Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Drug Discovery
  • Perspective
  • Published:

Phase 0/microdosing approaches: time for mainstream application in drug development?

Nature Reviews Drug Discoveryvolume 19pages801–818 (2020)Cite this article

Subjects

Abstract

Phase 0 approaches — which include microdosing — evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase 0/microdosing regulatory framework from ICH M3 guidelines.
Fig. 2: Phase 0 and phase I timelines.
Fig. 3: Extrapolation of subtherapeutic phase 0 data to therapeutic-level exposures.
Fig. 4: Extrapolation from microdose to therapeutic-level exposures — role of PBPK modelling.
Fig. 5: Intratarget microdosing (ITM)28,66,70.

Similar content being viewed by others

References

  1. FDA. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products.http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html (2004).

  2. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge.Nat. Rev. Drug Discov.9, 203–214 (2010).

    CAS PubMed  Google Scholar 

  3. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency.Nat. Rev. Drug Discov.11, 191–200 (2012).

    CAS PubMed  Google Scholar 

  4. Morgan, P. et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca.Nat. Rev. Drug Discov.17, 167–181 (2018).

    CAS PubMed  Google Scholar 

  5. DiMasi, J. A., Feldman, L., Seckler, A. & Wilson, A. Trends in risks associated with new drug development: success rates for investigational drugs.Clin. Pharmacol. Ther.87, 272–277 (2010).

    CAS PubMed  Google Scholar 

  6. Swinney, D. C. & Anthony, J. How were new medicines discovered?Nat. Rev. Drug Discov.10, 507–519 (2011).

    CAS PubMed  Google Scholar 

  7. Burt, T., Button, K. S., Thom, H., Noveck, R. J. & Munafo, M. R. The burden of the “false-negatives” in clinical development: analyses of current and alternative scenarios and corrective measures.Clin. Transl. Sci.10, 470–479 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  8. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience.Nat. Rev. Neurosci.14, 365–376 (2013).

    CAS PubMed  Google Scholar 

  9. Bauer, M. et al. A positron emission tomography microdosing study with a potential antiamyloid drug in healthy volunteers and patients with Alzheimer’s disease.Clin. Pharmacol. Ther.80, 216–227 (2006).

    CAS PubMed  Google Scholar 

  10. Byun, B. H. et al. Head-to-head comparison of11C-PiB and18F-FC119S for Abeta imaging in healthy subjects, mild cognitive impairment patients, and Alzheimer’s disease patients.Medicine96, e6441 (2017).

    PubMed PubMed Central  Google Scholar 

  11. Kusuhara, H. et al. Comparison of pharmacokinetics of newly discovered aromatase inhibitors by a cassette microdosing approach in healthy Japanese subjects.Drug Metab. Pharmacokinet.32, 293–300 (2017).

    CAS PubMed  Google Scholar 

  12. Xiao, H. et al. Developing a cassette microdosing approach to enhance the throughput of PET imaging agent screening.J. Pharm. Biomed. Anal.154, 48–56 (2018).

    CAS PubMed  Google Scholar 

  13. Okour, M. et al. A human microdose study of the anti-malarial GSK3191607 in healthy volunteers.Br. J. Clin. Pharmacol.https://doi.org/10.1111/bcp.13476 (2017).

    Article PubMed PubMed Central  Google Scholar 

  14. Cahn, A. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of GSK2239633, a CC-chemokine receptor 4 antagonist, in healthy male subjects: results from an open-label and from a randomised study.BMC Pharmacol. Toxicol.14, 14 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  15. Al Idrus, A. Presage inks its 3rd deal around phase 0 studies — with more to come.FierceBiotechhttps://www.fiercebiotech.com/biotech/presage-inks-its-third-deal-around-phase-0-studies-more-to-come (2019).

  16. Jonas, O. et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors.Sci. Transl. Med.7, 284ra257 (2015).

    Google Scholar 

  17. Sjogren, E., Halldin, M. M., Stalberg, O. & Sundgren-Andersson, A. K. Preclinical characterization of three transient receptor potential vanilloid receptor 1 antagonists for early use in human intradermal microdose analgesic studies.Eur. J. Painhttps://doi.org/10.1002/ejp.1175 (2018).

    Article PubMed  Google Scholar 

  18. Gundle, K. R. et al. Multiplexed evaluation of microdosed antineoplastic agents in situ in the tumor microenvironment of patients with soft tissue sarcoma.Clin. Cancer Res.https://doi.org/10.1158/1078-0432.Ccr-20-0614 (2020).

    Article PubMed  Google Scholar 

  19. Lappin, G. & Garner, R. C. Big physics, small doses: the use of AMS and PET in human microdosing of development drugs.Nat. Rev. Drug Discov.2, 233–240 (2003).

    CAS PubMed  Google Scholar 

  20. Combes, R. D. et al. Early microdose drug studies in human volunteers can minimise animal testing: proceedings of a workshop organised by volunteers in research and testing.Eur. J. Pharm. Sci.19, 1–11 (2003).

    CAS PubMed  Google Scholar 

  21. Bergstrom, M., Grahnen, A. & Langstrom, B. Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development.Eur. J. Clin. Pharmacol.59, 357–366 (2003).

    PubMed  Google Scholar 

  22. MHLW.Guidance: Microdose clinical Studies (ed. Labor and Welfare Ministry of Health, Pharmaceutical and Medical Safety Bureau) (MHLW, 2008).

  23. FDA. Guidance for Industry, Investigators, and Reviewers Exploratory IND Studies.http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM078933.pdf (2006).

  24. EMEA.Position paper CPMP/SWP/2599 (2004).

  25. ICH.Guidance on Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals M3(R2) 8–16 (ICH Secretariat, 2009).

  26. Bertino, J. S. Jr., Greenberg, H. E. & Reed, M. D. American college of clinical pharmacology position statement on the use of microdosing in the drug development process.J. Clin. Pharmacol.47, 418–422 (2007).

    CAS PubMed  Google Scholar 

  27. Rowland, M. Commentary on ACCP position statement on the use of microdosing in the drug development process.J. Clin. Pharmacol.47, 1595–1596 (2007). author reply 1597-1598.

    PubMed  Google Scholar 

  28. Burt, T. et al. Intra-target microdosing (ITM): a novel drug development approach aimed at enabling safer and earlier translation of biological insights into human testing.Clin. Transl. Sci. 1–14,https://doi.org/10.1111/cts.12464 (2017).

  29. Bosgra, S., Vlaming, M. L. & Vaes, W. H. To apply microdosing or not? Recommendations to single out compounds with non-linear pharmacokinetics.Clin. Pharmacokinet.55, 1–15 (2016).

    CAS PubMed  Google Scholar 

  30. Lappin, G., Noveck, R. & Burt, T. Microdosing and drug development: past, present and future.Expert Opin. Drug Metab. Toxicol.9, 817–834 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  31. Sugiyama, Y. & Yamashita, S. Impact of microdosing clinical study – why necessary and how useful?Adv. Drug Deliv. Rev.63, 494–502 (2011).

    CAS PubMed  Google Scholar 

  32. Rowland, M. Microdosing: a critical assessment of human data.J. Pharm. Sci.101, 4067–4074 (2012).

    CAS PubMed  Google Scholar 

  33. Burt, T. et al. Microdosing and other phase-0 clinical trials: facilitating translation in drug development.Clin. Transl. Sci.9, 74–88 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  34. Henderson, P. T. & Pan, C. X. Human microdosing for the prediction of patient response.Bioanalysis2, 373–376 (2010).

    CAS PubMed  Google Scholar 

  35. Vlaming, M. et al. Microdosing of a carbon-14 labeled protein in healthy volunteers accurately predicts its pharmacokinetics at therapeutic dosages.Clin. Pharmacol. Ther.98, 196–204 (2015).

    CAS PubMed  Google Scholar 

  36. van Nuland, M., Rosing, H., Huitema, A. D. R. & Beijnen, J. H. Predictive value of microdose pharmacokinetics.Clin. Pharmacokinet.58, 1221–1236 (2019).

    PubMed  Google Scholar 

  37. Malfatti, M. A., Lao, V., Ramos, C. L., Ong, V. S. & Turteltaub, K. W. Use of microdosing and accelerator mass spectrometry to evaluate the pharmacokinetic linearity of a novel tricyclic GyrB/ParE inhibitor in rats.Antimicrob. Agents Chemother.58, 6477–6483 (2014).

    PubMed PubMed Central  Google Scholar 

  38. Sandhu, P. et al. Evaluation of microdosing strategies for studies in preclinical drug development: demonstration of linear pharmacokinetics in dogs of a nucleoside analog over a 50-fold dose range.Drug Metab. Dispos.32, 1254–1259 (2004).

    CAS PubMed  Google Scholar 

  39. Snoeys, J., Beumont, M., Monshouwer, M. & Ouwerkerk-Mahadevan, S. Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: a PBPK-guided drug development approach.Clin. Pharmacol. Ther.99, 224–234 (2016).

    CAS PubMed  Google Scholar 

  40. Pierrillas, P. B. et al. Prediction of human nonlinear pharmacokinetics of a new Bcl-2 inhibitor using PBPK modeling and interspecies extrapolation strategy.Drug Metab. Dispos.47, 648–656 (2019).

    CAS PubMed  Google Scholar 

  41. Lappin, G. et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs.Clin. Pharmacol. Ther.80, 203–215 (2006).

    CAS PubMed  Google Scholar 

  42. Hah, S. S., Sumbad, R. A., de Vere White, R. W., Turteltaub, K. W. & Henderson, P. T. Characterization of oxaliplatin-DNA adduct formation in DNA and differentiation of cancer cell drug sensitivity at microdose concentrations.Chem. Res. Toxicol.20, 1745–1751 (2007).

    CAS PubMed  Google Scholar 

  43. Yamane, N. et al. Microdose clinical trial: quantitative determination of nicardipine and prediction of metabolites in human plasma.Drug Metab. Pharmacokinet.24, 389–403 (2009).

    CAS PubMed  Google Scholar 

  44. Lappin, G. et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability.Eur. J. Pharm. Sci.40, 125–131 (2010).

    CAS PubMed  Google Scholar 

  45. Ni, J. et al. Sensitivity and proportionality assessment of metabolites from microdose to high dose in rats using LC-MS/MS.Bioanalysis2, 407–419 (2010).

    CAS PubMed  Google Scholar 

  46. Prueksaritanont, T. et al. Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A.Clin. Pharmacol. Ther.101, 519–530 (2017).

    CAS PubMed  Google Scholar 

  47. Wagner, C. C. et al. A combined accelerator mass spectrometry-positron emission tomography human microdose study with14C- and11C-labelled verapamil.Clin. Pharmacokinet.50, 111–120 (2010).

    Google Scholar 

  48. Yamazaki, A. et al. Microdose study of a P-glycoprotein substrate, fexofenadine, using a non-radioisotope-labelled drug and LC/MS/MS.J. Clin. Pharm. Ther.35, 169–175 (2010).

    CAS PubMed  Google Scholar 

  49. Henderson, P. T. et al. A microdosing approach for characterizing formation and repair of carboplatin-DNA monoadducts and chemoresistance.Int. J. Cancer129, 1425–1434 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  50. Ieiri, I. et al. Microdosing clinical study: pharmacokinetic, pharmacogenomic (SLCO2B1), and interaction (grapefruit juice) profiles of celiprolol following the oral microdose and therapeutic dose.J. Clin. Pharmacol.52, 1078–1089 (2011).

    PubMed  Google Scholar 

  51. Ieiri, I. et al. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose.Pharmacogenet. Genomics21, 495–505 (2011).

    CAS PubMed  Google Scholar 

  52. Kusuhara, H. et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects.Clin. Pharmacol. Ther.89, 837–844 (2011).

    CAS PubMed  Google Scholar 

  53. Lappin, G. et al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers.Eur. J. Pharm. Sci.43, 141–150 (2011).

    CAS PubMed  Google Scholar 

  54. Maeda, K. et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study.Clin. Pharmacol. Ther.90, 575–581 (2011).

    CAS PubMed  Google Scholar 

  55. Maeda, K. & Sugiyama, Y. Novel stratergies for microdose studies using non-radiolabeled compounds.Adv. Drug Deliv. Rev.63, 532–538 (2011).

    CAS PubMed  Google Scholar 

  56. Maeda, K. et al. Nonlinear pharmacokinetics of oral quinidine and verapamil in healthy subjects: a clinical microdosing study.Clin. Pharmacol. Ther.90, 263–270 (2011).

    CAS PubMed  Google Scholar 

  57. Minamide, Y., Osawa, Y., Nishida, H., Igarashi, H. & Kudoh, S. A highly sensitive LC-MS/MS method capable of simultaneously quantitating celiprolol and atenolol in human plasma for a cassette cold-microdosing study.J. Separ. Sci.34, 1590–1598 (2011).

    CAS  Google Scholar 

  58. Yamane, N. et al. Clinical relevance of liquid chromatography tandem mass spectrometry as an analytical method in microdose clinical studies.Pharm. Res.28, 1963–1972 (2011).

    CAS PubMed  Google Scholar 

  59. Chen, J. et al. Biphasic elimination of tenofovir diphosphate and nonlinear pharmacokinetics of zidovudine triphosphate in a microdosing study.J. Acquir. Immune Defic. Syndr.61, 593–599 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  60. Croft, M., Keely, B., Morris, I., Tann, L. & Lappin, G. Predicting drug candidate victims of drug-drug interactions, using microdosing.Clin. Pharmacokinet.51, 237–246 (2012).

    CAS PubMed  Google Scholar 

  61. Ieiri, I. et al. Pharmacogenomic/pharmacokinetic assessment of a four-probe cocktail for CYPs and OATPs following oral microdosing.Int. J. Clin. Pharmacol. Ther.50, 689–700 (2012).

    CAS PubMed  Google Scholar 

  62. Cho, D. Y., Bae, S. H., Shon, J. H. & Bae, S. K. High-sensitive LC-MS/MS method for the simultaneous determination of mirodenafil and its major metabolite, SK-3541, in human plasma: application to microdose clinical trials of mirodenafil.J. Separ. Sci.36, 840–848 (2013).

    CAS  Google Scholar 

  63. Ikeda, T. et al. Microdose pharmacogenetic study of14C-tolbutamide in healthy subjects with accelerator mass spectrometry to examine the effects of CYP2C9*3 on its pharmacokinetics and metabolism.Eur. J. Pharm. Sci.49, 642–648 (2013).

    CAS PubMed  Google Scholar 

  64. Lamers, R. J., de Jong, A. F., Lopez-Gutierrez, J. M. & Gomez-Guzman, J. Iodine-129 microdosing for protein and peptide drug development: erythropoietin as a case study.Bioanalysis5, 53–63 (2013).

    CAS PubMed  Google Scholar 

  65. Schou, M. et al. Radiolabeling of the cannabinoid receptor agonist AZD1940 with carbon-11 and PET microdosing in non-human primate.Nucl. Med. Biol.40, 410–414 (2013).

    CAS PubMed  Google Scholar 

  66. Burt, T. et al. Intraarterial microdosing: a novel drug development approach, proof-of-concept PET study in rats.J. Nucl. Med.56, 1793–1799 (2015).

    CAS PubMed  Google Scholar 

  67. Fujita, K. et al. A clinical pharmacokinetic microdosing study of docetaxel with Japanese patients with cancer.Cancer Chemother. Pharmacol.76, 793–801 (2015).

    CAS PubMed  Google Scholar 

  68. Yamashita, S. et al. An assessment of the oral bioavailability of three Ca-channel blockers using a cassette-microdose study: a new strategy for streamlining oral drug development.J. Pharm. Sci.104, 3154–3161 (2015).

    CAS PubMed  Google Scholar 

  69. Madeen, E. P. et al. Human microdosing with carcinogenic polycyclic aromatic hydrocarbons: in vivo pharmacokinetics of dibenzo[def,p]chrysene and metabolites by UPLC accelerator mass spectrometry.Chem. Res. Toxicol.29, 1641–1650 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  70. Burt, T. et al. Intra-target microdosing - a novel drug development approach: proof of concept, safety, and feasibility study in humans.Clin. Transl. Sci.https://doi.org/10.1111/cts.12477 (2017).

    Article PubMed PubMed Central  Google Scholar 

  71. Park, G. J. et al. Drug-drug interaction of microdose and regular-dose omeprazole with a CYP2C19 inhibitor and inducer.Drug Des. Devel. Ther.11, 1043–1053 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  72. van Nuland, M. et al. Ultra-sensitive LC-MS/MS method for the quantification of gemcitabine and its metabolite 2’,2’-difluorodeoxyuridine in human plasma for a microdose clinical trial.J. Pharm. Biomed. Anal.151, 25–31 (2017).

    PubMed  Google Scholar 

  73. Wang, S. S. et al. A diagnostic microdosing approach to investigate platinum sensitivity in non-small cell lung cancer.Int. J. Cancer141, 604–613 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  74. Zimmermann, M. et al. Microdose-induced drug-DNA adducts as biomarkers of chemotherapy resistance in humans and mice.Mol. Cancer Ther.16, 376–387 (2017).

    CAS PubMed  Google Scholar 

  75. Hohmann, N. et al. Simultaneous phenotyping of CYP2E1 and CYP3A using oral chlorzoxazone and midazolam microdoses.Br. J. Clin. Pharmacol.https://doi.org/10.1111/bcp.14040 (2019).

    Article PubMed PubMed Central  Google Scholar 

  76. van Groen, B. D. et al. Dose-linearity of the pharmacokinetics of an intravenous [14C]midazolam microdose in children.Br. J. Clin. Pharmacol.https://doi.org/10.1111/bcp.14047 (2019).

    Article PubMed PubMed Central  Google Scholar 

  77. Takashima, T. et al. PET imaging-based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me.J. Nucl. Med.53, 741–748 (2012).

    PubMed  Google Scholar 

  78. Hohmann, N., Halama, B., Siller, N., Mikus, G. & Haefeli, W. E. Response to “Can CYP3A activity be evaluated for drug interaction using a nanogram dose of probe drug?”: evaluation of CYP3A activity with microdoses of midazolam.Clin. Pharmacol. Ther.95, 490–491 (2014).

    CAS PubMed  Google Scholar 

  79. Halama, B. et al. A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions.Clin. Pharmacol. Ther.93, 564–571 (2013).

    CAS PubMed  Google Scholar 

  80. Burhenne, J. et al. Quantification of femtomolar concentrations of the CYP3A substrate midazolam and its main metabolite 1’-hydroxymidazolam in human plasma using ultra performance liquid chromatography coupled to tandem mass spectrometry.Anal. Bioanal. Chem.402, 2439–2450 (2012).

    CAS PubMed  Google Scholar 

  81. Hohmann, N. et al. Midazolam microdose to determine systemic and pre-systemic metabolic CYP3A activity in humans.Br. J. Clin. Pharmacol.79, 278–285 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  82. Schou, M. et al. Large variation in brain exposure of reference CNS drugs: a PET study in nonhuman primates.Int. J. Neuropsychopharmacol.18,https://doi.org/10.1093/ijnp/pyv036 (2015).

  83. Madeen, E. et al. Human in vivo pharmacokinetics of [14C]dibenzo[def,p]chrysene by accelerator mass spectrometry following oral microdosing.Chem. Res. Toxicol.https://doi.org/10.1021/tx5003996 (2014).

    Article PubMed PubMed Central  Google Scholar 

  84. Saleem, A. et al. Lapatinib access into normal brain and brain metastases in patients with Her-2 overexpressing breast cancer.EJNMMI Res.5, 30 (2015).

    PubMed PubMed Central  Google Scholar 

  85. Saleem, A., Aboagye, E. O., Matthews, J. C. & Price, P. M. Plasma pharmacokinetic evaluation of cytotoxic agents radiolabelled with positron emitting radioisotopes.Cancer Chemother. Pharmacol.61, 865–873 (2008).

    CAS PubMed  Google Scholar 

  86. Saleem, A. et al. Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography.J. Clin. Oncol.19, 1421–1429 (2001).

    CAS PubMed  Google Scholar 

  87. Ieiri, I. et al. Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; micro/small dosing tests using midazolam (CYP3A4), fexofenadine (p-glycoprotein), and pravastatin (OATP1B1) as probe drugs.J. Clin. Pharmacol.53, 654–661 (2013).

    CAS PubMed  Google Scholar 

  88. van der Veldt, A. A., Smit, E. F. & Lammertsma, A. A. Positron emission tomography as a method for measuring drug delivery to tumors in vivo: the example of [11C]docetaxel.Front. Oncol.3, 208 (2013).

    PubMed PubMed Central  Google Scholar 

  89. Shin, K. H. et al. A positron emission tomography microdosing study with sertraline in healthy volunteers.Int. J. Clin. Pharmacol. Ther.50, 224–232 (2012).

    CAS PubMed  Google Scholar 

  90. Vuong, L. T. et al. Use of accelerator mass spectrometry to measure the pharmacokinetics and peripheral blood mononuclear cell concentrations of zidovudine.J. Pharm. Sci.97, 2833–2843 (2008).

    CAS  Google Scholar 

  91. Cunningham, V. J. et al. A method of studying pharmacokinetics in man at picomolar drug concentrations.Br. J. Clin. Pharmacol.32, 167–172 (1991).

    CAS PubMed PubMed Central  Google Scholar 

  92. Liu, L. et al. Modulation of P-glycoprotein at the human blood-brain barrier by quinidine or rifampin treatment: a positron emission tomography imaging study.Drug Metab. Dispos.43, 1795–1804 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  93. Van Nuland, M. et al. Pilot study to predict pharmacokinetics of a therapeutic gemcitabine dose from a microdose.Clin. Pharmacol. Drug Dev.https://doi.org/10.1002/cpdd.774 (2020).

    Article PubMed  Google Scholar 

  94. Ordonez, A. A. et al. Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions.Nat. Med.26, 529–534 (2020).

    CAS PubMed PubMed Central  Google Scholar 

  95. Zimmermann, M. et al. Oxaliplatin-DNA adducts as predictive biomarkers of FOLFOX response in colorectal cancer: a potential treatment optimization strategy.Mol. Cancer Ther.19, 1070–1079 (2020).

    CAS PubMed PubMed Central  Google Scholar 

  96. Mikus, G. et al. Application of a microdosed cocktail of 3 oral factor Xa inhibitors to study drug-drug interactions with different perpetrator drugs.Br. J. Clin. Pharmacol.https://doi.org/10.1111/bcp.14277 (2020).

    Article PubMed PubMed Central  Google Scholar 

  97. Madan, A. et al. A pharmacokinetic evaluation of five H1 antagonists after an oral and intravenous microdose to human subjects.Br. J. Clin. Pharmacol.67, 288–298 (2008).

    Google Scholar 

  98. Heuveling, D. A. et al. Phase 0 microdosing PET study using the human mini antibody F16SIP in head and neck cancer patients.J. Nucl. Med.54, 397–401 (2013).

    CAS PubMed  Google Scholar 

  99. Kummar, S. et al. First-in-human phase 0 trial of oral 5-iodo-2-pyrimidinone-2’-deoxyribose in patients with advanced malignancies.Clin. Cancer Res.19, 1852–1857 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  100. Carpenter, A. P. Jr., Pontecorvo, M. J., Hefti, F. F. & Skovronsky, D. M. The use of the exploratory IND in the evaluation and development of 18F-PET radiopharmaceuticals for amyloid imaging in the brain: a review of one company’s experience.Q. J. Nucl. Med. Mol. Imaging53, 387–393 (2009).

    PubMed  Google Scholar 

  101. Zhou, X. J., Garner, R. C., Nicholson, S., Kissling, C. J. & Mayers, D. Microdose pharmacokinetics of IDX899 and IDX989, candidate HIV-1 non-nucleoside reverse transcriptase inhibitors, following oral and intravenous administration in healthy male subjects.J. Clin. Pharmacol.49, 1408–1416 (2009).

    CAS PubMed  Google Scholar 

  102. Wang, J. L. et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part III: the three microdose candidates.Bioorg Med. Chem. Lett.20, 7164–7168 (2010).

    CAS PubMed  Google Scholar 

  103. Sun, L. et al. Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial.Anal. Chem.84, 8614–8621 (2012).

    CAS PubMed  Google Scholar 

  104. Jones, H. M. et al. Clinical micro-dose studies to explore the human pharmacokinetics of four selective inhibitors of human Nav1.7 voltage-dependent sodium channels.Clin. Pharmacokinet.55, 875–887 (2016).

    CAS PubMed  Google Scholar 

  105. Ostenfeld, T., Beaumont, C., Bullman, J., Beaumont, M. & Jeffrey, P. Human microdose evaluation of the novel EP1 receptor antagonist GSK269984A.Br. J. Clin. Pharmacol.74, 1033–1044 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  106. Harrison, A. et al. Case studies addressing human pharmacokinetic uncertainty using a combination of pharmacokinetic simulation and alternative first in human paradigms.Xenobiotica42, 57–74 (2012).

    CAS PubMed  Google Scholar 

  107. Park, W.-S. et al. Human microdosing and mice xenograft data of AGM-130 applied to estimate efficacious doses in patients.Cancer Chemother. Pharmacol.80, 363–369 (2017).

    CAS PubMed  Google Scholar 

  108. Rajagopalan, R. et al. Preclinical characterization and human microdose pharmacokinetics of ITMN-8187, a nonmacrocyclic inhibitor of the hepatitis C virus NS3 protease.Antimicrob. Agents Chemother.61,https://doi.org/10.1128/aac.01569-16 (2017).

  109. Sanai, N. et al. Phase 0 trial of AZD1775 in first-recurrence glioblastoma patients.Clin. Cancer Res.https://doi.org/10.1158/1078-0432.ccr-17-3348 (2018).

    Article PubMed PubMed Central  Google Scholar 

  110. Lappin, G. et al. A microdose study of14C-AR-709 in healthy men: pharmacokinetics, absolute bioavailability and concentrations in key compartments of the lung.Eur. J. Clin. Pharmacol.69, 1673–1682,https://doi.org/10.1007/s00228-013-1528-2 (2013).

    Article CAS PubMed  Google Scholar 

  111. Bal, C. et al. Pharmacokinetic, dosimetry and toxicity study of177Lu-EDTMP in patients: phase 0/I study.Curr. Radiopharm.9, 71–84 (2016).

    CAS PubMed  Google Scholar 

  112. Reid, J. M. et al. Phase 0 clinical chemoprevention trial of the Akt inhibitor SR13668.Cancer Prev. Res.4, 347–353 (2011).

    CAS  Google Scholar 

  113. Kummar, S. et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies.J. Clin. Oncol.27, 2705–2711 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  114. Kaplan, N., Garner, C. & Hafkin, B. AFN-1252 in vitro absorption studies and pharmacokinetics following microdosing in healthy subjects.Eur. J. Pharm. Sci.50, 440–446 (2013).

    CAS PubMed  Google Scholar 

  115. Johnstrom, P. et al. Development of rapid multistep carbon-11 radiosynthesis of the myeloperoxidase inhibitor AZD3241 to assess brain exposure by PET microdosing.Nucl. Med. Biol.42, 555–560 (2015).

    PubMed  Google Scholar 

  116. Mooij, M. G. et al. Pediatric microdose study of [14C]paracetamol to study drug metabolism using accelerated mass spectrometry: proof of concept.Clin. Pharmacokinet.53, 1045–1051 (2014).

    CAS PubMed PubMed Central  Google Scholar 

  117. Barthel, H. et al. Individualized quantification of brain beta-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer’s disease and healthy controls.Eur. J. Nucl. Med. Mol. Imaging38, 1702–1714 (2011).

    CAS PubMed  Google Scholar 

  118. Moschos, S. J. et al. Pharmacodynamic (phase 0) study using etaracizumab in advanced melanoma.J. Immunother.33, 316–325 (2010).

    CAS PubMed  Google Scholar 

  119. Park, M. H. et al. Validation of a liquid chromatography-triple quadrupole mass spectrometric method for the determination of 5-nitro-5’-hydroxy-indirubin-3’-oxime (AGM-130) in human plasma and its application to microdose clinical trial.Biomed. Chromatogr.https://doi.org/10.1002/bmc.3551 (2015).

    Article PubMed  Google Scholar 

  120. Elliott, J. T. et al. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules.Biomed. Opt. Express7, 3280–3288 (2016).

    PubMed PubMed Central  Google Scholar 

  121. Lamberts, L. E. et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study.Clin. Cancer Res.23, 2730–2741 (2017).

    CAS PubMed  Google Scholar 

  122. de Souza, A. L. et al. Fluorescent affibody molecule administered in vivo at a microdose level labels EGFR expressing glioma tumor regions.Mol. Imaging Biol.19, 41–48 (2017).

    PubMed  Google Scholar 

  123. Jonas, O. et al. Parallel in vivo assessment of drug phenotypes at various time points during systemic BRAF inhibition reveals tumor adaptation and altered treatment vulnerabilities.Clin. Cancer Res.22, 6031–6038 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  124. Garner, C. R. et al. Observational infant exploratory [14C]-paracetamol pharmacokinetic microdose/therapeutic dose study with accelerator mass spectrometry bioanalysis.Br. J. Clin. Pharmacol.80, 157–167 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  125. Mooij, M. G. et al. Successful use of [14C]paracetamol microdosing to elucidate developmental changes in drug metabolism.Clin. Pharmacokinet.https://doi.org/10.1007/s40262-017-0508-6 (2017).

    Article PubMed PubMed Central  Google Scholar 

  126. Byun, B. H., K, B. & Lim, I. H. Quantification of amyloid-b deposition using18F-FC119S PET in human brains: a phase 0-1 study.Eur. J. Nucl. Med. Mol. Imaginghttps://doi.org/10.1007/s00259-015-3198-z (2015).

    Article  Google Scholar 

  127. Keat, N. et al. A microdose PET study of the safety, immunogenicity, biodistribution, and radiation dosimetry of18F-FB-A20FMDV2 for imaging the integrin alphavbeta6.J. Nucl. Med. Technol.46, 136–143 (2018).

    PubMed  Google Scholar 

  128. Gordi, T. et al. Pharmacokinetic analysis of14C-ursodiol in newborn infants using accelerator mass spectrometry.J. Clin. Pharmacol.54, 1031–1037 (2014).

    CAS PubMed  Google Scholar 

  129. Lesche, R. et al. Preclinical evaluation of BAY 1075553, a novel F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer.Eur. J. Nucl. Med. Mol. Imaginghttps://doi.org/10.1007/s00259-013-2527-3 (2013).

    Article PubMed  Google Scholar 

  130. Bauer, M. et al. Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data.Clin. Pharmacol. Ther.91, 227–233 (2012).

    CAS PubMed  Google Scholar 

  131. Wei, X., Zhang, Z., Xie, Y. & Wang, Y. [Phase 0 clinical trials and post-marketed re-evaluation of clinical safety in injection of traditional Chinese medicine].Zhongguo Zhong Yao Za Zhi36, 2874–2876 (2011).

    PubMed  Google Scholar 

  132. Kuwano, K. et al. 2-[4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug.J. Pharmacol. Exp. Ther.322, 1181–1188 (2007).

    CAS PubMed  Google Scholar 

  133. Jacobs, B. A. et al. A phase 0 clinical trial of novel candidate extended-release formulations of capecitabine.Cancer Chemother. Pharmacol.77, 1201–1207 (2016).

    CAS PubMed  Google Scholar 

  134. Kurdziel, K. A. et al. First-in-human phase 0 study of111In-CHX-A”-DTPA trastuzumab for HER2 tumor imaging.J. Transl. Sci.5,https://doi.org/10.15761/jts.1000269 (2019).

  135. Wang, S. J. et al. A phase 0 study of the pharmacokinetics, biodistribution, and dosimetry of188Re-liposome in patients with metastatic tumors.EJNMMI Res.9, 46 (2019).

    PubMed PubMed Central  Google Scholar 

  136. Kaneko, K. et al. A clinical quantitative evaluation of hepatobiliary transport of [11C]dehydropravastatin in humans using positron emission tomography.Drug Metab. Dispos.46, 719–728 (2018).

    CAS PubMed  Google Scholar 

  137. Tien, A. C. et al. A phase 0 trial of ribociclib in recurrent glioblastoma patients incorporating a tumor pharmacodynamic- and pharmacokinetic-guided expansion cohort.Clin. Cancer Res.25, 5777–5786 (2019).

    CAS PubMed PubMed Central  Google Scholar 

  138. Burt, T. et al. Phase 0, including microdosing approaches: applying the three Rs and increasing the efficiency of human drug development.Altern. Lab. Anim.46, 335–346 (2018).

    PubMed  Google Scholar 

  139. Burt, T., John, C. S., Ruckle, J. L. & Vuong, L. T. Phase-0/microdosing studies using PET, AMS, and LC-MS/MS: a range of study methodologies and conduct considerations. Accelerating development of novel pharmaceuticals through safe testing in humans - a practical guide.Expert Opin. Drug Deliv. 1–16,https://doi.org/10.1080/17425247.2016.1227786 (2016).

  140. Roth-Cline, M. & Nelson, R. M. Microdosing studies in children: a US regulatory perspective.Clin. Pharmacol. Ther.98, 232–233 (2015).

    CAS PubMed  Google Scholar 

  141. Burt, T., Combes, R. D. inThe History of Alternative Test Methods in Toxicology (eds Combes, R. D., Balls, M. & Worth, A.) 229–240 (Elsevier/Academic Press, 2018).

  142. Kurihara, C. Ethical, legal, and social implications (ELSI) of microdose clinical trials.Adv. Drug Deliv. Rev.63, 503–510 (2011).

    CAS PubMed  Google Scholar 

  143. Kimmelman, J. Ethics at phase 0: clarifying the issues.J. Law Med. Ethics35, 514 (2007).

    Google Scholar 

  144. McCartt, A. D., Ognibene, T. J., Bench, G. & Turteltaub, K. W. Quantifying carbon-14 for biology using cavity ring-down spectroscopy.Anal. Chem.88, 8714–8719 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  145. Zhang, Y. & Fox, G. B. PET imaging for receptor occupancy: meditations on calculation and simplification.J. Biomed. Res.26, 69–76 (2012).

    PubMed PubMed Central  Google Scholar 

  146. Wagner, C. C. & Langer, O. Approaches using molecular imaging technology – use of PET in clinical microdose studies.Adv. Drug Deliv. Rev.63, 539–546 (2011).

    CAS PubMed  Google Scholar 

  147. Sugiyama, Y. Effective use of microdosing and positron emission tomography (PET) studies on new drug discovery and development.Drug Metab. Pharmacokinet.24, 127–129 (2009).

    CAS PubMed  Google Scholar 

  148. Pogue, B. W. et al. Vision 20/20: molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: technological pathways for point of care imaging and intervention.Med. Phys.43, 3143–3156 (2016).

    PubMed PubMed Central  Google Scholar 

  149. Dueker, S. R., Vuong le, T., Lohstroh, P. N., Giacomo, J. A. & Vogel, J. S. Quantifying exploratory low dose compounds in humans with AMS.Adv. Drug Deliv. Rev.63, 518–531 (2011).

    CAS PubMed  Google Scholar 

  150. Dueker, S. R. et al. Early human ADME using microdoses and microtracers: bioanalytical considerations.Bioanalysis2, 441–454 (2010).

    CAS PubMed  Google Scholar 

  151. Rowland, M., Benet, L. Z. & Lead, P. K. commentary: predicting human pharmacokinetics.J. Pharm. Sci.100, 4047–4049 (2011).

    CAS PubMed  Google Scholar 

  152. Takano, J., Maeda, K., Bolger, M. B. & Sugiyama, Y. The prediction of the relative importance of CYP3A/P-glycoprotein to the nonlinear intestinal absorption of drugs by advanced compartmental absorption and transit model.Drug Metab. Dispos.44, 1808–1818 (2016).

    CAS PubMed  Google Scholar 

  153. Ito, K., Iwatsubo, T., Kanamitsu, S., Nakajima, Y. & Sugiyama, Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport.Annu. Rev. Pharmacol. Toxicol.38, 461–499 (1998).

    CAS PubMed  Google Scholar 

  154. Chiba, M., Ishii, Y. & Sugiyama, Y. Prediction of hepatic clearance in human from in vitro data for successful drug development.AAPS J.11, 262–276 (2009).

    CAS PubMed PubMed Central  Google Scholar 

  155. van Waterschoot, R. A. B. et al. Impact of target interactions on small-molecule drug disposition: an overlooked area.Nat. Rev. Drug Discov.17, 299 (2018).

    PubMed  Google Scholar 

  156. Smith, D. A. et al. Importance of target-mediated drug disposition for small molecules.Drug Discov. Today23, 2023–2030 (2018).

    CAS PubMed  Google Scholar 

  157. An, G. Small-molecule compounds exhibiting target-mediated drug disposition (TMDD): a minireview.J. Clin. Pharmacol.57, 137–150 (2017).

    CAS PubMed  Google Scholar 

  158. Levy, G. Pharmacologic target-mediated drug disposition.Clin. Pharmacol. Ther.56, 248–252 (1994).

    CAS PubMed  Google Scholar 

  159. Mager, D. E. & Jusko, W. J. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition.J. Pharmacokinet. Pharmacodyn.28, 507–532 (2001).

    CAS PubMed  Google Scholar 

  160. Yamane, N. et al. Cost-effectiveness analysis of microdose clinical trials in drug development.Drug Metab. Pharmacokinet.28, 187–195 (2013).

    CAS PubMed  Google Scholar 

  161. Sugiyama, Y. & Kurihara, C.Microdosing Clinical Trials (Jiho, 2007).

  162. Rowland, M. inMicrodosing and the 3Rs (National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), 2006).

  163. Owens, P. K. et al. A decade of innovation in pharmaceutical R&D: the Chorus model.Nat. Rev. Drug Discov.14, 17–28 (2015).

    CAS PubMed  Google Scholar 

  164. Lendrem, D. W. et al. Progression-seeking bias and rational optimism in research and development.Nat. Rev. Drug Discov.14, 219–221 (2015).

    CAS PubMed  Google Scholar 

  165. Peck, R. W., Lendrem, D. W., Grant, I., Lendrem, B. C. & Isaacs, J. D. Why is it hard to terminate failing projects in pharmaceutical R&D?Nat. Rev. Drug Discov.14, 663–664 (2015).

    CAS PubMed  Google Scholar 

  166. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters.Biostatistics20, 273–286 (2019).

    PubMed  Google Scholar 

  167. Pammolli, F., Magazzini, L. & Riccaboni, M. The productivity crisis in pharmaceutical R&D.Nat. Rev. Drug Discov.10, 428–438 (2011).

    CAS PubMed  Google Scholar 

  168. Pammolli, F. et al. The endless frontier? The recent increase of R&D productivity in pharmaceuticals.J. Transl. Med.18, 162 (2020).

    PubMed PubMed Central  Google Scholar 

  169. Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C. & Greyson, D. The cost of drug development: a systematic review.Health Policy100, 4–17 (2011).

    PubMed  Google Scholar 

  170. Zhou, H., Tong, Z. & McLeod, J. F. “Cocktail” approaches and strategies in drug development: valuable tool or flawed science?J. Clin. Pharmacol.44, 120–134 (2004).

    CAS PubMed  Google Scholar 

  171. Manitpisitkul, P. & White, R. E. Whatever happened to cassette-dosing pharmacokinetics?Drug Discov. Today9, 652–658 (2004).

    CAS PubMed  Google Scholar 

  172. Mikus, G. Probes and cocktails for drug-drug interaction evaluation: the future is microdosing?Clin. Pharmacol. Ther. (2019).

  173. Chavez-Eng, C. M., Lutz, R. W., Goykhman, D. & Bateman, K. P. Microdosing cocktail assay development for drug-drug interaction studies.J. Pharm. Sci.107, 1973–1986 (2018).

    CAS PubMed  Google Scholar 

  174. Zhang, L. & Sparreboom, A. Predicting transporter-mediated drug interactions: Commentary on: “Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin and rosuvastatin” and “Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A”.Clin. Pharmacol. Ther.101, 447–449 (2017).

    CAS PubMed  Google Scholar 

  175. Rowland, M., Benet, L. Z. & Graham, G. G. Clearance concepts in pharmacokinetics.J. Pharmacokinet. Biopharm.1, 123–136 (1973).

    CAS PubMed  Google Scholar 

  176. Waldman, S. A. & Terzic, A. Process improvement for maximized therapeutic innovation outcome.Clin. Pharmacol. Ther.103, 8–12 (2018).

    CAS PubMed  Google Scholar 

  177. Gunn, R. N. et al. Combining PET biodistribution and equilibrium dialysis assays to assess the free brain concentration and BBB transport of CNS drugs.J. Cereb. Blood Flow. Metab.32, 874–883 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  178. Roth-Cline, M. & Nelson, R. M. Ethical considerations in conducting pediatric and neonatal research in clinical pharmacology.Curr. Pharm. Des.21, 5619–5635 (2015).

    CAS PubMed  Google Scholar 

  179. Turner, M. A. et al. Pediatric microdose and microtracer studies using14C in Europe.Clin. Pharmacol. Ther.98, 234–237 (2015).

    CAS PubMed  Google Scholar 

  180. Bellis, J. R. et al. Adverse drug reactions and off-label and unlicensed medicines in children: a nested case–control study of inpatients in a pediatric hospital.BMC Med.11, 238 (2013).

    PubMed PubMed Central  Google Scholar 

  181. Dunne, J. et al. Extrapolation of adult data and other data in pediatric drug-development programs.Pediatrics128, e1242–e1249 (2011).

    PubMed  Google Scholar 

  182. Yackey, K. & Stanley, R. Off-label prescribing in children remains high: a call for prioritized research.Pediatricshttps://doi.org/10.1542/peds.2019-1571 (2019).

    Article PubMed  Google Scholar 

  183. EU. Study on off-label use of medicinal products in the European Unionhttps://doi.org/10.2875/464022 (EU, 2017).

  184. Vuong, L. T., Blood, A. B., Vogel, J. S., Anderson, M. E. & Goldstein, B. Applications of accelerator MS in pediatric drug evaluation.Bioanalysis4, 1871–1882 (2012).

    CAS PubMed  Google Scholar 

  185. FDA. General Clinical Pharmacology Considerations for Neonatal Studies for Drugs and Biological Products Guidance for Industry (FDA, 2019).

  186. Tozuka, Z. et al. Microdose study of14C-acetaminophen with accelerator mass spectrometry to examine pharmacokinetics of parent drug and metabolites in healthy subjects.Clin. Pharmacol. Ther.88, 824–830 (2010).

    CAS PubMed  Google Scholar 

  187. Lappin, G. & Garner, R. C. inHandbook of Analytical Separations,. Vol. 4. Bioanalytical separations 331–349 (Elsevier, 2003).

  188. FDA. Safety Testing of Drug Metabolites (FDA, 016).

  189. Morgan, P. et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival.Drug Discov. Today17, 419–424 (2012).

    CAS PubMed  Google Scholar 

  190. Lee, C. M. & Farde, L. Using positron emission tomography to facilitate CNS drug development.Trends Pharmacol. Sci.27, 310–316 (2006).

    CAS PubMed  Google Scholar 

  191. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs.J. Health Econ.47, 20–33 (2016).

    PubMed  Google Scholar 

  192. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. The cost of drug development.N. Engl. J. Med.372, 1972 (2015).

    PubMed  Google Scholar 

  193. DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs.J. Health Econ.22, 151–185 (2003).

    PubMed  Google Scholar 

  194. Munos, B. Lessons from 60 years of pharmaceutical innovation.Nat. Rev. Drug Discov.8, 959–968 (2009).

    CAS PubMed  Google Scholar 

  195. Coller, B. S. & Califf, R. M. Traversing the valley of death: a guide to assessing prospects for translational success.Sci. Transl. Med.1, 10cm19 (2009).

    Google Scholar 

  196. Dahl, K., Halldin, C. & Schou, M. New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals.Clin. Transl. Imaging5, 275–289 (2017).

    PubMed PubMed Central  Google Scholar 

  197. Li, Z. & Conti, P. S. Radiopharmaceutical chemistry for positron emission tomography.Adv. Drug Deliv. Rev.62, 1031–1051 (2010).

    CAS PubMed  Google Scholar 

  198. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework.Nat. Rev. Drug Discov.13, 419–431 (2014).

    CAS PubMed  Google Scholar 

  199. Samkoe, K. S. et al. Toxicity and pharmacokinetic profile for single-dose injection of ABY-029: a fluorescent anti-EGFR synthetic affibody molecule for human use.Mol. Imaging Biol.19, 512–521 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  200. Du, B. et al. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions.AAPS J.13, 299–308 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  201. Stenstrom, K., Sydoff, M. & Mattsson, S. Microdosing for early biokinetic studies in humans.Radiat. Prot. Dosimetry139, 348–352 (2010).

    CAS PubMed  Google Scholar 

  202. Eyal, S. How do the pharmacokinetics of drugs change in astronauts in space?Expert Opin. Drug Metab. Toxicol.https://doi.org/10.1080/17425255.2020.1746763 (2020).

    Article PubMed  Google Scholar 

  203. Eyal, S. & Derendorf, H. Medications in space: in search of a pharmacologist’s guide to the galaxy.Pharm. Res.36, 148 (2019).

    PubMed  Google Scholar 

  204. Iwatsubo, T., Suzuki, H. & Sugiyama, Y. Prediction of species differences (rats, dogs, humans) in the in vivo metabolic clearance of YM796 by the liver from in vitro data.J. Pharmacol. Exp. Ther.283, 462–469 (1997).

    CAS PubMed  Google Scholar 

  205. Iwatsubo, T., Hirota, N., Ooie, T., Suzuki, H. & Sugiyama, Y. Prediction of in vivo drug disposition from in vitro data based on physiological pharmacokinetics.Biopharm. Drug Dispos.17, 273–310 (1996).

    CAS PubMed  Google Scholar 

  206. Chen, M. et al. An ultra-sensitive LC-MS/MS method to determine midazolam levels in human plasma: development, validation and application to a clinical study.Bioanalysis9, 297–312 (2017).

    CAS PubMed  Google Scholar 

  207. Garner, R. C. Practical experience of using human microdosing with AMS analysis to obtain early human drug metabolism and PK data.Bioanalysis2, 429–440 (2010).

    CAS PubMed  Google Scholar 

  208. Young, G., Ellis, W., Ayrton, J., Hussey, E. & Adamkiewicz, B. Accelerator mass spectrometry (AMS): recent experience of its use in a clinical study and the potential future of the technique.Xenobiotica31, 619–632 (2001).

    CAS PubMed  Google Scholar 

  209. Turteltaub, K. W. & Dingley, K. H. Application of accelerated mass spectrometry (AMS) in DNA adduct quantification and identification.Toxicol. Lett.102–103, 435–439 (1998).

    PubMed  Google Scholar 

  210. Bergstrom, M. The use of microdosing in the development of small organic and protein therapeutics.J. Nucl. Med.58, 1188–1195 (2017).

    CAS PubMed  Google Scholar 

  211. Wagner, C. C., Muller, M., Lappin, G. & Langer, O. Positron emission tomography for use in microdosing studies.Curr. Opin. Drug Discov. Devel.11, 104–110 (2008).

    CAS PubMed  Google Scholar 

  212. Bauer, M., Wagner, C. C. & Langer, O. Microdosing studies in humans: the role of positron emission tomography.Drugs RD9, 73–81 (2008).

    CAS  Google Scholar 

  213. Shebley, M. et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective.Clin. Pharmacol. Ther.104, 88–110 (2018).

    PubMed PubMed Central  Google Scholar 

  214. Thorneloe, K. S. et al. The biodistribution and clearance of AlbudAb, a novel biopharmaceutical medicine platform, assessed via PET imaging in humans.EJNMMI Res.9, 45 (2019).

    PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the members of the Phase-0/Microdosing Network, an international consortium of phase 0 stakeholders, and especially E. Baker, M. Bergström, P. Choyke, M. Croft, S. de Wildt, J. DiMasi, S. Dueker, U. Glaenzel, I. Hallett, P. T. Henderson, O. Jonas, K. Lee, M. Okour, I. Rabiner, A. Roffel, W. Vaes, E. van Duijn, B. van Groen, L. Vuong, I. Yamada and H. Yamazaki for their review and/or contribution to the formulation of the concepts in this Perspective. Some of the Phase-0/Microdosing Network’s discussions that helped refine consensus concepts included in this Perpsective were held at the First International Phase-0/Microdosing Stakeholder Meeting, 12 March 2019, Washington (DC, USA).

Author information

Authors and Affiliations

  1. Burt Consultancy LLC. talburtmd.com, New York, NY, USA

    Tal Burt

  2. Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA

    Tal Burt

  3. GlaxoSmithKline Research and Development Ltd, Ware, UK

    Graeme Young

  4. Seoul National University, Seoul, Republic of Korea

    Wooin Lee

  5. University of Tokyo, Tokyo, Japan

    Hiroyuki Kusuhara

  6. Medical University of Vienna, Vienna, Austria

    Oliver Langer

  7. AIT Austrian Institute of Technology GmbH, Vienna, Austria

    Oliver Langer

  8. Manchester University, Manchester, UK

    Malcolm Rowland

  9. RIKEN, Yokohama, Japan

    Yuichi Sugiyama

Authors
  1. Tal Burt
  2. Graeme Young
  3. Wooin Lee
  4. Hiroyuki Kusuhara
  5. Oliver Langer
  6. Malcolm Rowland
  7. Yuichi Sugiyama

Contributions

T.B., W.L. and Y.S. contributed to researching data for this article. T.B., G.Y., W.L., O.L., H.K., M.R. and Y.S. made substantial contributions to discussion of the content, writing of the manuscript and reviewing the manuscript before submission.

Corresponding author

Correspondence toTal Burt.

Ethics declarations

Competing interests

Y.B. is President of the Phase-0/Microdosing Network, a non-profit educational organization dedicated to phase 0 including microdosing approaches and receives fees for consultations that may be impacted by this publication. G.Y. is employed by GlaxoSmithKline Research and Development Ltd and holds shares in the company. T.B., Y.S., M.R. and O.L. are members of the Phase-0/Microdosing Network Board of Directors. All authors are members of the Phase-0/Microdosing Network.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Phase-0/Microdosing Network:https://phase-0microdosing.org/

Supplementary information

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burt, T., Young, G., Lee, W.et al. Phase 0/microdosing approaches: time for mainstream application in drug development?.Nat Rev Drug Discov19, 801–818 (2020). https://doi.org/10.1038/s41573-020-0080-x

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2025 Movatter.jp