Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Endocrinology
  • Review Article
  • Published:

The α-cell in diabetes mellitus

Nature Reviews Endocrinologyvolume 14pages694–704 (2018)Cite this article

Subjects

Abstract

Findings from the past 10 years have placed the glucagon-secreting pancreatic α-cell centre stage in the development of diabetes mellitus, a disease affecting almost one in every ten adults worldwide. Glucagon secretion is reduced in patients with type 1 diabetes mellitus, increasing the risk of insulin-induced hypoglycaemia, but is enhanced in type 2 diabetes mellitus, exacerbating the effects of diminished insulin release and action on blood levels of glucose. A better understanding of the mechanisms underlying these changes is therefore an important goal. RNA sequencing reveals that, despite their opposing roles in the control of blood levels of glucose, α-cells and β-cells have remarkably similar patterns of gene expression. This similarity might explain the fairly facile interconversion between these cells and the ability of the α-cell compartment to serve as a source of new β-cells in models of extreme β-cell loss that mimic type 1 diabetes mellitus. Emerging data suggest that GABA might facilitate this interconversion, whereas the amino acid glutamine serves as a liver-derived factor to promote α-cell replication and maintenance of α-cell mass. Here, we survey these developments and their therapeutic implications for patients with diabetes mellitus.

Key points

  • The mechanisms involved in the control of glucagon secretion in pancreatic α-cells have now been identified.

  • The pancreatic α-cell has a role in the development of diabetes mellitus.

  • Physiological and pharmacological activators and inhibitors of glucagon secretion might provide therapeutic targets.

  • Single α-cell gene expression profiling in health and disease has resulted in new insights about the function of α-cells.

  • Advances in understanding α-cell to β-cell reprogramming could lead to new therapeutic strategies for diabetes mellitus.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The localization and number of α-cells differ between mouse and human pancreatic islets.
Fig. 2: Intracellular and intercellular mechanisms implicated in the suppression of glucagon secretion by glucose.
Fig. 3: Physiological and pharmacological activators and inhibitors of α-cell function and glucagon secretion.
Fig. 4: RNA sequencing of single human islet cells reveals a few genes that are enriched in α-cells and β-cells among a large number of detected genes.
Fig. 5: The liver–α-cell axis.
Fig. 6: α-Cell development and its possible modulation as a therapy in type 1 diabetes mellitus.
Fig. 7: Differentially regulated genes in single α-cells from donors with type 2 diabetes mellitus.
Fig. 8: Potential role of α-cell–α-cell connectivity in the control of glucagon secretion.

Similar content being viewed by others

References

  1. Best, C. H. inGlucagon: Molecular Physiology, Clinical and Therapeutic Implications Ch. 1 (eds Lefebvre, P. J. & Unger, R. H.) 1–6 (Pergamon Press, Oxford, 1972).

  2. Murlin, J. R., Clough, H. D., Gibbs, C. B. F. & Stokes, A. M. Aqueous extracts of the pancreas. 1 Influence on the carbohydrate metabolism of depancreatized animals.J. Biol. Chem.56, 253–296 (1923).

    CAS  Google Scholar 

  3. Sutherland, E. W. & De Duve, C. Origin and distribution of the hyperglycemic-glycogenolytic factor of the pancreas.J. Biol. Chem.175, 663–674 (1948).

    CAS PubMed  Google Scholar 

  4. Muller, T. D., Finan, B., Clemmensen, C., DiMarchi, R. D. & Tschop, M. H. The new biology and pharmacology of glucagon.Physiol. Rev.97, 721–766 (2017).

    CAS PubMed  Google Scholar 

  5. Sandoval, D. A. & D’Alessio, D. A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease.Physiol. Rev.95, 513–548 (2015).

    CAS PubMed  Google Scholar 

  6. Lane, M. A. The cytological characters of the areas of langerhans.Am. J. Anat.7, 409–422 (1907).

    Google Scholar 

  7. Bonner-Weir, S., Sullivan, B. A. & Weir, G. C. Human islet morphology revisited: human and rodent islets are not so different after all.J. Histochem. Cytochem.63, 604–612 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  8. Maruyama, H., Hisatomi, A., Orci, L., Grodsky, G. M. & Unger, R. H. Insulin within islets is a physiologic glucagon release inhibitor.J. Clin. Invest.74, 2296–2299 (1984).

    CAS PubMed PubMed Central  Google Scholar 

  9. Stagner, J. I. & Samols, E. The vascular order of islet cellular perfusion in the human pancreas.Diabetes41, 93–97 (1992).

    CAS PubMed  Google Scholar 

  10. Pisania, A. et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations.Lab. Invest.90, 1661–1675 (2010).

    PubMed PubMed Central  Google Scholar 

  11. Rodriguez-Diaz, R. et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans.Nat. Med.17, 888–892 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  12. Cerasi, E. Insulin deficiency and insulin resistance in the pathogenesis of NIDDM: is a divorce possible?Diabetologia38, 992–997 (1995).

    CAS PubMed  Google Scholar 

  13. Kahn, S. E., Zraika, S., Utzschneider, K. M. & Hull, R. L. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality.Diabetologia52, 1003–1012 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  14. Butler, A. E. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.Diabetes52, 102–110 (2003).

    CAS PubMed  Google Scholar 

  15. Clark, A. et al. Islet amyloid, increased A-cells, reduced B cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes.Diabetes Res.9, 151–159 (1988).

    CAS PubMed  Google Scholar 

  16. Rahier, J., Guiot, Y., Goebbels, R. M., Sempoux, C. & Henquin, J. C. Pancreatic beta-cell mass in European subjects with type 2 diabetes.Diabetes Obes. Metab.10, 32–42 (2008).

    PubMed  Google Scholar 

  17. Sakuraba, H. et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients.Diabetologia45, 85–96 (2002).

    CAS PubMed  Google Scholar 

  18. Marselli, L. et al. Are we overestimating the loss of beta cells in type 2 diabetes?Diabetologia57, 362–365 (2014).

    CAS PubMed  Google Scholar 

  19. Muller, W. A., Faloona, G. R., Aguilar-Parada, E. & Unger, R. H. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion.N. Engl. J. Med.283, 109–115 (1970).

    CAS PubMed  Google Scholar 

  20. Myers, S. R. et al. Effects of small changes in glucagon on glucose production during a euglycemic, hyperinsulinemic clamp.Metabolism40, 66–71 (1991).

    CAS PubMed  Google Scholar 

  21. Yu, R. Pancreatic alpha-cell hyperplasia: facts and myths.J. Clin. Endocrinol. Metab.99, 748–756 (2014).

    CAS PubMed  Google Scholar 

  22. Eaton, R. P. Hypolipemic action of glucagon in experimental endogenous lipemia in the rat.J. Lipid Res.14, 312–318 (1973).

    CAS PubMed  Google Scholar 

  23. Guettet, C. et al. Effect of chronic glucagon administration on lipoprotein composition in normally fed, fasted and cholesterol-fed rats.Lipids26, 451–458 (1991).

    CAS PubMed  Google Scholar 

  24. Bobe, G., Ametaj, B. N., Young, J. W. & Beitz, D. C. Potential treatment of fatty liver with 14-day subcutaneous injections of glucagon.J. Dairy Sci.86, 3138–3147 (2003).

    CAS PubMed  Google Scholar 

  25. Guettet, C., Mathe, D., Navarro, N. & Lecuyer, B. Effects of chronic glucagon administration on rat lipoprotein composition.Biochim. Biophys. Acta1005, 233–238 (1989).

    CAS PubMed  Google Scholar 

  26. Prip-Buus, C., Pegorier, J. P., Duee, P. H., Kohl, C. & Girard, J. Evidence that the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes.Biochem. J.269, 409–415 (1990).

    CAS PubMed PubMed Central  Google Scholar 

  27. Brown, N. F., Salter, A. M., Fears, R. & Brindley, D. N. Glucagon, cyclic AMP and adrenaline stimulate the degradation of low-density lipoprotein by cultured rat hepatocytes.Biochem. J.262, 425–429 (1989).

    CAS PubMed PubMed Central  Google Scholar 

  28. Nunez, D. J. & D’Alessio, D. Glucagon receptor as a drug target: a witches’ brew of eye of newt (peptides) and toe of frog (receptors).Diabetes Obes. Metab.20, 233–237 (2018).

    PubMed  Google Scholar 

  29. Han, S. et al. Effects of small interfering RNA-mediated hepatic glucagon receptor inhibition on lipid metabolism in db/db mice.J. Lipid Res.54, 2615–2622 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  30. Guan, H. P. et al. Glucagon receptor antagonism induces increased cholesterol absorption.J. Lipid Res.56, 2183–2195 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  31. Bechmann, L. P. et al. The interaction of hepatic lipid and glucose metabolism in liver diseases.J. Hepatol.56, 952–964 (2012).

    CAS PubMed  Google Scholar 

  32. Damond, N. et al. Blockade of glucagon signaling prevents or reverses diabetes onset only if residual beta-cells persist.eLife5, 10 (2016).

    Google Scholar 

  33. Holst, J. J. et al. Insulin and glucagon: partners for life.Endocrinology158, 696–701 (2017).

    PubMed PubMed Central  Google Scholar 

  34. Henquin, J. C. & Rahier, J. Pancreatic alpha cell mass in European subjects with type 2 diabetes.Diabetologia54, 1720–1725 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  35. Stefan, Y. et al. Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans.Diabetes8, 694–700 (1982).

    Google Scholar 

  36. Nano, R. et al. Human islet distribution programme for basic research: activity over the last 5 years.Diabetologia58, 1138–1140 (2015).

    PubMed  Google Scholar 

  37. Rahier, J., Goebbels, R. M. & Henquin, J. C. Cellular composition of the human diabetic pancreas.Diabetologia24, 366–371 (1983).

    CAS PubMed  Google Scholar 

  38. Cinti, F. et al. Evidence of beta-cell dedifferentiation in human type 2 diabetes.J. Clin. Endocrinol. Metab.101, 1044–1054 (2016).

    CAS PubMed  Google Scholar 

  39. Gao, T. et al. Pdx1 maintains beta cell identity and function by repressing an alpha cell program.Cell Metab.19, 259–271 (2014).

    CAS PubMed PubMed Central  Google Scholar 

  40. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure.Cell150, 1223–1234 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  41. Mezza, T. et al. Beta-cell glucose sensitivity is linked to insulin/glucagon bihormonal cells in nondiabetic humans.J. Clin. Endocrinol. Metab.101, 470–475 (2016).

    CAS PubMed  Google Scholar 

  42. Keenan, H. A. et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study.Diabetes59, 2846–2853 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  43. Oram, R. A. et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells.Diabetologia57, 187–191 (2014).

    CAS PubMed  Google Scholar 

  44. Orci, L. et al. Hypertrophy and hyperplasia of somatostatin-containing D-cells in diabetes.Proc. Natl Acad. Sci. USA73, 1338–1342 (1976).

    CAS PubMed  Google Scholar 

  45. Marchetti, P. et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets.Diabetologia55, 3262–3272 (2012).

    CAS PubMed  Google Scholar 

  46. Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells.Nat. Med.17, 1481–1489 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  47. Cryer, P. E. Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes*.Diabetologia45, 937–948 (2002).

    CAS PubMed  Google Scholar 

  48. Gerich, J. E., Langlois, M., Noacco, C., Karam, J. H. & Forsham, P. H. Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect.Science182, 171–173 (1973).

    CAS PubMed  Google Scholar 

  49. Bolli, G. et al. Abnormal glucose counterregulation in insulin-dependent diabetes mellitus. Interaction of anti-insulin antibodies and impaired glucagon and epinephrine secretion.Diabetes32, 134–141 (1983).

    CAS PubMed  Google Scholar 

  50. Rutter, G. A., Pullen, T. J., Hodson, D. J. & Martinez-Sanchez, A. Pancreatic beta cell identity, glucose sensing and the control of insulin secretion.Biochem. J.466, 202–218 (2015).

    Google Scholar 

  51. Ravier, M. A. & Rutter, G. A. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells.Diabetes54, 1789–1797 (2005).

    CAS PubMed  Google Scholar 

  52. Lamy, C. M. et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion.Cell Metab.19, 527–538 (2014).

    CAS PubMed  Google Scholar 

  53. Rorsman, P. & Hellman, B. Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials.J. Gen. Physiol.91, 223–242 (1988).

    CAS PubMed  Google Scholar 

  54. Berts, A., Gylfe, E. & Hellman, B. Ca2+ oscillations in pancreatic islet cells secreting glucagon and somatostatin.Biochem. Biophys. Res. Commun.208, 644–649 (1995).

    CAS PubMed  Google Scholar 

  55. Berts, A., Ball, A., Gylfe, E. & Hellman, B. Suppression of Ca2+ oscillations in glucagon-producing alpha 2-cells by insulin/glucose and amino acids.Biochim. Biophys. Acta1310, 212–216 (1996).

    PubMed  Google Scholar 

  56. Nadal, A., Quesada, I. & Soria, B. Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse.J. Physiol.517, 85–93 (1999).

    CAS PubMed PubMed Central  Google Scholar 

  57. Grapengiesser, E., Gylfe, E. & Hellman, B. Glucose effects on cytoplasmic Ca2+ of individual pancreatic beta- cells recorded by two procedures for dual-wavelength fluorometry.Exp. Clin. Endocrinol.93, 321–327 (1989).

    CAS PubMed  Google Scholar 

  58. Heimberg, H. et al. The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells.Proc. Natl Acad. Sci. USA93, 7036–7041 (1996).

    CAS PubMed  Google Scholar 

  59. Basco, D. et al. Alpha-cell glucokinase suppresses glucose-regulated glucagon secretion.Nat. Commun.9, 546–03034 (2018).

    PubMed PubMed Central  Google Scholar 

  60. Heimberg, H., De Vos, A., Pipeleers, D., Thorens, B. & Schuit, F. Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization.J. Biol. Chem.270, 8971–8975 (1995).

    CAS PubMed  Google Scholar 

  61. Benner, C. et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression.BMC Genomics15, 620–615 (2014).

    PubMed PubMed Central  Google Scholar 

  62. Blodgett, D. M. et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets.Diabetes64, 3172–3181 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  63. Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes.Cell Metab.24, 593–607 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  64. Sun, G. et al. LKB1 and AMPKα1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia.Mol. Metab.4, 277–286 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  65. Semplici, F. et al. Cell type-specific deletion in mice reveals roles for PAS kinase in insulin and glucagon production.Diabetologia59, 1938–1947 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  66. Hutton, J. C. et al. Similarities in the stimulus-secretion coupling mechanisms of glucose- and 2-keto acid-induced insulin release.Endocrinology106, 203–219 (1980).

    CAS PubMed  Google Scholar 

  67. Maechler, P. & Wollheim, C. B. Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell.J. Physiol.529, 49–56 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  68. Del Guerra, S. et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes.Diabetes54, 727–735 (2005).

    PubMed  Google Scholar 

  69. Sekine, N. et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogease in pancreatic β-cell. Potential role in nutrient sensing.J. Biol. Chem.269, 4895–4902 (1994).

    CAS PubMed  Google Scholar 

  70. Jijakli, H. et al. Relevance of lactate dehydrogenase activity to the control of oxidative glycolysis in pancreatic islet B cells.Arch. Biochem. Biophys.327, 260–264 (1996).

    CAS PubMed  Google Scholar 

  71. Zhao, C., Wilson, C. M., Schuit, F., Halestrap, A. P. & Rutter, G. A. Expression and distribution of lactate/monocarboxylate transporter (MCT) isoforms in pancreatic islets and the exocrine pancreas.Diabetes50, 361–366 (2001).

    CAS PubMed  Google Scholar 

  72. Pullen, T. J., Huising, M. O. & Rutter, G. A. Analysis of purified pancreatic islet beta and alpha cell transcriptomes reveals 11β-hydroxysteroid dehydrogenase (Hsd11b1) as a novel disallowed gene.Front. Genet.8, 41 (2017).

    PubMed PubMed Central  Google Scholar 

  73. Lemaire, K., Thorrez, L. & Schuit, F. Disallowed and allowed gene expression: two faces of mature islet beta cells.Annu. Rev. Nutr.36, 45–71 (2016).

    CAS PubMed  Google Scholar 

  74. Gromada, J., Franklin, I. & Wollheim, C. B. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains.Endocr. Rev.28, 84–116 (2007).

    CAS PubMed  Google Scholar 

  75. Taborsky, G. J. et al. Autonomic mechanism and defects in the glucagon response to insulin-induced hypoglycaemia.Diabetes Nutr. Metab.15, 318–322 (2002).

    CAS PubMed  Google Scholar 

  76. Maruyama, H., Tominaga, M., Bolli, G., Orci, L. & Unger, R. H. The alpha cell response to glucose change during perfusion of anti-insulin serum in pancreas isolated from normal rats.Diabetologia28, 836–840 (1985).

    CAS PubMed  Google Scholar 

  77. Kawamori, D. et al. Insulin signaling in alpha cells modulates glucagon secretion in vivo.Cell Metab.9, 350–361 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  78. Briant, L. J. B. et al. Delta-cells and beta-cells are electrically coupled and regulate alpha-cell activity via somatostatin.J. Physiol.596, 197–215 (2018).

    CAS PubMed  Google Scholar 

  79. Elliott, A. D., Ustione, A. & Piston, D. W. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic alpha-cell by lowering cAMP.Am. J. Physiol. Endocrinol. Metab.308, E130–E143 (2015).

    CAS PubMed  Google Scholar 

  80. Lee, Y. et al. Hyperglycemia in rodent models of type 2 diabetes requires insulin-resistant alpha cells.Proc. Natl Acad. Sci. USA111, 13217–13222 (2014).

    CAS PubMed  Google Scholar 

  81. Faerch, K. et al. Insulin resistance is accompanied by increased fasting glucagon and delayed glucagon suppression in individuals with normal and impaired glucose regulation.Diabetes65, 3473–3481 (2016).

    CAS PubMed  Google Scholar 

  82. Sharma, A. et al. Impaired insulin action is associated with increased glucagon concentrations in nondiabetic humans.J. Clin. Endocrinol. Metab.103, 314–319 (2018).

    PubMed  Google Scholar 

  83. Ishihara, H., Maechler, P., Gjinovci, A., Herrera, P. L. & Wollheim, C. B. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells.Nat. Cell Biol.5, 330–335 (2003).

    CAS PubMed  Google Scholar 

  84. Nicolson, T. J. et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants.Diabetes58, 2070–2083 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  85. Li, D. et al. Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR).Proc. Natl Acad. Sci. USA108, 21063–21068 (2011).

    CAS PubMed  Google Scholar 

  86. Sladek, R. et al. A genome-wide assocation study identifies novel risk loci for type 2 diabetes.Nature445, 881–885 (2007).

    CAS PubMed  Google Scholar 

  87. Solomou, A. et al. The zinc transporter Slc30a8/ZnT8 is required in a subpopulation of pancreatic α cells for hypoglycemia-induced glucagon secretion.J. Biol. Chem.290, 21432–21442 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  88. Solomou, A. et al. Over-expression of Slc30a8/ZnT8 selectively in the mouse alpha cell impairs glucagon release and responses to hypoglycemia.Nutr. Metab.13, 46–0104 (2016).

    Google Scholar 

  89. da Silva Xavier, G. et al. Pancreatic alpha cell-selective deletion of Tcf7l2 impairs glucagon secretion and counter-regulatory responses to hypoglycaemia in mice.Diabetologia60, 1043–1050 (2017).

    PubMed PubMed Central  Google Scholar 

  90. da Silva Xavier, G. et al. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells.Diabetes58, 894–905 (2009).

    PubMed PubMed Central  Google Scholar 

  91. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes.Nature536, 41–47 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  92. Rorsman, P. et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels.Nature341, 233–236 (1989).

    CAS PubMed  Google Scholar 

  93. Bailey, S. J., Ravier, M. A. & Rutter, G. A. Glucose-dependent regulation of γ-aminobutyric acid (GABA A) receptor expression in mouse pancreatic islet alpha-cells.Diabetes56, 320–327 (2007).

    CAS PubMed  Google Scholar 

  94. Taborsky, G. J. Jr, Ahren, B. & Havel, P. J. Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes.Diabetes47, 995–1005 (1998).

    CAS PubMed  Google Scholar 

  95. Gasbjerg, L. S. et al. Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents.Peptides100, 173–181 (2018).

    CAS PubMed  Google Scholar 

  96. Orgaard, A. & Holst, J. J. The role of somatostatin in GLP-1-induced inhibition of glucagon secretion in mice.Diabetologia60, 1731–1739 (2017).

    PubMed PubMed Central  Google Scholar 

  97. Madaan, T., Akhtar, M. & Najmi, A. K. Sodium glucose cotransporter 2 (SGLT2) inhibitors: current status and future perspective.Eur. J. Pharm. Sci.93, 244–252 (2016).

    CAS PubMed  Google Scholar 

  98. Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure.Cell Syst.3, 346–360 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  99. Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas.Cell Syst.3, 385–394 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  100. Li, J. et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types.EMBO Rep.17, 178–187 (2016).

    CAS PubMed  Google Scholar 

  101. Xin, Y. et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes.Cell Metab.24, 608–615 (2016).

    CAS PubMed  Google Scholar 

  102. Xin, Y. et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells.Proc. Natl Acad. Sci. USA113, 3293–3298 (2016).

    CAS PubMed  Google Scholar 

  103. Dominguez, G. G. et al. Gene signature of proliferating human pancreatic alpha-cells.Endocrinology159, 3177–3186 (2018).

    Google Scholar 

  104. Xin, Y. et al. Pseudotime ordering of single human beta-cells reveals states of insulin production and unfolded protein response.Diabetes67, 1783–1794 (2018).

    PubMed  Google Scholar 

  105. Tritschler, S., Theis, F. J., Lickert, H. & Bottcher, A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas.Mol. Metab.6, 974–990 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  106. Ziv, O., Glaser, B. & Dor, Y. The plastic pancreas.Dev. Cell26, 3–7 (2013).

    CAS PubMed  Google Scholar 

  107. Adriaenssens, A. E. et al. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets.Diabetologia59, 2156–2165 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  108. DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets.Mol. Metab.5, 449–458 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  109. Holst, J. J., Wewer Albrechtsen, N. J., Pedersen, J. & Knop, F. K. Glucagon and amino acids are linked in a mutual feedback cycle: the liver-alpha-cell axis.Diabetes66, 235–240 (2017).

    CAS PubMed  Google Scholar 

  110. Longuet, C. et al. Liver-specific disruption of the murine glucagon receptor produces alpha-cell hyperplasia: evidence for a circulating alpha-cell growth factor.Diabetes62, 1196–1205 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  111. Solloway, M. J. et al. Glucagon couples hepatic amino acid catabolism to mTOR-dependent regulation of alpha-cell mass.Cell Rep.12, 495–510 (2015).

    CAS PubMed  Google Scholar 

  112. Dean, E. D. et al. Interrupted glucagon signaling reveals hepatic alpha cell axis and role for L-glutamine in alpha cell proliferation.Cell Metab.25, 1362–1373 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  113. Kim, J. et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic alpha cell hyperplasia in mice.Cell Metab.25, 1348–1361 (2017).

    CAS PubMed  Google Scholar 

  114. Bozadjieva, N. et al. Loss of mTORC1 signaling alters pancreatic alpha cell mass and impairs glucagon secretion.J. Clin. Invest.127, 4379–4393 (2017).

    PubMed PubMed Central  Google Scholar 

  115. Sayers, S. R. et al. Proglucagon promoter cre-mediated AMPK deletion in mice increases circulating GLP-1 levels and oral glucose tolerance.PLOS ONE11, e0149549 (2016).

    PubMed PubMed Central  Google Scholar 

  116. Xiao, X. et al. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes.Cell Stem Cell22, 78–90 (2018).

    CAS PubMed  Google Scholar 

  117. Chakravarthy, H. et al. Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx.Cell Metab.25, 622–634 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  118. Wilcox, C. L., Terry, N. A., Walp, E. R., Lee, R. A. & May, C. L. Pancreatic alpha-cell specific deletion of mouse Arx leads to alpha-cell identity loss.PLOS ONE8, e66214 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  119. Courtney, M. et al. The inactivation of Arx in pancreatic alpha-cells triggers their neogenesis and conversion into functional beta-like cells.PLOS Genet.9, e1003934 (2013).

    PubMed PubMed Central  Google Scholar 

  120. Thorel, F. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss.Nature464, 1149–1154 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  121. Lu, J. et al. IGFBP1 increases beta-cell regeneration by promoting alpha- to beta-cell transdifferentiation.EMBO J.35, 2026–2044 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  122. Ben-Othman, N. et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis.Cell168, 73–85 (2017).

    CAS PubMed  Google Scholar 

  123. Brown, M. L., Andrzejewski, D., Burnside, A. & Schneyer, A. L. Activin enhances alpha- to beta-cell transdifferentiation as a source for beta-cells in male FSTL3 knockout mice.Endocrinology157, 1043–1054 (2016).

    CAS PubMed  Google Scholar 

  124. van der Meulen, T. et al. Artemether does not turn alpha cells into beta cells.Cell Metab.27, 218–225 (2018).

    PubMed  Google Scholar 

  125. Thorel, F. et al. Normal glucagon signaling and beta-cell function after near-total alpha-cell ablation in adult mice.Diabetes60, 2872–2882 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  126. Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.Mol. Metab.5, 233–244 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  127. Bramswig, N. C. et al. Epigenomic plasticity enables human pancreatic alpha to beta cell reprogramming.J. Clin. Invest.123, 1275–1284 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  128. Papizan, J. B. et al. Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming.Genes Dev.25, 2291–2305 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  129. Avrahami, D. et al. Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell function.Cell Metab.22, 619–632 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  130. Dhawan, S. et al. DNA methylation directs functional maturation of pancreatic beta cells.J. Clin. Invest.125, 2851–2860 (2015).

    PubMed PubMed Central  Google Scholar 

  131. Arda, H. E. et al. Age-dependent pancreatic gene regulation reveals mechanisms governing human beta cell function.Cell Metab.23, 909–920 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  132. Moran, I. et al. Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes.Cell Metab.16, 435–448 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  133. Wang, Y. J. et al. Single-cell mass cytometry analysis of the human endocrine pancreas.Cell Metab.24, 616–626 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  134. Sipos, B. et al. Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations.J. Clin. Endocrinol. Metab.100, E783–E788 (2015).

    PubMed  Google Scholar 

  135. Larger, E. et al. Pancreatic alpha-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation.Endocrinol. Diabetes Metab. Case Rep.2016, 16-0081 (2016).

    PubMed PubMed Central  Google Scholar 

  136. Challis, B. G. et al. Heterogeneity of glucagonomas due to differential processing of proglucagon-derived peptides.Endocrinol. Diabetes Metab. Case Rep.2015, 150105 (2015).

    PubMed PubMed Central  Google Scholar 

  137. Chambers, A. P. et al. The role of pancreatic preproglucagon in glucose homeostasis in mice.Cell Metab.25, 927–934 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  138. Traub, S. et al. Pancreatic alpha cell-derived glucagon-related peptides are required for beta cell adaptation and glucose homeostasis.Cell Rep.18, 3192–3203 (2017).

    CAS PubMed  Google Scholar 

  139. Saloman, D. & Meda, P. Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells.Exp. Cell Res.162, 507–520 (1986).

    Google Scholar 

  140. Pipeleers, D. G. Heterogeneity in pancreatic β-cell population.Diabetes41, 777–781 (1992).

    CAS PubMed  Google Scholar 

  141. Gutierrez, G. D., Gromada, J. & Sussel, L. Heterogeneity of the pancreatic beta cell.Front. Genet.8, 22 (2017).

    PubMed PubMed Central  Google Scholar 

  142. Hodson, D. J. et al. Lipotoxicity disrupts incretin-regulated human beta cell connectivity.J. Clin. Invest.123, 4182–4194 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  143. Johnston, N. R. et al. Beta cell hubs dictate pancreatic islet responses to glucose.Cell Metab.24, 389–401 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  144. Mitchell, R. K. et al. Selective disruption of Tcf7l2 in the pancreatic beta cell impairs secretory function and lowers beta cell mass.Hum. Mol. Genet.24, 1390–1399 (2014).

    PubMed PubMed Central  Google Scholar 

  145. Hodson, D. J. et al. ADCY5 couples glucose to insulin secretion in human islets.Diabetes63, 3009–3021 (2014).

    PubMed PubMed Central  Google Scholar 

  146. Mitchell, R. K. et al. The transcription factor Pax6 is required for pancreatic beta cell identity, glucose-regulated ATP synthesis, and Ca2+ dynamics in adult mice.J. Biol. Chem.292, 8892–8906 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  147. Rutter, G. A. GABA signaling: a route to new pancreatic beta cells.Cell Res.27, 309–310 (2017).

    CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Xin and J. Kim for help with preparation of the manuscript and figures. G.A.R. was supported by MRC Programmes (MR/J0003042/1, MR/N00275X/1 and MR/L020149/1 (DIVA)), Wellcome Trust Senior Investigator Award (WT098424AIA), Diabetes UK (BDA11/0004210 and BDA/15/0005275) and Biotechnology and Biological Sciences Research Council (BB/J015873/1) project grants.

Author information

Authors and Affiliations

  1. Regeneron Pharmaceuticals, Tarrytown, NY, USA

    Jesper Gromada

  2. Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK

    Pauline Chabosseau & Guy A. Rutter

Authors
  1. Jesper Gromada

    You can also search for this author inPubMed Google Scholar

  2. Pauline Chabosseau

    You can also search for this author inPubMed Google Scholar

  3. Guy A. Rutter

    You can also search for this author inPubMed Google Scholar

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding authors

Correspondence toJesper Gromada orGuy A. Rutter.

Ethics declarations

Competing interests

J.G. is an employee and shareholder of Regeneron Pharmaceuticals, Inc. G.A.R. has received research funding from Les Laboratoires Servier. P.C. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromada, J., Chabosseau, P. & Rutter, G.A. The α-cell in diabetes mellitus.Nat Rev Endocrinol14, 694–704 (2018). https://doi.org/10.1038/s41574-018-0097-y

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp