J. & Franchini, D.-M. Regulatory mechanisms of inhibitory immune checkpoint receptors expression.Trends Cell Biol.29, 777–790 (2019).

    Article PubMed CAS  Google Scholar 

  94. Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions.Annu. Rev. Med.69, 301–318 (2018).

    Article PubMed CAS  Google Scholar 

  95. Peralta, R. M. et al. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism.Nat. Immunol.25, 2297–2307 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  96. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion.Nat. Immunol.22, 205–215 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  97. Wang, C. et al. Circadian tumor infiltration and function of CD8+ T cells dictate immunotherapy efficacy.Cell187, 2690–2702.e17 (2024).

    Article PubMed CAS  Google Scholar 

  98. Bader, J. E. et al. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity.Nature630, 968–975 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  99. Gallerano, D. et al. Genetically driven CD39 expression shapes human tumor-infiltrating CD8+ T-cell functions.Int. J. Cancer147, 2597–2610 (2020).

    Article PubMed CAS  Google Scholar 

  100. Baessler, A. & Vignali, D. A. A. T cell exhaustion.Annu. Rev. Immunol.42, 179–206 (2024).

    Article PubMed CAS  Google Scholar 

  101. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers.Nat. Med.26, 566–576 (2020).

    Article PubMed CAS  Google Scholar 

  102. Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation.Nat. Immunol.22, 1008–1019 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  103. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans.Nat. Immunol.22, 1020–1029 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  104. Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy.Nat. Cancer3, 143–155 (2022).

    Article PubMed  Google Scholar 

  105. Lee, H., Jeong, S. & Shin, E.-C. Significance of bystander T cell activation in microbial infection.Nat. Immunol.23, 13–22 (2022).

    Article PubMed CAS  Google Scholar 

  106. Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers.Nat. Genet.48, 725–732 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  107. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers.Nature596, 126–132 (2021).This study uses functional and transcriptomic analyses to differentiate neoantigen-specific T cells from virus-specific bystander T cells in during neoadjuvant PD1 blockade in patients with lung cancer.

    Article PubMed PubMed Central CAS  Google Scholar 

  108. Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma.Nature596, 119–125 (2021).This study shows how the cellular phenotype of tumoural T cells and the antigenic specificity of their TCRs together shape immunotherapy responsiveness in patients with melanoma.

    Article PubMed PubMed Central CAS  Google Scholar 

  109. Maurice, N. J., Taber, A. K. & Prlic, M. The ugly duckling turned to swan: a change in perception of bystander-activated memory CD8 T cells.J. Immunol.206, 455–462 (2021).

    Article PubMed CAS  Google Scholar 

  110. Low, J. S. et al. Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses.J. Exp. Med.217, e20192291 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  111. Steinbach, P. et al. Influenza virus infection enhances tumour-specific CD8+ T-cell immunity, facilitating tumour control.PLoS Pathog.20, e1011982 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  112. Le, C. T. et al. Regulation of human and mouse bystander T cell activation responses by PD-1.JCI Insight8, e173287 (2023).

    Article PubMed PubMed Central  Google Scholar 

  113. Isaacs, J. F. et al. CD39 is expressed on functional effector and tissue-resident memory CD8+ T cells.J. Immunol.213, 588–599 (2024).

    Article PubMed CAS  Google Scholar 

  114. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates.Nature557, 575–579 (2018).A study that comprehensively highlights the underappreciated molecular role and immunological impact of bystander CD8+T cells in human cancers.

    Article PubMed CAS  Google Scholar 

  115. Gavil, N. V. et al. Chronic antigen in solid tumors drives a distinct program of T cell residence.Sci. Immunol.8, eadd5976 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  116. Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells.Proc. Natl Acad. Sci. USA114, E2776–E2785 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  117. Chen, X. et al. An oncolytic virus delivering tumor-irrelevant bystander T cell epitopes induces anti-tumor immunity and potentiates cancer immunotherapy.Nat. Cancer5, 1063–1081 (2024).

    Article PubMed PubMed Central  Google Scholar 

  118. Goebeler, M.-E., Stuhler, G. & Bargou, R. Bispecific and multispecific antibodies in oncology: opportunities and challenges.Nat. Rev. Clin. Oncol.21, 539–560 (2024).

    Article PubMed  Google Scholar 

  119. Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy.Nat. Commun.10, 567 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  120. Nüssing, S., Trapani, J. A. & Parish, I. A. Revisiting T cell tolerance as a checkpoint target for cancer immunotherapy.Front. Immunol.11, 589641 (2020).

    Article PubMed PubMed Central  Google Scholar 

  121. Zehn, D. & Bevan, M. J. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity.Immunity25, 261–270 (2006).

    Article PubMed PubMed Central CAS  Google Scholar 

  122. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion.Immunity13, 829–840 (2000).

    Article PubMed CAS  Google Scholar 

  123. Hernandez, J., Aung, S., Redmond, W. L. & Sherman, L. A. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen.J. Exp. Med.194, 707–717 (2001).

    Article PubMed PubMed Central CAS  Google Scholar 

  124. Redmond, W. L. & Sherman, L. A. Peripheral tolerance of CD8 T lymphocytes.Immunity22, 275–284 (2005).

    Article PubMed CAS  Google Scholar 

  125. Schietinger, A., Delrow, J. J., Basom, R. S., Blattman, J. N. & Greenberg, P. D. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state.Science335, 723–727 (2012).

    Article PubMed PubMed Central CAS  Google Scholar 

  126. Van Der Byl, W. et al. The CD8+ T cell tolerance checkpoint triggers a distinct differentiation state defined by protein translation defects.Immunity57, 1324–1344.e8 (2024).

    Article PubMed  Google Scholar 

  127. Rivoltini, L. et al. Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1.J. Immunol.154, 2257–2265 (1995).

    Article PubMed CAS  Google Scholar 

  128. Coulie, P. G. et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas.J. Exp. Med.180, 35–42 (1994).

    Article PubMed CAS  Google Scholar 

  129. Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics.Cell Rep.1, 191–199 (2012).

    Article PubMed CAS  Google Scholar 

  130. Bai, A., Higham, E., Eisen, H. N., Wittrup, K. D. & Chen, J. Rapid tolerization of virus-activated tumor-specific CD8+ T cells in prostate tumors of TRAMP mice.Proc. Natl Acad. Sci. USA105, 13003–13008 (2008).

    Article PubMed PubMed Central CAS  Google Scholar 

  131. Teague, R. M. et al. Peripheral CD8+ T cell tolerance to self-proteins is regulated proximally at the T cell receptor.Immunity28, 662–674 (2008).

    Article PubMed PubMed Central CAS  Google Scholar 

  132. Woroniecka, K. et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma.Clin. Cancer Res.24, 4175–4186 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  133. Damo, M. et al. PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens.Nature619, 151–159 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  134. Nelson, C. E. et al. Reprogramming responsiveness to checkpoint blockade in dysfunctional CD8 T cells.Proc. Natl Acad. Sci. USA116, 2640–2645 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  135. Nelson, C. E. et al. Robust iterative stimulation with self-antigens overcomes CD8+ T cell tolerance to self- and tumor antigens.Cell Rep.28, 3092–3104.e5 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  136. Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen.Nature458, 211–214 (2009).

    Article PubMed PubMed Central CAS  Google Scholar 

  137. Shimizu, K. et al. PD-1 preferentially inhibits the activation of low-affinity T cells.Proc. Natl Acad. Sci. USA118, e2107141118 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  138. Mattila, J. et al. Analysis of thymic generation of shared T-cell receptor α repertoire associated with recognition of tumor antigens shows no preference for neoantigens over wild-type antigens.Cancer Med.12, 13486–13496 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  139. Komuro, H. et al. Single-cell sequencing on CD8+ TILs revealed the nature of exhausted T cells recognizing neoantigen and cancer/testis antigen in non-small cell lung cancer.J. Immunother. Cancer11, e007180 (2023).

    Article PubMed PubMed Central  Google Scholar 

  140. Black, C. M., Armstrong, T. D. & Jaffee, E. M. Apoptosis-regulated low-avidity cancer-specific CD8+ T cells can be rescued to eliminate HER2/neu-expressing tumors by costimulatory agonists in tolerized mice.Cancer Immunol. Res.2, 307–319 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  141. Li, S. et al. Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies.Proc. Natl Acad. Sci. USA118, e2025570118 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  142. Mi, T. et al. Conserved epigenetic hallmarks of T cell aging during immunity and malignancy.Nat. Aging4, 1053–1063 (2024).

    Article PubMed PubMed Central  Google Scholar 

  143. Quinn, K. M. et al. Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells.Cell Rep.23, 3512–3524 (2018).

    Article PubMed CAS  Google Scholar 

  144. Liu, X. et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition.Nat. Commun.9, 249 (2018).

    Article PubMed PubMed Central  Google Scholar 

  145. Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+CD28 and CD8+CD57+ T cells and their role in health and disease.Immunology134, 17–32 (2011).

    Article PubMed PubMed Central CAS  Google Scholar 

  146. Vallejo, A. N. CD28 extinction in human T cells: altered functions and the program of T-cell senescence.Immunol. Rev.205, 158–169 (2005).

    Article PubMed CAS  Google Scholar 

  147. Koh, J.-Y., Kim, D.-U., Moon, B.-H. & Shin, E.-C. Human CD8+ T-cell populations that express natural killer receptors.Immune Netw.23, e8 (2023).

    Article PubMed PubMed Central  Google Scholar 

  148. Ahuja, S. K. et al. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection.Nat. Commun.14, 3286 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  149. Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity.Nature614, 762–766 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  150. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ.25, 486–541 (2018).

    Article PubMed PubMed Central  Google Scholar 

  151. Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance.Nat. Med.29, 1550–1562 (2023).A study that comprehensively highlights the underappreciated enrichment of stressed or dying T cells in human cancers and their negative impact on immunotherapy responsiveness.

    Article PubMed PubMed Central CAS  Google Scholar 

  152. DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy.Nat. Rev. Immunol.21, 785–797 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  153. Sanmamed, M. F. et al. A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy.Cancer Discov.11, 1700–1715 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  154. Zhu, J. et al. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes.Nat. Commun.8, 1404 (2017).

    Article PubMed PubMed Central  Google Scholar 

  155. Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death.Nature434, 88–93 (2005).

    Article PubMed CAS  Google Scholar 

  156. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors.Nat. Med.20, 607–615 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  157. Wolkers, M. C., Bensinger, S. J., Green, D. R., Schoenberger, S. P. & Janssen, E. M. Interleukin-2 rescues helpless effector CD8+ T cells by diminishing the susceptibility to TRAIL mediated death.Immunol. Lett.139, 25–32 (2011).

    Article PubMed PubMed Central CAS  Google Scholar 

  158. Morotti, M. et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function.Nature629, 426–434 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  159. Cullen, J. G. et al. CD4+ T help promotes influenza virus-specific CD8+ T cell memory by limiting metabolic dysfunction.Proc. Natl Acad. Sci. USA116, 4481–4488 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  160. Hashimoto, M. et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program.Nature610, 173–181 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  161. Pai, C.-C. S. et al. Clonal deletion of tumor-specific T cells by interferon-γ confers therapeutic resistance to combination immune checkpoint blockade.Immunity50, 477–492.e8 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  162. Hailemichael, Y. et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion.Nat. Med.19, 465–472 (2013).

    Article PubMed PubMed Central CAS  Google Scholar 

  163. Schenkel, J. M. & Pauken, K. E. Localization, tissue biology and T cell state — implications for cancer immunotherapy.Nat. Rev. Immunol.23, 807–823 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  164. Zenke, S. et al. Quorum Regulation via nested antagonistic feedback circuits mediated by the receptors CD28 and CTLA-4 confers robustness to T cell population dynamics.Immunity52, 313–327.e7 (2020).

    Article PubMed CAS  Google Scholar 

  165. Roberts, A. D. & Woodland, D. L. Cutting edge: effector memory CD8+ T cells play a prominent role in recall responses to secondary viral infection in the lung.J. Immunol.172, 6533–6537 (2004).

    Article PubMed CAS  Google Scholar 

  166. Vanderbeke, L. et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity.Nat. Commun.12, 4117 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  167. Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages.Cell Res.31, 272–290 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  168. Rodríguez-Ubreva, J. et al. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation.Nat. Commun.15, 10344 (2024).

    Article PubMed PubMed Central  Google Scholar 

  169. Chu, T. et al. Precursors of exhausted T cells are preemptively formed in acute infection.Nature,https://doi.org/10.1038/s41586-024-08451-4 (2025).

    Article PubMed PubMed Central  Google Scholar 

  170. McManus, D. T. et al. An early precursor CD8 T cell that adapts to acute or chronic viral infection.Nature,https://doi.org/10.1038/41586-024-08562-y (2025).

    Article PubMed PubMed Central  Google Scholar 

  171. Jadhav, R. R. et al. Epigenetic signature of PD-1+TCF1+CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade.Proc. Natl Acad. Sci. USA116, 14113–14118 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  172. Kanev, K. & Zehn, D. Origin and fine-tuning of effector CD8 T cell subpopulations in chronic infection.Curr. Opin. Virol.46, 27–35 (2021).

    Article PubMed CAS  Google Scholar 

  173. Hoffmann, M. et al. Exhaustion of activated CD8 T cells predicts disease progression in primary HIV-1 infection.PLoS Pathog.12, e1005661 (2016).

    Article PubMed PubMed Central  Google Scholar 

  174. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection.Immunity27, 670–684 (2007).

    Article PubMed CAS  Google Scholar 

  175. Holder, A. M. et al. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours.Nat. Rev. Cancer24, 498–512 (2024).

    Article PubMed CAS  Google Scholar 

  176. Anagnostou, V., Bardelli, A., Chan, T. A. & Turajlic, S. The status of tumor mutational burden and immunotherapy.Nat. Cancer3, 652–656 (2022).

    Article PubMed  Google Scholar 

  177. Łuksza, M. et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer.Nature606, 389–395 (2022).

    Article PubMed PubMed Central  Google Scholar 

  178. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers.Nat. Med.25, 89–94 (2019).This study highlights that actionable tumour-specific T cells are relatively rare and variable, thereby highlighting the need to balance T cell quantity versus quality during immunotherapy.

    Article PubMed CAS  Google Scholar 

  179. Verdegaal, E. M. E. et al. Neoantigen landscape dynamics during human melanoma–T cell interactions.Nature536, 91–95 (2016).

    Article PubMed CAS  Google Scholar 

  180. Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival.Nat. Commun.12, 4098 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  181. Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer.Nature624, 154–163 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  182. Westcott, P. M. K. et al. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity.Nat. Genet.55, 1686–1695 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  183. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.Nature523, 231–235 (2015).

    Article PubMed CAS  Google Scholar 

  184. Wu, S. et al. The antitumor effects of vaccine-activated CD8+ T cells associate with weak TCR signaling and induction of stem-like memory T cells.Cancer Immunol. Res.5, 908–919 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  185. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat. Rev. Immunol.20, 651–668 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  186. Lopez de Rodas, M. & Schalper, K. A. Tumour antigen-induced T cell exhaustion — the archenemy of immune-hot malignancies.Nat. Rev. Clin. Oncol.18, 749–750 (2021).

    Article PubMed CAS  Google Scholar 

  187. Westcott, P. M. K. et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer.Nat. Cancer2, 1071–1085 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  188. Lu, K. H.-N. et al. T cell receptor dynamic and transcriptional determinants of T cell expansion in glioma-infiltrating T cells.Neurooncol. Adv.4, vdac140 (2022).

    PubMed PubMed Central  Google Scholar 

  189. Agudo, J. & Miao, Y. Stemness in solid malignancies: coping with immune attack.Nat. Rev. Cancer25, 27–40 (2024).

    Article PubMed  Google Scholar 

  190. Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease.Cell187, 1589–1616 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  191. Khalili, J. S. et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma.Clin. Cancer Res.18, 5329–5340 (2012).

    Article PubMed PubMed Central CAS  Google Scholar 

  192. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy.Cancer Discov.6, 202–216 (2016).

    Article PubMed CAS  Google Scholar 

  193. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.Science359, 770–775 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  194. Roelands, J. et al. Oncogenic states dictate the prognostic and predictive connotations of intratumoral immune response.J. Immunother. Cancer8, e000617 (2020).

    Article PubMed PubMed Central  Google Scholar 

  195. Kumagai, S. et al. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells.Immunity53, 187–203.e8 (2020).

    Article PubMed CAS  Google Scholar 

  196. Tsakonas, G. & Ekman, S. Oncogene-addicted non-small cell lung cancer and immunotherapy.J. Thorac. Dis.10, S1547–S1555 (2018).

    Article PubMed PubMed Central  Google Scholar 

  197. Coulton, A. et al. Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response.Nat. Commun.15, 5665 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  198. Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment.Nat. Commun.13, 6619 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  199. Pan, X. et al. Tumour vasculature at single-cell resolution.Nature632, 429–436 (2024).

    Article PubMed CAS  Google Scholar 

  200. Takahashi, M. et al. Intratumoral antigen signaling traps CD8+ T cells to confine exhaustion to the tumor site.Sci. Immunol.9, eade2094 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  201. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop.Cancer Cell41, 226 (2023).

    Article PubMed CAS  Google Scholar 

  202. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth.Cancer Cell41, 374–403 (2023).

    Article PubMed  Google Scholar 

  203. Im, S. J. et al. Characteristics and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in chronic viral infection and cancer.Proc. Natl Acad. Sci. USA120, e2221985120 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  204. Espinosa-Carrasco, G. et al. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors.Cancer Cell42, 1202–1216.e8 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  205. Magen, A. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma.Nat. Med.29, 1389–1399 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  206. Bala, N. et al. T cell activation niches-optimizing T cell effector function in inflamed and infected tissues.Immunol. Rev.306, 164–180 (2022).

    Article PubMed  Google Scholar 

  207. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer.Cell184, 4734–4752.e20 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  208. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells.Nature576, 465–470 (2019).This is among some early studies that highlight a role for spatial niches that enrich stem-like T cells within the tumours as key regulators of T cell infiltration and patient prognosis.

    Article PubMed PubMed Central CAS  Google Scholar 

  209. Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment.Cell184, 4512–4530.e22 (2021).

    Article PubMed PubMed Central  Google Scholar 

  210. Chen, J. H. et al. Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy.Nat. Immunol.25, 644–658 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  211. Gaglia, G. et al. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma.Cancer Cell41, 871–886.e10 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  212. Kasikova, L. et al. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer.Nat. Commun.15, 2528 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  213. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy.Sci. Immunol.7, eabk1692 (2022).

    Article PubMed CAS  Google Scholar 

  214. Lynch, K. T. et al. Heterogeneity in tertiary lymphoid structure B-cells correlates with patient survival in metastatic melanoma.J. Immunother. Cancer9, e000617 (2021).

    Article  Google Scholar 

  215. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response.Nature577, 549–555 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  216. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma.Nature577, 561–565 (2020).

    Article PubMed CAS  Google Scholar 

  217. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma.Nature577, 556–560 (2020).

    Article PubMed CAS  Google Scholar 

  218. Rahim, M. K. et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes.Cell186, 1127–1143.e18 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  219. Opzoomer, J. W. et al. Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression.Sci. Adv.7, eabg9518 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  220. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function.Nature537, 539–543 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  221. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism.Science363, eaau0135 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  222. De Martino, M., Rathmell, J. C., Galluzzi, L. & Vanpouille-Box, C. Cancer cell metabolism and antitumour immunity.Nat. Rev. Immunol.24, 654–669 (2024).

    Article PubMed PubMed Central  Google Scholar 

  223. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance.Nature515, 568–571 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  224. Scolaro, T. et al. Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance.Nat. Cancer5, 1206–1226 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  225. Vanmeerbeek, I. et al. Targeting conserved TIM3+VISTA+ tumor-associated macrophages overcomes resistance to cancer immunotherapy.Sci. Adv.10, eadm8660 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  226. Xiao, Z. et al. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors.Nat. Commun.14, 5110 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  227. Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment.Proc. Natl Acad. Sci. USA115, E4041–E4050 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  228. Zhang, J. et al. Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor.Cell187, 3409–3426.e24 (2024).

    Article PubMed CAS  Google Scholar 

  229. Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination.Nat. Med.27, 152–164 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  230. Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer.Nat. Commun.11, 5583 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  231. Grout, J. A. et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T-cell exclusion in human lung tumors.Cancer Discov.12, 2606–2625 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  232. Park, H.-R. et al. Angiopoietin-2-dependent spatial vascular destabilization promotes T-cell exclusion and limits immunotherapy in melanoma.Cancer Res.83, 1968–1983 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  233. Croizer, H. et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer.Nat. Commun.15, 2806 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  234. Yang, F. et al. An immunosuppressive vascular niche drives macrophage polarization and immunotherapy resistance in glioblastoma.Sci. Adv.10, eadj4678 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  235. Sussman, J. H. et al. Multiplexed imaging mass cytometry analysis characterizes the vascular niche in pancreatic cancer.Cancer Res.84, 2364–2376 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  236. Kinker, G. S. et al. Mature tertiary lymphoid structures are key niches of tumour-specific immune responses in pancreatic ductal adenocarcinomas.Gut72, 1927–1941 (2023).

    Article PubMed CAS  Google Scholar 

  237. Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors.J. Immunother. Cancer6, 157 (2018).

    Article PubMed PubMed Central  Google Scholar 

  238. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition.Cell184, 596–614.e14 (2021).

    Article PubMed PubMed Central CAS  Google Scholar 

  239. Laureano, R. S. et al. The cell stress and immunity cycle in cancer: toward next generation of cancer immunotherapy.Immunol. Rev.321, 71–93 (2024).

    Article PubMed CAS  Google Scholar 

  240. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma.Nat. Med.25, 477–486 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  241. Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma.Nat. Med.25, 470–476 (2019).

    Article PubMed CAS  Google Scholar 

  242. Randall, L. M. et al. Niraparib and dostarlimab for the treatment of recurrent platinum-resistant ovarian cancer: results of a Phase II study (MOONSTONE/GOG-3032).Gynecol. Oncol.178, 161–169 (2023).

    Article PubMed PubMed Central CAS  Google Scholar 

  243. Mosalem, O. et al. A real-world experience of pembrolizumab monotherapy in microsatellite instability-high and/or tumor mutation burden-high metastatic castration-resistant prostate cancer: outcome analysis.Prostate Cancer Prostatic Dis.28, 138–144 (2024).

    Article PubMed  Google Scholar 

  244. Fabian, K. P., Padget, M. R., Fujii, R., Schlom, J. & Hodge, J. W. Differential combination immunotherapy requirements for inflamed (warm) tumors versus T cell excluded (cool) tumors: engage, expand, enable, and evolve.J. Immunotherapy. Cancer9, e001691 (2021).

    Article  Google Scholar 

  245. Sayour, E. J., Boczkowski, D., Mitchell, D. A. & Nair, S. K. Cancer mRNA vaccines: clinical advances and future opportunities.Nat. Rev. Clin. Oncol.21, 489–500 (2024).

    Article PubMed  Google Scholar 

  246. Hensler, M. et al. Peripheral gene signatures reveal distinct cancer patient immunotypes with therapeutic implications for autologous DC-based vaccines.Oncoimmunology11, 2101596 (2022).

    Article PubMed PubMed Central  Google Scholar 

  247. Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M. & Veiseh, O. Engineering the next generation of cell-based therapeutics.Nat. Rev. Drug. Discov.21, 655–675 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  248. Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease.Sci. Immunol.5, eabb9726 (2020).

    Article PubMed PubMed Central CAS  Google Scholar 

  249. Huff, W. X., Kwon, J. H., Henriquez, M., Fetcko, K. & Dey, M. The evolving role of CD8+CD28 immunosenescent T cells in cancer immunology.Int. J. Mol. Sci.20, 2810 (2019).

    Article PubMed PubMed Central CAS  Google Scholar 

  250. Zebley, C. C., Zehn, D., Gottschalk, S. & Chi, H. T cell dysfunction and therapeutic intervention in cancer.Nat. Immunol.25, 1344–1354 (2024).

    Article PubMed PubMed Central CAS  Google Scholar 

  251. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer.Cancer Cell33, 547–562 (2018).

    Article PubMed PubMed Central CAS  Google Scholar 

  252. Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment.Curr. Opin. Immunol.25, 214–221 (2013).

    Article PubMed PubMed Central CAS  Google Scholar 

  253. Rodríguez-Rodríguez, N., Rosetti, F. & Crispín, J. C. CD8 is down(regulated) for tolerance.Trends Immunol.45, 442–453 (2024).

    Article PubMed  Google Scholar 

  254. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy.Cell185, 2918–2935.e29 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  255. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade.Nat. Med.25, 1251–1259 (2019).This study highlights a key role of intratumoural T cell clonal replacement from extratumoural, peritumoural or tumour margins in regulating immunotherapy responsiveness.

    Article PubMed PubMed Central CAS  Google Scholar 

  256. Zhou, W. et al. Stem-like progenitor and terminally differentiated TFH-like CD4+ T cell exhaustion in the tumor microenvironment.Cell Rep.43, 113797 (2024).

    Article PubMed CAS  Google Scholar 

  257. Tooley, K. A., Escobar, G. & Anderson, A. C. Spatial determinants of CD8+ T cell differentiation in cancer.Trends Cancer8, 642–654 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  258. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma.Cell175, 998–1013.e20 (2018).This is one of the early studies that used single-cell omics to reveal the positioning of different T cell states within patients with melanoma who responded or remained resistant to immunotherapy.

    Article PubMed PubMed Central CAS  Google Scholar 

  259. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors.Nat. Commun.9, 2724 (2018).

    Article PubMed PubMed Central  Google Scholar 

  260. Vick, L. V. et al. PD-1 signaling serves a dual role in suppressing T cell activation but also in protecting from activation-induced cell death.J. Immunol.210, 226.11 (2023).

    Article  Google Scholar 

  261. Vanmeerbeek, I. et al. Early memory differentiation and cell death resistance in T cells predicts melanoma response to sequential anti-CTLA4 and anti-PD1 immunotherapy.Genes. Immun.22, 108–119 (2021).

    Article PubMed CAS  Google Scholar 

  262. Dyikanov, D. et al. Comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics in patients with cancer.Cancer Cell42, 759–779.e12 (2024).

    Article PubMed CAS  Google Scholar 

  263. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer.Nat. Cancer3, 108–121 (2022).

    Article PubMed CAS  Google Scholar 

  264. Cascone, T. et al. Perioperative nivolumab in resectable lung cancer.N. Engl. J. Med.390, 1756–1769 (2024).

    Article PubMed CAS  Google Scholar 

  265. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.N. Engl. J. Med.373, 23–34 (2015).

    Article PubMed PubMed Central  Google Scholar 

  266. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma.N. Engl. J. Med.386, 24–34 (2022).

    Article PubMed PubMed Central CAS  Google Scholar 

  267. Serritella, A. V. & Shenoy, N. K. Nivolumab plus ipilimumab vs nivolumab alone in advanced cancers other than melanoma: a meta-analysis.JAMA Oncol.9, 1441–1446 (2023).

    Article PubMed PubMed Central  Google Scholar 

  268. Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial.Nat. Med.25, 920–928 (2019).

    Article PubMed CAS  Google Scholar 

  269. Yokosuka, T. et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation.Immunity33, 326–339 (2010).

    Article PubMed CAS  Google Scholar 

  270. Pedicord, V. A., Montalvo, W., Leiner, I. M. & Allison, J. P. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance.Proc. Natl Acad. Sci. USA108, 266–271 (2011).

    Article PubMed CAS  Google Scholar 

  271. Tietze, J. K. et al. Delineation of antigen-specific and antigen-nonspecific CD8+ memory T-cell responses after cytokine-based cancer immunotherapy.Blood119, 3073–3083 (2012).

    Article PubMed PubMed Central CAS  Google Scholar 

  272. Braun, M. et al. IL12-mediated sensitizing of T-cell receptor-dependent and -independent tumor cell killing.Oncoimmunology5, e1188245 (2016).

    Article PubMed PubMed Central  Google Scholar 

  273. Roetman, J. J. et al. Tumor-reactive CD8+ T cells enter a TCF1+PD-1 dysfunctional state.Cancer Immunol. Res.11, 1630–1641 (2023).

    Article PubMed PubMed Central  Google Scholar 

  274. Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death.Nat. Immunol.23, 487–500 (2022).

    Article PubMed CAS  Google Scholar 

  275. Leone, P. et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells.J. Natl Cancer Inst.105, 1172–1187 (2013).

    Article PubMed CAS  Google Scholar 

  276. Sim, J. H. et al. IL-7RαlowCD8+ T cells from healthy individuals are anergic with defective glycolysis.J. Immunol.205, 2968–2978 (2020).

    Article PubMed CAS  Google Scholar 

  277. Chikuma, S. et al. PD-1-mediated suppression of IL-2 production induces CD8+ T cell anergy in vivo.J. Immunol.182, 6682–6689 (2009).

    Article PubMed CAS  Google Scholar 

  278. Clavijo, P. E. & Frauwirth, K. A. Anergic CD8+ T lymphocytes have impaired NF-κB activation with defects in p65 phosphorylation and acetylation.J. Immunol.188, 1213–1221 (2012).

    Article PubMed CAS  Google Scholar 

  279. Zippelius, A. et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance.Cancer Res.64, 2865–2873 (2004).

    Article PubMed CAS  Google Scholar 

  280. Pittet, M. J. et al. High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals.J. Exp. Med.190, 705–715 (1999).

    Article PubMed PubMed Central CAS  Google Scholar 

Download references

Acknowledgements

A.D.G. is supported by Research Foundation Flanders (Fundamental Research grants G0B4620N, G026325N, G026225N), KU Leuven (C1 grant C14/24/122 and C3 grant C3/23/067), VLIR-UOS (iBOF grant, iBOF/21/048, for ‘MIMICRY’ consortium), Olivia Hendrickx Research Foundation (OHRF) and a European Union (EU) Mission Cancer grant for the GLIOMATCH consortium (project no. 101136670). L.G. is or has been supported (as a PI unless otherwise indicated) by one R01 grant from the NIH/NCI (CA271915), by two Breakthrough Level 2 grants from the US DoD BCRP (BC180476P1, BC210945), by a Transformative Breast Cancer Consortium grant from the US DoD BCRP (W81XWH2120034, PI: Formenti), by a U54 grant from NIH/NCI (CA274291, PIs: Deasy, Formenti, Weichselbaum).

Author information

Authors and Affiliations

  1. Cancer Signalling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA

    Lorenzo Galluzzi

  2. Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA

    Kellie N. Smith

  3. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA

    Kellie N. Smith

  4. Department of Pathology, University of Cambridge, Cambridge, UK

    Adrian Liston

  5. Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium

    Abhishek D. Garg

Authors
  1. Lorenzo Galluzzi
  2. Kellie N. Smith
  3. Adrian Liston
  4. Abhishek D. Garg

Contributions

A.D.G. conceived the article. A.D.G. and L.G. wrote the manuscript with critical input from A.L. and K.N.S. A.D.G. prepared the display items. All authors approved the submitted version of the article.

Corresponding authors

Correspondence toLorenzo Galluzzi orAbhishek D. Garg.

Ethics declarations

Competing interests

A.D.G. received consulting/advisory/lecture honoraria or R&D contracts from Boehringer Ingelheim (Germany), Miltenyi Biotec (Germany), Novigenix (Switzerland), Sotio (Czech Republic) and IsoPlexis (USA). L.G. holds or has held research contracts with Lytix Biopharma, Promontory and Onxeo, has received consulting or advisory honoraria from Boehringer Ingelheim, AstraZeneca, OmniSEQ, Onxeo, The Longevity Labs, Inzen, Imvax, Sotio, Promontory, Noxopharm, EduCom, AbbVie and the Luke Heller TECPR2 Foundation, and holds Promontory stock options. K.N.S. has received honoraria from Adaptive Biotechnologies and Illumina, Inc., has received research support from AbbVie, Bristol Myers Squibb and AstraZeneca, holds several patents related to the MANAFEST technology and TCR discovery, and is a scientific founder of Clasp Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Jason Schenkel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Smith, K.N., Liston, A.et al. The diversity of CD8+ T cell dysfunction in cancer and viral infection.Nat Rev Immunol25, 662–679 (2025). https://doi.org/10.1038/s41577-025-01161-6

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Cancer

Sign up for theNature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly.Sign up for Nature Briefing: Cancer

[8]ページ先頭

©2009-2026 Movatter.jp