Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Disease Primers
  • Primer
  • Published:

Membranous nephropathy

Nature Reviews Disease Primersvolume 7, Article number: 69 (2021)Cite this article

Subjects

Abstract

Membranous nephropathy (MN) is a glomerular disease that can occur at all ages. In adults, it is the most frequent cause of nephrotic syndrome. In ~80% of patients, there is no underlying cause of MN (primary MN) and the remaining cases are associated with medications or other diseases such as systemic lupus erythematosus, hepatitis virus infection or malignancies. MN is an autoimmune disease characterized by a thickening of the glomerular capillary walls due to immune complex deposition. Identification of the phospholipase A2 receptor (PLA2R) as the major antigen in adults in 2009 induced a paradigm shift in disease diagnosis and monitoring and several other antigens have since been characterized. Disease outcome is difficult to predict and around one-third of patients will undergo spontaneous remission. In those at high risk of progression, immunosuppressive therapy with cyclophosphamide plus corticosteroids has substantially reduced the need for kidney replacement therapy. Owing to carcinogenic risk, other treatments (calcineurin inhibitors and CD20-targeted B cell depletion therapy (rituximab)) have been developed. However, disease relapses are frequent when calcineurin inhibitors are stopped and the remission rate with rituximab is lower than with cyclophosphamide, particularly in patients with high PLA2R antibody titres. Other new drugs are already available and antigen-specific immunotherapies are being developed.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 1 digital issues and online access to articles

¥14,900 per year

only ¥14,900 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fetomaternal allo-immune glomerulopathy caused by maternal anti-NEP antibodies.
Fig. 2: Pathomechanisms of injury in PLA2R-associated membranous nephropathy.
Fig. 3: Kidney biopsy findings of membranous nephropathy properties of the glomerulus in membranous nephropathy.
Fig. 4: Risk-based therapy in membranouse nephropathy.
Fig. 5: Adjustment of therapy using PLA2R antibody monitoring.

Similar content being viewed by others

Article30 November 2023

References

  1. Couser, W. G. Primary membranous nephropathy.Clin. J. Am. Soc. Nephrol.12, 983–997 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  2. Debiec, H. et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies.N. Engl. J. Med.346, 2053–2060 (2002).A landmark article that reports the first description of a podocyte antigen involved in a rare subset of neonatal MN.

    PubMed  Google Scholar 

  3. Beck, L. H. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy.N. Engl. J. Med.361, 11–21 (2009).A landmark article that first characterizes the major antigen in adult MN, leading to a paradigm shift in the diagnosis and monitoring of patients.

    CAS PubMed PubMed Central  Google Scholar 

  4. Tomas, N. M. et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy.N. Engl. J. Med.371, 2277–2287 (2014).The first report of an antigen found to be associated with cancer in a subset of patients.

    PubMed PubMed Central  Google Scholar 

  5. Ronco, P. & Debiec, H. Membranous nephropathy: current understanding of various causes in light of new target antigens.Curr. Opin. Nephrol. Hypertens.30, 287–293 (2021).

    CAS PubMed PubMed Central  Google Scholar 

  6. Sethi, S. New ‘antigens’ in membranous nephropathy.J. Am. Soc. Nephrol.32, 268–278 (2021).

    CAS PubMed  Google Scholar 

  7. Cattran, D. C. & Brenchley, P. E. Membranous nephropathy: integrating basic science into improved clinical management.Kidney Int.91, 566–574 (2017).

    CAS PubMed  Google Scholar 

  8. Dahan, K. et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up.J. Am. Soc. Nephrol.28, 348–358 (2017).

    CAS PubMed  Google Scholar 

  9. Fervenza, F. C. et al. Rituximab or cyclosporine in the treatment of membranous nephropathy.N. Engl. J. Med.381, 36–46 (2019).This landmark randomized clinical trial provides the first comparison of rituximab and cyclosporine.

    CAS PubMed  Google Scholar 

  10. Fernández-Juárez, G. et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy.Kidney Int.99, 986–998 (2021).This important randomized clinical trial provides the first comparison of cyclophosphamide (with corticosteroids) with a sequential combination of tacrolimus and rituximab.

    PubMed  Google Scholar 

  11. Scolari, F. et al. Rituximab or cyclosphamide in the treatment of membranous nephropathy.J. Am. Soc. Nephrol.32, 972–982 (2021).

    CAS PubMed Central  Google Scholar 

  12. De Vriese, A. S., Glassock, R. J., Nath, K. A., Sethi, S. & Fervenza, F. C. A proposal for a serology-based approach to membranous nephropathy.J. Am. Soc. Nephrol.28, 421–430 (2017).

    PubMed  Google Scholar 

  13. Kumar, V. et al. Antibodies to m-type phospholipase A2 receptor in children with idiopathic membranous nephropathy.Nephrology20, 572–575 (2015).

    CAS PubMed  Google Scholar 

  14. Debiec, H. & Ronco, P. Immunopathogenesis of membranous nephropathy: an update.Semin. Immunopathol.36, 381–397 (2014).

    CAS PubMed  Google Scholar 

  15. McGrogan, A., Franssen, C. F. & de Vries, C. S. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature.Nephrol. Dial. Transplant.26, 414–430 (2011).

    PubMed  Google Scholar 

  16. Rychlik, I. et al. The Czech registry of renal biopsies. Occurrence of renal diseases in the years 1994-2000.Nephrol. Dial. Transplant.19, 3040–3049 (2004).

    PubMed  Google Scholar 

  17. Hogan, S. L., Muller, K. E., Jennette, J. C. & Falk, R. J. A review of therapeutic studies of idiopathic membranous glomerulopathy.Am. J. Kidney Dis.25, 862–875 (1995).

    CAS PubMed  Google Scholar 

  18. Xu, X. et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China.J. Am. Soc. Nephrol.27, 3739–3746 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  19. Ronco, P. & Debiec, H. Pathophysiological advances in membranous nephropathy: time for a shift in patient’s care.Lancet385, 1983–1992 (2015).

    PubMed  Google Scholar 

  20. Arapovic, A. et al. Epidemiology of 10-year paediatric renal biopsies in the region of southern Croatia.BMC Nephrol.21, 65 (2020).

    CAS PubMed PubMed Central  Google Scholar 

  21. Chen, A. et al. Idiopathic membranous nephropathy in pediatric patients: presentation, response to therapy, and long-term outcome.BMC Nephrol.8, 11 (2007).

    PubMed PubMed Central  Google Scholar 

  22. Eddy, A. A. & Symons, J. M. Nephrotic syndrome in childhood.Lancet362, 629–639 (2003).

    PubMed  Google Scholar 

  23. Nie, S. et al. The spectrum of biopsy-proven glomerular diseases among children in China: a national, cross-sectional survey.Clin. J. Am. Soc. Nephrol.13, 1047–1054 (2018).

    PubMed PubMed Central  Google Scholar 

  24. Johnson, R. J. & Couser, W. G. Hepatitis B infection and renal disease: clinical, immunopathogenetic and therapeutic considerations.Kidney Int.37, 663–676 (1990).

    CAS PubMed  Google Scholar 

  25. Moroni, G. & Ponticelli, C. Secondary membranous nephropathy. a narrative review.Front. Med.7, 611317 (2020).

    Google Scholar 

  26. Xu, X., Nie, S., Ding, H. & Hou, F. F. Environmental pollution and kidney diseases.Nat. Rev. Nephrol.14, 313–324 (2018).

    CAS PubMed  Google Scholar 

  27. Narasimhan, B. et al. Characterization of kidney lesions in Indian adults: towards a renal biopsy registry.J. Nephrol.19, 205–210 (2006).

    PubMed  Google Scholar 

  28. Li, J. et al. Primary glomerular nephropathy among hospitalized patients in a national database in China.Nephrol. Dial. Transpl.33, 2173–2181 (2018).

    CAS  Google Scholar 

  29. Schieppati, A. et al. Prognosis of untreated patients with idiopathic membranous nephropathy.N. Engl. J. Med.329, 85–89 (1993).

    CAS PubMed  Google Scholar 

  30. Ponticelli, C. et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy.Kidney Int.48, 1600–1604 (1995).

    CAS PubMed  Google Scholar 

  31. Jha, V. et al. A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy.J. Am. Soc. Nephrol.18, 1899–1904 (2007).

    CAS PubMed  Google Scholar 

  32. Maisonneuve, P. et al. Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study.Am. J. Kidney Dis.35, 157–165 (2000).

    CAS PubMed  Google Scholar 

  33. Troyanov, S. et al. Idiopathic membranous nephropathy: definition and relevance of a partial remission.Kidney Int.66, 1199–1205 (2004).

    PubMed  Google Scholar 

  34. Fervenza, F. C., Sethi, S. & Specks, U. Idiopathic membranous nephropathy: diagnosis and treatment.Clin. J. Am. Soc. Nephrol.3, 905–919 (2008).

    PubMed  Google Scholar 

  35. Klouda, P. T. et al. Strong association between idiopathic membranous nephropathy and HLA-DRW3.Lancet2, 770–771 (1979).

    CAS PubMed  Google Scholar 

  36. Vaughan, R. W., Demaine, A. G. & Welsh, K. I. A DQA1 allele is strongly associated with idiopathic membranous nephropathy.Tissue Antigens34, 261–269 (1989).

    CAS PubMed  Google Scholar 

  37. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy.N. Engl. J. Med.364, 616–626 (2011).

    CAS PubMed  Google Scholar 

  38. Coenen, M. J. et al. Phospholipase A2 receptor (PLA2R1) sequence variants in idiopathic membranous nephropathy.J. Am. Soc. Nephrol.24, 677–683 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  39. Lv, J. et al. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy.J. Am. Soc. Nephrol.24, 1323–1329 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  40. Le, W. B. et al. HLA-DRB1*15:01 and HLA-DRB3*02:02 in PLA2R-Related membranous nephropathy.J. Am. Soc. Nephrol.28, 1642–1650 (2017).

    CAS PubMed  Google Scholar 

  41. Cui, Z. et al. MHC class II risk alleles and amino acid residues in idiopathic membranous nephropathy.J. Am. Soc. Nephrol.28, 1651–1664 (2017).

    CAS PubMed  Google Scholar 

  42. Xie, J. et al. The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis.Nat. Commun.11, 1600 (2020).The most extensive multi-ethnic genome-wide association study performed in membranous nephropathy revealing the complexity of HLA-D alleles associated with membranous nephropathy in different ethnic populations and signals in the NF-κB and interferon pathways.

    CAS PubMed PubMed Central  Google Scholar 

  43. Wang, H. Y. et al. HLA class II alleles differing by a single amino acid associate with clinical phenotype and outcome in patients with primary membranous nephropathy.Kidney Int.94, 974–982 (2018).

    CAS PubMed  Google Scholar 

  44. Van Damme, B. J., Fleuren, G. J., Bakker, W. W., Vernier, R. L. & Hoedemaeker, P. J. Experimental glomerulonephritis in the rat induced by antibodies directed against tubular antigens. V. Fixed glomerular antigens in the pathogenesis of heterologous immune complex glomerulonephritis.Lab. Invest.38, 502–510 (1978).

    PubMed  Google Scholar 

  45. Couser, W. G., Steinmuller, D. R., Stilmant, M. M., Salant, D. J. & Lowenstein, L. M. Experimental glomerulonephritis in the isolated perfused rat kidney.J. Clin. Invest.62, 1275–1287 (1978).

    CAS PubMed PubMed Central  Google Scholar 

  46. Kerjaschki, D. & Farquhar, M. G. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats.J. Exp. Med.157, 667–686 (1983).

    CAS PubMed PubMed Central  Google Scholar 

  47. Prabakaran, T. et al. Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease.PLoS ONE6, e25065 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  48. Debiec, H. et al. Role of truncating mutations in MME gene in feto-maternal allo-immunization and neonatal glomerulopathies.Lancet364, 1252–1259 (2004).

    CAS PubMed  Google Scholar 

  49. Turner, A. J., Isaac, R. E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function.Bioessays23, 261–269 (2001).

    CAS PubMed  Google Scholar 

  50. Lu, B. et al. The control of microvascular permeability and blood pressure by neutral endopeptidase.Nat. Med.3, 904–907 (1997).

    CAS PubMed  Google Scholar 

  51. Platt, J. L., Tucker, W. L. & Michael, A. F. Stages of renal ontogenesis identified by monoclonal antibodies reactive with lymphohematopoietic differentiation antigens.J. Exp. Med.157, 155–172 (1983).

    CAS PubMed  Google Scholar 

  52. Vivarelli, M. et al. Genetic homogeneity but IgG subclass-dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies.Kidney Int.87, 602–609 (2015).

    PubMed  Google Scholar 

  53. Hogan, M. C. et al. Subfractionation, characterization, and in-depth proteomic analysis of glomerular membrane vesicles in human urine.Kidney Int.85, 1225–1237 (2014).

    CAS PubMed  Google Scholar 

  54. Ancian, P., Lambeau, G., Mattei, M. G. & Lazdunski, M. The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization.J. Biol. Chem.270, 8963–8970 (1995).

    CAS PubMed  Google Scholar 

  55. Fresquet, M. et al. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy.J. Am. Soc. Nephrol.26, 302–313 (2015).

    PubMed  Google Scholar 

  56. Seitz-Polski, B. et al. Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy.J. Am. Soc. Nephrol.27, 1517–1533 (2016).

    CAS PubMed  Google Scholar 

  57. Reinhard, L. et al. Clinical relevance of domain-specific phospholipase A2 receptor 1 antibody levels in patients with membranous nephropathy.J. Am. Soc. Nephrol.31, 197–207 (2020).

    CAS PubMed  Google Scholar 

  58. Seitz-Polski, B. et al. Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy.J. Am. Soc. Nephrol.29, 401–408 (2018).

    CAS PubMed  Google Scholar 

  59. Kanigicherla, D. et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy.Kidney Int.83, 940–948 (2013).

    CAS PubMed  Google Scholar 

  60. Godel, M., Grahammer, F. & Huber, T. B. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy.N. Engl. J. Med.372, 1073 (2015).

    PubMed  Google Scholar 

  61. Herwig, J. et al. Thrombospondin type 1 domain-containing 7A localizes to the slit diaphragm and stabilizes membrane dynamics of fully differentiated podocytes.J. Am. Soc. Nephrol.30, 824–839 (2019).

    CAS PubMed PubMed Central  Google Scholar 

  62. Seifert, L. et al. The most N-terminal region of THSD7A Is the predominant target for autoimmunity in THSD7A-associated membranous nephropathy.J. Am. Soc. Nephrol.29, 1536–1548 (2018).

    CAS PubMed PubMed Central  Google Scholar 

  63. Hoxha, E. et al. A mechanism for cancer-associated membranous nephropathy.N. Engl. J. Med.374, 1995–1996 (2016).

    PubMed  Google Scholar 

  64. Hoxha, E. et al. An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy.J. Am. Soc. Nephrol.28, 520–531 (2017).

    CAS PubMed  Google Scholar 

  65. Sethi, S. et al. Exostosin 1/exostosin 2-associated membranous nephropathy.J. Am. Soc. Nephrol.30, 1123–1136 (2019).This article reports the first use of a technological leap combining microdissection of glomeruli and mass spectrometry for the identification of the first biomarker of lupus membranous nephropathy.

    CAS PubMed PubMed Central  Google Scholar 

  66. Ravindran, A. et al. In patients with membranous lupus nephritis, exostosin-positivity and exostosin-negativity represent two different phenotypes.J. Am. Soc. Nephrol.32, 695–706 (2021).

    CAS PubMed PubMed Central  Google Scholar 

  67. Saidi, M. et al. The exostosin immunohistochemical status differentiates lupus membranous nephropathy subsets with different outcomes.Kidney Int. Rep.6, 1977–1980 (2021).

    PubMed PubMed Central  Google Scholar 

  68. Caza, T. et al. NELL1 is a target antigen in malignancy-associated membranous nephropathy.Kidney Int.99, 967–976 (2021).

    CAS PubMed  Google Scholar 

  69. Sethi, S. et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy.Kidney Int.97, 163–174 (2020).This article reports the identification of the second prevalent antigen (after PLA2R) in MN using glomerular microdissection followed by mass spectrometry.

    CAS PubMed  Google Scholar 

  70. Kudose, S. et al. The clinicopathologic spectrum of segmental membranous glomerulopathy.Kidney Int.99, 247–255 (2021).

    CAS PubMed  Google Scholar 

  71. Sethi, S. et al. Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients.Kidney Int.98, 1253–1264 (2020).

    CAS PubMed  Google Scholar 

  72. Caza, T. et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis.Kidney Int.100, 171–181 (2021).

    CAS PubMed  Google Scholar 

  73. Sethi, S. et al. Protocadherin 7-associated Membranous Nephropathy.J. Am. Soc. Nephrol.32, 1249–1261 (2021).

    CAS PubMed PubMed Central  Google Scholar 

  74. Al-Rabadi, L. F. et al. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy.J. Am. Soc. Nephrol.https://doi.org/10.1681/ASN.2020101395 (2021).

    Article PubMed  Google Scholar 

  75. Meyer-Schwesinger, C. et al. A novel mouse model of phospholipase A2 receptor 1-associated membranous nephropathy mimics podocyte injury in patients.Kidney Int.97, 913–919 (2020).

    CAS PubMed  Google Scholar 

  76. Blosser, C. D., Ayalon, R., Nair, R., Thomas, C. & Beck, L. H. Jr. Very early recurrence of anti-Phospholipase A2 receptor-positive membranous nephropathy after transplantation.Am. J. Transplant.12, 1637–1642 (2012).

    CAS PubMed  Google Scholar 

  77. Stahl, R., Hoxha, E. & Fechner, K. PLA2R autoantibodies and recurrent membranous nephropathy after transplantation.N. Engl. J. Med.363, 496–498 (2010).

    PubMed  Google Scholar 

  78. Beck, L. H. Jr et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy.J. Am. Soc. Nephrol.22, 1543–1550 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  79. Ruggenenti, P. et al. Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy.J. Am. Soc. Nephrol.26, 2545–2558 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  80. Debiec, H. et al. Early-childhood membranous nephropathy due to cationic bovine serum albumin.N. Engl. J. Med.364, 2101–2110 (2011).A landmark article that identifies the first food antigen involved in rare cases of membranous nephropathy in children.

    CAS PubMed  Google Scholar 

  81. Border, W. A., Ward, H. J., Kamil, E. S. & Cohen, A. H. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen.J. Clin. Invest.69, 451–461 (1982).

    CAS PubMed PubMed Central  Google Scholar 

  82. Adler, S. G., Wang, H., Ward, H. J., Cohen, A. H. & Border, W. A. Electrical charge. Its role in the pathogenesis and prevention of experimental membranous nephropathy in the rabbit.J. Clin. Invest.71, 487–499 (1983).

    CAS PubMed PubMed Central  Google Scholar 

  83. Hunley, T. E. et al. Nephrotic syndrome complicating α-glucosidase replacement therapy for Pompe disease.Pediatrics114, e532–e535 (2004).

    PubMed  Google Scholar 

  84. Debiec, H. et al. Allo-immune membranous nephropathy and recombinant aryl sulfatase replacement therapy: a need for tolerance induction therapy.J. Am. Soc. Nephrol.25, 675–680 (2013).

    PubMed PubMed Central  Google Scholar 

  85. Burbelo, P. D. et al. Detection of PLA2R autoantibodies before the diagnosis of membranous nephropathy.J. Am. Soc. Nephrol.31, 208–217 (2020).

    CAS PubMed  Google Scholar 

  86. Cremoni, M. et al. Th17-immune response in patients with membranous nephropathy is associated with thrombosis and relapses.Front. Immunol.11, 574997 (2020).

    CAS PubMed PubMed Central  Google Scholar 

  87. Motavalli, R. et al. Altered Th17/Treg ratio as a possible mechanism in pathogenesis of idiopathic membranous nephropathy.Cytokine141, 155452 (2021).

    CAS PubMed  Google Scholar 

  88. Rosenzwajg, M. et al. B- and T-cell subpopulations in patients with severe idiopathic membranous nephropathy may predict an early response to rituximab.Kidney Int.92, 227–237 (2017).

    CAS PubMed  Google Scholar 

  89. Cantarelli, C. et al. A comprehensive phenotypic and functional immune analysis unravels circulating anti-phospholipase A2 receptor antibody secreting cells in membranous nephropathy patients.Kidney Int. Rep.5, 1764–1776 (2020).

    PubMed PubMed Central  Google Scholar 

  90. Berchtold, L. et al. HLA-D and PLA2R1 risk alleles associate with recurrent primary membranous nephropathy in kidney transplant recipients.Kidney Int.99, 671–685 (2021).

    CAS PubMed  Google Scholar 

  91. Segerer, S. & Schlondorff, D. B cells and tertiary lymphoid organs in renal inflammation.Kidney Int.73, 533–537 (2008).

    CAS PubMed  Google Scholar 

  92. Kolovou, K. et al. B-cell oligoclonal expansions in renal tissue of patients with immune-mediated glomerular disease.Clin. Immunol.217, 108488 (2020).

    CAS PubMed  Google Scholar 

  93. Prunotto, M. et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine.J. Proteom.82, 193–229 (2013).

    CAS  Google Scholar 

  94. Kerjaschki, D. & Neale, T. J. Molecular mechanisms of glomerular injury in rat experimental membranous nephropathy (Heymann nephritis).J. Am. Soc. Nephrol.7, 2518–2526 (1996).

    CAS PubMed  Google Scholar 

  95. Huang, C. C. et al. IgG subclass staining in renal biopsies with membranous glomerulonephritis indicates subclass switch during disease progression.Mod. Pathol.26, 799–805 (2013).

    CAS PubMed  Google Scholar 

  96. Val-Bernal, J. F., Garijo, M. F., Val, D., Rodrigo, E. & Arias, M. C4d immunohistochemical staining is a sensitive method to confirm immunoreactant deposition in formalin-fixed paraffin-embedded tissue in membranous glomerulonephritis.Histol. Histopathol.26, 1391–1397 (2011).

    CAS PubMed  Google Scholar 

  97. Hayashi, N. et al. Glomerular mannose-binding lectin deposition in intrinsic antigen-related membranous nephropathy.Nephrol. Dial. Transplant.33, 832–840 (2018).

    CAS PubMed  Google Scholar 

  98. Bally, S. et al. Phospholipase A2 receptor-related membranous nephropathy and mannan-binding lectin deficiency.J. Am. Soc. Nephrol.27, 3539–3544 (2016).

    PubMed PubMed Central  Google Scholar 

  99. Ravindran, A. et al. Proteomic analysis of complement proteins in membranous nephropathy.Kidney Int. Rep.5, 618–626 (2020).

    PubMed PubMed Central  Google Scholar 

  100. Cybulsky, A. V., Quigg, R. J. & Salant, D. J. Experimental membranous nephropathy redux.Am. J. Physiol. Ren. Physiol.289, F660–F671 (2005).

    CAS  Google Scholar 

  101. Tomas, N. M. et al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy.J. Clin. Invest.126, 2519–2532 (2016).

    PubMed PubMed Central  Google Scholar 

  102. Tomas, N. M. et al. A heterologous model of thrombospondin type 1 domain-containing 7A-associated membranous nephropathy.J. Am. Soc. Nephrol.28, 3262–3277 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  103. Petrosyan, A. et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier.Nat. Commun.10, 3656 (2019).

    PubMed PubMed Central  Google Scholar 

  104. Haddad, G. et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1 associated membranous nephropathy.J. Clin. Invest.131, e140453 (2021).This article provides the first demonstration of the pathogenic role of modified IgG4 specific for PLA2R in lectin pathway activation.

    CAS PubMed Central  Google Scholar 

  105. Ghiggeri, G. M. et al. Multi-autoantibody signature and clinical outcome in membranous nephropathy.Clin. J. Am. Soc. Nephrol.15, 1762–1776 (2020).

    PubMed PubMed Central  Google Scholar 

  106. Seikrit, C., Ronco, P. & Debiec, H. Factor H autoantibodies and membranous nephropathy.N. Engl. J. Med.379, 2479–2481 (2018).

    PubMed  Google Scholar 

  107. Barbour, S. J. et al. Disease-specific risk of venous thromboembolic events is increased in idiopathic glomerulonephritis.Kidney Int.81, 190–195 (2012).

    PubMed  Google Scholar 

  108. Kerlin, B. A., Ayoob, R. & Smoyer, W. E. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease.Clin. J. Am. Soc. Nephrol.7, 513–520 (2012).

    CAS PubMed PubMed Central  Google Scholar 

  109. Lionaki, S. et al. Venous thromboembolism in patients with membranous nephropathy.Clin. J. Am. Soc. Nephrol.7, 43–51 (2012).

    CAS PubMed  Google Scholar 

  110. Cattran D. C. et al. (eds)National Kidney Foundation’s Primer on Kidney Diseases 7th Edn 188–197 (Elsevier, 2018).

  111. Agrawal, S., Zaritsky, J. J., Fornoni, A. & Smoyer, W. E. Dyslipidaemia in nephritic syndrome: mechanisms and treatment.Nat. Rev. Nephrol.14, 57–70 (2018).

    CAS PubMed  Google Scholar 

  112. Rodriguez, E. F. et al. Membranous nephropathy with crescents: a series of 19 cases.Am. J. Kidney Dis.64, 66–73 (2014).

    PubMed  Google Scholar 

  113. Fogo, A. B., Lusco, M. A., Najafian, B. & Alpers, C. E. Atlas of renal pathology: membranous nephropathy.Am. J. Kidney Dis.66, e43–e45 (2015).

    PubMed  Google Scholar 

  114. Beck, L. H., Fervenza, F. C. InMolecular Mechanisms in the Pathogenesis of Idiopathic Nephrotic Syndrome (ed. Kaneko, K.) 181–205 (Springer Japan, 2016).

  115. Markowitz, G. S. Membranous glomerulopathy: emphasis on secondary forms and disease variants.Adv. Anat. Pathol.8, 119–125 (2001).

    CAS PubMed  Google Scholar 

  116. Kuroki, A. et al. Glomerular and serum IgG subclasses in diffuse proliferative lupus nephritis, membranous lupus nephritis, and idiopathic membranous nephropathy.Intern. Med.41, 936–942 (2002).

    CAS PubMed  Google Scholar 

  117. Ronco, P., Plaisier, E. & Debiec, H. Advances in membranous nephropathy.J. Clin. Med.10, 607 (2021).

    CAS PubMed PubMed Central  Google Scholar 

  118. Qu, Z. et al. Absence of glomerular IgG4 deposition in patients with membranous nephropathy may indicate malignancy.Nephrol. Dial. Transplant.27, 1931–1937 (2012).

    CAS PubMed  Google Scholar 

  119. von Haxthausen, F. et al. Antigen-specific IgG subclasses in primary and malignancy-associated membranous nephropathy.Front. Immunol.9, 3035 (2018).

    Google Scholar 

  120. van de Logt, A. E., Hofstra, J. M. & Wetzels, J. F. Serum anti-PLA2R antibodies can be initially absent in idiopathic membranous nephropathy: seroconversion after prolonged follow-up.Kidney Int.87, 1263–1264 (2015).

    PubMed  Google Scholar 

  121. Debiec, H. & Ronco, P. PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy.N. Engl. J. Med.364, 689–690 (2011).

    CAS PubMed  Google Scholar 

  122. Svobodova, B., Honsova, E., Ronco, P., Tesar, V. & Debiec, H. Kidney biopsy is a sensitive tool for retrospective diagnosis of PLA2R-related membranous nephropathy.Nephrol. Dial. Transplant.28, 1839–1844 (2013).

    CAS PubMed  Google Scholar 

  123. Luo, J., Zhang, W., Su, C., Zhou, Z. & Wang, G. Seropositive PLA2R-associated membranous nephropathy but biopsy-negative PLA2R staining.Nephrol. Dial. Transplant.https://doi.org/10.1093/ndt/gfaa239 (2020).

    Article PubMed PubMed Central  Google Scholar 

  124. Poggio, E. D. et al. Systematic review and meta-analysis of native kidney biopsy complications.Clin. J. Am. Soc. Nephrol.15, 1595–1602 (2020).

    PubMed PubMed Central  Google Scholar 

  125. Pombas, B. et al. Risk factors associated with major complications after ultrasound-guided percutaneous renal biopsy of native kidneys.Kidney Blood. Press. Res.45, 122–130 (2020).

    PubMed  Google Scholar 

  126. Palsson, R. et al. Bleeding complications after percutaneous native kidney biopsy: results from the Boston Kidney Biopsy cohort.Kidney Int. Rep.5, 511–518 (2020).

    PubMed PubMed Central  Google Scholar 

  127. Atwell, T. D. et al. The timing and presentation of major hemorrhage after 18,947 image-guided percutaneous biopsies.Am. J. Roentgenol.205, 190–195 (2015).

    Google Scholar 

  128. Bobart, S. A. et al. Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies.Kidney Int.95, 429–438 (2019).

    CAS PubMed  Google Scholar 

  129. Bobart, S. A. et al. Kidney biopsy is required for nephrotic syndrome with PLA2R+ and normal kidney function: the Con View.Kidney360, 890–893 (2020).

    Google Scholar 

  130. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases.Kidney Int.100, S1–S276 (2021).A milestone for the management of glomerular diseases.

  131. Bobart, S. A. et al. A target antigen-based approach to the classification of membranous nephropathy.Mayo Clin. Proc.96, 577–591 (2021).

    CAS PubMed  Google Scholar 

  132. Larsen, C. P. et al. Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies.Mod. Pathol.26, 709–715 (2013).

    CAS PubMed  Google Scholar 

  133. Stehle, T. et al. Phospholipase A2 receptor and sarcoidosis-associated membranous nephropathy.Nephrol. Dial. Transplant.30, 1047–1050 (2015).

    CAS PubMed  Google Scholar 

  134. Xie, Q. et al. Renal phospholipase A2 receptor in hepatitis B virus-associated membranous nephropathy.Am. J. Nephrol.41, 345–353 (2015).

    CAS PubMed  Google Scholar 

  135. Berchtold, L. et al. Efficacy and safety of rituximab in hepatitis B virus-associated PLA2R-positive membranous nephropathy.Kidney Int. Rep.3, 486–491 (2018).

    PubMed  Google Scholar 

  136. Qin, W. et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy.J. Am. Soc. Nephrol.22, 1137–1143 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  137. Hanset, N. et al. Podocyte antigen staining to identify distinct phenotypes and outcomes in membranous nephropathy: a retrospective multicenter cohort study.Am. J. Kidney Dis.76, 624–635 (2020).

    CAS PubMed  Google Scholar 

  138. Zhang, Z. et al. Duodenal schwannoma as a rare association with membranous nephropathy: a case report.Am. J. Kidney Dis.73, 278–280 (2019).

    PubMed  Google Scholar 

  139. Zaghrini, C. et al. Novel ELISA for thrombospondin type 1 domain-containing 7A autoantibodies in membranous nephropathy.Kidney Int.95, 666–679 (2019).

    CAS PubMed  Google Scholar 

  140. Sharma, S. G. & Larsen, C. P. Tissue staining for THSD7A in glomeruli correlates with serum antibodies in primary membranous nephropathy: a clinicopathological study.Mod. Pathol.31, 616–622 (2018).

    CAS PubMed  Google Scholar 

  141. Schlumberger, W. et al. Differential diagnosis of membranous nephropathy with autoantibodies to phospholipase A2 receptor 1.Autoimmun. Rev.13, 108–113 (2014).

    CAS PubMed  Google Scholar 

  142. Timmermans, S. A. et al. Evaluation of anti-PLA2R1 as measured by a novel ELISA in patients with idiopathic membranous nephropathy: a cohort study.Am. J. Clin. Pathol.142, 29–34 (2014).

    PubMed  Google Scholar 

  143. Liu, Y. et al. Serum anti-PLA2R antibody as a diagnostic biomarker of idiopathic membranous nephropathy: the optimal cut-off value for Chinese patients.Clin. Chim. Acta476, 9–14 (2018).

    CAS PubMed  Google Scholar 

  144. Behnert, A. et al. Antiphospholipase A2 receptor autoantibodies: a comparison of three different immunoassays for the diagnosis of idiopathic membranous nephropathy.J. Immunol. Res.2014, 143274 (2014).

    PubMed PubMed Central  Google Scholar 

  145. Pourcine, F. et al. Prognostic value of PLA2R autoimmunity detected by measurement of anti-PLA2R antibodies combined with detection of PLA2R antigen in membranous nephropathy. A single-centre study over 14 years.PLoS ONE12, e0173201 (2017).

    PubMed PubMed Central  Google Scholar 

  146. Plaisier, E. & Ronco, P. Screening for cancer in patients with glomerular diseases.Clin. J. Am. Soc. Nephrol.15, 886–888 (2020).

    CAS PubMed PubMed Central  Google Scholar 

  147. Cambier, J. F. & Ronco, P. Onco-nephrology: glomerular diseases with cancer.Clin. J. Am. Soc. Nephrol.7, 1701–1712 (2012).

    CAS PubMed  Google Scholar 

  148. Timmermans, S. A. et al. Anti-phospholipase A2 receptor antibodies and malignancy in membranous nephropathy.Am. J. Kidney Dis.62, 1223–1225 (2013).

    CAS PubMed  Google Scholar 

  149. Wang, G. et al. Neural epidermal growth factor-Like 1 protein-positive membranous nephropathy in Chinese patients.Clin. J. Am. Soc. Nephrol.8, 727–735 (2021).

    Google Scholar 

  150. Ayalon, R. & Beck, L. H. Jr Membranous nephropathy: not just a disease for adults.Pediatr. Nephrol.30, 31–39 (2015).

    PubMed  Google Scholar 

  151. Debiec, H., Ronco, P. & Vivarelli, M. Congenital membranous nephropathy due to fetomaternal anti-neutral endopeptidase alloimmunization. Orphanethttps://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=69063 (2020).

  152. Bhimma, R. & Coovadia, H. M. Hepatitis B virus-associated nephropathy.Am. J. Nephrol.24, 198–211 (2004).

    CAS PubMed  Google Scholar 

  153. Safar-Boueri, L., Piya, A., Beck, L. H. Jr & Ayalon, R. Membranous nephropathy: diagnosis, treatment, and monitoring in the post-PLA2R era.Pediatr. Nephrol.36, 19–30 (2021).

    PubMed  Google Scholar 

  154. Debiec, H. et al. Allo-immune membranous nephropathy and recombinat arylsulfatase replacement therapy: a need for tolerance induction therapy.J. Am. Soc. Nephrol.25, 675–680 (2014).

    CAS PubMed  Google Scholar 

  155. Wang, R. et al. Long-term renal survival and related risk factors for primary membranous nephropathy in Chinese children: a retrospective analysis of 217 cases.J. Nephrol.34, 589–596 (2021).

    CAS PubMed  Google Scholar 

  156. Ramachandran R. & Jha, V. inGlomerulonephritis (eds Trachtman H., Hogan J. J., Herlitz L. & Lerma E. V.) (Springer, 2020).

  157. Htay, H. et al. Global access of patients with kidney disease to health technologies and medications: findings from the Global Kidney Health Atlas project.Kidney Int. Suppl.8, 64–73 (2018).

    Google Scholar 

  158. Hepatitis B Foundation. World Health Organization. Addressing Hepatitis B in Africa.Hepatitis B Foundationhttps://www.hepb.org/blog/addressing-hepatitis-b-africa/ (2020).

  159. Kumar, M. N. et al. Membranous nephropathy associated with indigenous Indian medications containing heavy metals.Kidney Int. Rep.5, 1510–1514 (2020).

    PubMed PubMed Central  Google Scholar 

  160. Landrigan, P. J. et al. The Lancet Commission on pollution and health.Lancet391, 462–512 (2018).

    PubMed  Google Scholar 

  161. Gupta, S., Pepper, R. J., Ashman, N. & Walsh, S. B. Nephrotic syndrome: oedema formation and its treatment with diuretics.Front. Physiol.9, 1868 (2019).

    PubMed PubMed Central  Google Scholar 

  162. Hinrichs, G. R., Jensen, B. L. & Svenningsen, P. Mechanisms of sodium retention in nephrotic syndrome.Curr. Opin. Nephrol. Hypertens.29, 207–212 (2020).

    CAS PubMed  Google Scholar 

  163. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis.Kidney Int. Suppl.2, 186–197 (2012).

    Google Scholar 

  164. Polanco, N. et al. Spontaneous remission of nephrotic syndrome in idiopathic membranous nephropathy.J. Am. Soc. Nephrol.2, 697–704 (2020).

    Google Scholar 

  165. Pincus, K. J. & Hynicka, L. M. Prophylaxis of thromboembolic events in patients with nephrotic syndrome.Ann. Pharmacother.47, 725–734 (2013).

    PubMed  Google Scholar 

  166. Medjeral-Thomas, N. et al. Retrospective analysis of a novel regimen for the prevention of venous thromboembolism in nephrotic syndrome.Clin. J. Am. Soc. Nephrol.9, 478–483 (2014).

    PubMed  Google Scholar 

  167. Hofstra, J. M. & Wetzels, J. F. M. Should aspirin be used for primary prevention of thrombotic events in patients with membranous nephropathy?Kidney Int.89, 981–983 (2016).

    CAS PubMed  Google Scholar 

  168. Sexton, D. J. et al. Direct-acting oral anticoagulants as prophylaxis against thromboembolism in the nephrotic syndrome.Kidney Int. Rep.3, 784–793 (2018).

    PubMed PubMed Central  Google Scholar 

  169. Reynolds, M. L., Nachman, P. H., Mooberry, M. J., Crona, D. J. & Derebail, V. K. Recurrent venous thromboembolism in primary membranous nephropathy despite direct Xa inhibitor therapy.J. Nephrol.32, 669–672 (2019).

    CAS PubMed  Google Scholar 

  170. van de Logt, A. E., Hofstra, J. M. & Wetzels, J. F. Pharmacological treatment of primary membranous nephropathy in 2016.Expert Rev. Clin. Pharmacol.9, 1463–1478 (2016).

    PubMed  Google Scholar 

  171. van den Brand, J. A., van Dijk, P. R., Hofstra, J. M. & Wetzels, J. F. Long-term outcomes in idiopathic membranous nephropathy using a restrictive treatment strategy.J. Am. Soc. Nephrol.25, 150–158 (2014).

    PubMed  Google Scholar 

  172. Reichert, L. J., Koene, R. A. & Wetzels, J. F. Prognostic factors in idiopathic membranous nephropathy.Am. J. Kidney Dis.31, 1–11 (1998).

    CAS PubMed  Google Scholar 

  173. Hladunewich, M. A., Troyanov, S., Calafati, J. & Cattran, D. C. Metropolitan Toronto Glomerulonephritis Registry. The natural history of the non-nephrotic membranous nephropathy patient.Clin. J. Am. Soc. Nephrol.4, 1417–1422 (2009).

    PubMed PubMed Central  Google Scholar 

  174. Hoxha, E., Harendza, S., Pinnschmidt, H., Panzer, U. & Stahl, R. A. PLA2R antibody levels and clinical outcome in patients with membranous nephropathy and non-nephrotic range proteinuria under treatment with inhibitors of the renin-angiotensin system.PLoS ONE9, e110681 (2014).

    PubMed PubMed Central  Google Scholar 

  175. Pei, Y., Cattran, D. & Greenwood, C. Predicting chronic renal insufficiency in idiopathic membranous glomerulonephritis.Kidney Int.42, 960–966 (1992).

    CAS PubMed  Google Scholar 

  176. Howman, A. et al. Immunosuppression for progressive membranous nephropathy: a UK randomised controlled trial.Lancet381, 744–751 (2013).

    CAS PubMed PubMed Central  Google Scholar 

  177. Cattran, D. C. et al. Validation of a predictive model of idiopathic membranous nephropathy: its clinical and research implications.Kidney Int.51, 901–907 (1997).

    CAS PubMed  Google Scholar 

  178. van den Brand, J. A., Hofstra, J. M. & Wetzels, J. F. Prognostic value of risk score and urinary markers in idiopathic membranous nephropathy.Clin. J. Am. Soc. Nephrol.7, 1242–1248 (2012).

    PubMed PubMed Central  Google Scholar 

  179. van de Logt, A. E. et al. Anti-PLA2R1 antibodies as prognostic biomarker in membranous nephropathy.Kidney Int. Rep.6, 1677–1686 (2021).

    PubMed PubMed Central  Google Scholar 

  180. Lerner, G. B., Virmani, S., Henderson, J. M., Francis, J. M. & Beck, L. H. Jr. A conceptual framework linking immunology, pathology, and clinical features in primary membranous nephropathy.Kidney Int.100, 289–300 (2021).

    CAS PubMed  Google Scholar 

  181. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A.Nat. Med.14, 931–938 (2008).

    CAS PubMed PubMed Central  Google Scholar 

  182. Ramachandran, R. et al. Two-year follow-up study of membranous nephropathy treated with tacrolimus and corticosteroids versus cyclical corticosteroids and cyclophosphamide.Kidney Int. Rep.2, 610–616 (2017).

    PubMed PubMed Central  Google Scholar 

  183. van de Logt, A. E. et al. Immunological remission in PLA2R-antibody-associated membranous nephropathy: cyclophosphamide versus rituximab.Kidney Int.93, 1016–1017 (2018).

    PubMed  Google Scholar 

  184. Hanset, N. et al. Rituximab in patients with phospholipase A2 receptor-associated membranous nephropathy and severe CKD.Kidney Int. Rep.5, 331–338 (2019).

    PubMed PubMed Central  Google Scholar 

  185. Dahan, K. et al. Retreatment with rituximab for membranous nephropathy with persistently elevated titers of anti-phospholipase A2 receptor antibody.Kidney Int.95, 233–234 (2019).

    CAS PubMed  Google Scholar 

  186. van de Logt, A. E. et al. The bias between different albumin assays may affect clinical decision-making.Kidney Int.95, 1514–1517 (2019).

    PubMed  Google Scholar 

  187. Bech, A. P., Hofstra, J. M., Brenchley, P. E. & Wetzels, J. F. Association of anti-PLA2R antibodies with outcomes after immunosuppressive therapy in idiopathic membranous nephropathy.Clin. J. Am. Soc. Nephrol.9, 1386–1392 (2014).

    CAS PubMed PubMed Central  Google Scholar 

  188. Filler, G. et al. Another case of HBV associated membranous glomerulonephritis resolving on lamivudine.Arch. Dis. Child.88, F154–F156 (2003).

    CAS  Google Scholar 

  189. O’Shaughnessy, M. M. et al. Treatment patterns among adults and children with membranous nephropathy in the Cure Glomerulonephropathy Network (CureGN).Kidney Int. Rep.4, 1725–1734 (2019).

    PubMed PubMed Central  Google Scholar 

  190. Riaz, P. et al. Workforce capacity for the care of patients with kidney failure across world countries and regions.BMJ Glob. Health6, e004014 (2021).

    PubMed PubMed Central  Google Scholar 

  191. Jha, V. et al. Understanding kidney care needs and implementation strategies in low- and middle-income countries: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) controversies conference.Kidney Int.90, 1164–1174 (2016).

    PubMed  Google Scholar 

  192. Cosio, F. G. & Cattran, D. C. Recent advances in our understanding of recurrent primary glomerulonephritis after kidney transplantation.Kidney Int.91, 304–314 (2017).

    PubMed  Google Scholar 

  193. Grupper, A. et al. Recurrent membranous nephropathy after kidney transplantation: treatment and long-term implications.Transplantation100, 2710–2716 (2016).

    CAS PubMed  Google Scholar 

  194. Seitz-Polski, B. et al. Prediction of membranous nephropathy recurrence after transplantation by monitoring of anti-PLA2R1 (M-type phospholipase A2 receptor) autoantibodies: a case series of 15 patients.Nephrol. Dial. Transplant.29, 2334–2342 (2014).

    CAS PubMed  Google Scholar 

  195. Quintana, L. F. et al. Antiphospholipase A2 receptor antibody levels predict the risk of posttransplantation recurrence of membranous nephropathy.Transplantation99, 1709–1714 (2015).

    CAS PubMed  Google Scholar 

  196. Andrésdóttir, M. B. & Wetzels, J. F. Increased risk of recurrence of membranous nephropathy after related donor kidney transplantation.Am. J. Transplant.12, 265–266 (2012).

    PubMed  Google Scholar 

  197. Gupta, G. et al. Pre-transplant phospholipase A2 receptor autoantibody concentration is associated with clinically significant recurrence of membranous nephropathy post-kidney transplantation.Clin. Transplant.30, 461–469 (2016).

    CAS PubMed  Google Scholar 

  198. Batal, I. et al. Association of HLA typing and alloimmunity with posttransplantation membranous nephropathy: a multicenter case series.Am. J. Kidney Dis.76, 374–383 (2020).

    CAS PubMed PubMed Central  Google Scholar 

  199. Kattah, A. et al. Anti-phospholipase A2 receptor antibodies in recurrent membranous nephropathy.Am. J. Transplant.15, 1349–1359 (2015).

    CAS PubMed PubMed Central  Google Scholar 

  200. WHO.Programme on Mental Health. WHOQOL User Manual (World Health Organization, 1998).

  201. Wyld, M., Morton, R. L., Hayen, A., Howard, K. & Webster, A. C. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments.PLoS Med.9, e1001307 (2012).

    PubMed PubMed Central  Google Scholar 

  202. Chuasuwan, A., Pooripussarakul, S., Thakkinstian, A., Ingsathit, A. & Pattanaprateep, O. Comparisons of quality of life between patients underwent peritoneal dialysis and hemodialysis: a systematic review and meta-analysis.Health Qual. Life. Outcomes18, 191 (2020).

    PubMed PubMed Central  Google Scholar 

  203. Canetta, P. A. et al. Health-related quality of life in glomerular disease.Kidney Int.95, 1209–1224 (2019).

    PubMed PubMed Central  Google Scholar 

  204. Cattran, D. Management of membranous nephropathy: when and what for treatment.J. Am. Soc. Nephrol.16, 1188–1194 (2005).

    PubMed  Google Scholar 

  205. Libório, A. B. et al. Proteinuria is associated with quality of life and depression in adults with primary glomerulopathy and preserved renal function.PLoS ONE7, e37763 (2012).

    PubMed PubMed Central  Google Scholar 

  206. Floege, J. et al. Management and treatment of glomerular diseases (part 1): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference.Kidney Int.95, 268–280 (2019).

    PubMed  Google Scholar 

  207. Murphy, S. L. et al. Longitudinal changes in health-related quality of life in primary glomerular disease: results from the CureGN study.Kidney Int. Rep.5, 1679–1689 (2020).

    PubMed PubMed Central  Google Scholar 

  208. Center for Drug Evaluation and Research, Center for Devices and Radiological Health and Center for Biologics Evaluation and Research.Guidance for Industry. Patient-Reported Outcome Measures: Use in Medical Product Development To Support Labeling Claims (FDA, 2009).

  209. Bansal, D., Bhagat, A., Schifano, F. & Gudala, K. Role of patient-reported outcomes and other efficacy endpoints in the drug approval process in Europe (2008-2012).J. Epidemiol. Glob. Health5, 385–395 (2015).

    PubMed PubMed Central  Google Scholar 

  210. Carter, S. A. et al. Identifying outcomes important to patients with glomerular disease and their caregivers.Clin. J. Am. Soc. Nephrol.15, 673–684 (2020).

    PubMed PubMed Central  Google Scholar 

  211. Henkel, C. & Hoffmann, P. (Eds) MALDI Imaging.Biochim. Biophys. Acta1865, 725–978 (2017).

    Google Scholar 

  212. Neumann, E. K., Djambazova, K. V., Caprioli, R. M. & Spraggins, J. M. Multimodal imaging mass spectrometry: next generation molecular mapping in biology and medicine.J. Am. Soc. Mass. Spectrom.31, 2401–2415 (2020).

    CAS PubMed  Google Scholar 

  213. Unnersjö-Jess, D., Scott, L., Blom, H. & Brismar, H. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue.Kidney Int.89, 243–247 (2016).

    PubMed  Google Scholar 

  214. Park, J., Liu, C. L., Kim, J. & Susztak, K. Understanding the kidney one cell at a time.Kidney Int.96, 862–870 (2019).

    CAS PubMed PubMed Central  Google Scholar 

  215. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease.Science353, 179–184 (2016).

    CAS PubMed PubMed Central  Google Scholar 

  216. Wraith, D. Autoimmunity: antigen-specific immunotherapy.Nature530, 422–423 (2016).

    CAS PubMed  Google Scholar 

  217. Abedini, A. et al. Urinary single-cell profiling captures the cellular diversity of the kidney.J. Am. Soc. Nephrol.32, 614–627 (2021).

    CAS PubMed PubMed Central  Google Scholar 

  218. Unlu, G. et al. GRIK5 genetically regulated expression associated with eye and vascular phenomes: discovery through iteration among biobanks, electronic health records, and Zebrafish.Am. J. Hum. Genet.104, 503–519 (2019).

    CAS PubMed PubMed Central  Google Scholar 

  219. Reddy, V. et al. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples.Rheumatology56, 1227–1237 (2017).

    CAS PubMed PubMed Central  Google Scholar 

  220. Klomjit, N., Fervenza, F. C. & Zand, L. Successful treatment of patients with refractory PLA2 R-associated membranous nephropathy with obinutuzumab: a report of 3 cases.Am. J. Kidney Dis.76, 883–888 (2020).

    CAS PubMed  Google Scholar 

  221. Podestà, M. A., Ruggiero, B., Remuzzi, G. & Ruggenenti, P. Ofatumumab for multirelapsing membranous nephropathy complicated by rituximab-induced serum- sickness.BMJ Case. Rep.13, e232896 (2020).

    PubMed PubMed Central  Google Scholar 

  222. Schmidt, T., Schulze, M., Harendza, S. & Hoxha, E. Successful treatment of PLA2R1-antibody positive membranous nephropathy with ocrelizumab.J. Nephrol.34, 603–606 (2021).

    CAS PubMed  Google Scholar 

  223. Samy, E., Wax, S., Huard, B., Hess, H. & Schneider, P. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases.Int. Rev. Immunol.36, 3–19 (2017).

    CAS PubMed  Google Scholar 

  224. Mahévas, M. et al. Efficacy, safety and immunological profile of combining rituximab with belimumab for adults with persistent or chronic immune thrombocytopenia: results from a prospective phase 2b trial.Haematologicahttps://doi.org/10.3324/haematol.2020.259481 (2020).

    Article PubMed Central  Google Scholar 

  225. Furie, R. et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis.N. Engl. J. Med.383, 1117–1128 (2020).

    CAS PubMed  Google Scholar 

  226. Barrett, C. et al. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy.Nephrol. Dial. Transplant.35, 599–606 (2020).

    CAS PubMed  Google Scholar 

  227. Crickx, E., Weill, J. C., Reynaud, C. A. & Mahévas, M. Anti-CD20-mediated B-cell depletion in autoimmune diseases: successes, failures and future perspectives.Kidney Int.97, 885–893 (2020).

    CAS PubMed  Google Scholar 

  228. US National Library of Medicine.ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT04145440 (2021).

  229. Weinmann-Menke, J. et al. Treatment of membranous nephropathy in patients with THSD7A antibodies using immunoadsorption.Am. J. Kidney Dis.74, 849–852 (2019).

    CAS PubMed  Google Scholar 

  230. Podestà, M. A. et al. Accelerating the depletion of circulating anti-phospholipase A2 receptor antibodies in patients with severe membranous nephropathy: preliminary findings with double filtration plasmapheresis and ofatumumab.Nephron144, 30–35 (2020).

    PubMed  Google Scholar 

  231. Zipfel, P. F. et al. Complement inhibitors in clinical trials for glomerular diseases.Front. Immunol.10, 2166 (2019).

    CAS PubMed PubMed Central  Google Scholar 

  232. Low, J. H. et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network.Cell Stem. Cell25, 373–387 (2019).

    CAS PubMed PubMed Central  Google Scholar 

  233. Maas, R. J. et al. Kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as prognostic markers in idiopathic membranous nephropathy.Ann. Clin. Biochem.53, 51–57 (2016).

    CAS PubMed  Google Scholar 

  234. van den Brand, J. A., Hofstra, J. M. & Wetzels, J. F. Low-molecular-weight proteins as prognostic markers in idiopathic membranous nephropathy.Clin. J. Am. Soc. Nephrol.6, 2846–2853 (2011).

    PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

L.B. acknowledges institutional funding for the Glomerular Disease Center at Boston Medical Center in support of the preparation of this manuscript. J.W. acknowledges support from grants from the Dutch Kidney Foundation (grant nrNSN 17PhD12), funding from European Union Seventh Framework Programme FP7/2007-2013 grant 305608: European Consortium for High-Throughput Research in Rare Kidney Diseases. V.J. acknowledges research grants from Baxter Healthcare, GSK, and NephroPlus and honoraria/speaker fees from Baxter Healthcare and AstraZeneca (all monies paid to the employer). P.R. acknowledges support from grants from the National Research Agency: MNaims (ANR-17-CE17-0012-01) and SeroNegMN (ANR-20-CE17-0017-01). F.C.F. acknowledges unrestricted research grants from Genentech Inc., Roche and MorphoSys for research on Membranous Nephropathy (all funds paid to the institution). M.V., P.R. and J.W. acknowledge the European Rare Kidney Disease Network (ERKNet). A.T. is supported by a National Health and Medical Research Council Investigator Award (1197324). F.F.H. acknowledges support from the Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (2018GZR0201003).

Author information

Authors and Affiliations

  1. Sorbonne Université, and Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, S1155, Paris, France

    Pierre Ronco & Hanna Debiec

  2. Department of Nephrology, Centre Hospitalier du Mans, Le Mans, France

    Pierre Ronco

  3. Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA

    Laurence Beck

  4. Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA

    Fernando C. Fervenza

  5. National Clinical Research Center for Kidney Disease, Nanfang Hospital, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China

    Fan Fan Hou

  6. George Institute for Global Health, UNSW, New Delhi, India

    Vivekanand Jha

  7. School of Public Health, Imperial College, London, UK

    Vivekanand Jha

  8. Prasanna School of Higher Education, Manipal Academy of Higher Education, Manipal, India

    Vivekanand Jha

  9. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

    Sanjeev Sethi

  10. Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia

    Allison Tong

  11. Centre for Kidney Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia

    Allison Tong

  12. Division of Nephrology and Dialysis - Bambino Gesù Pediatric Hospital IRCCS, Rome, Italy

    Marina Vivarelli

  13. Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands

    Jack Wetzels

Authors
  1. Pierre Ronco

    You can also search for this author inPubMed Google Scholar

  2. Laurence Beck

    You can also search for this author inPubMed Google Scholar

  3. Hanna Debiec

    You can also search for this author inPubMed Google Scholar

  4. Fernando C. Fervenza

    You can also search for this author inPubMed Google Scholar

  5. Fan Fan Hou

    You can also search for this author inPubMed Google Scholar

  6. Vivekanand Jha

    You can also search for this author inPubMed Google Scholar

  7. Sanjeev Sethi

    You can also search for this author inPubMed Google Scholar

  8. Allison Tong

    You can also search for this author inPubMed Google Scholar

  9. Marina Vivarelli

    You can also search for this author inPubMed Google Scholar

  10. Jack Wetzels

    You can also search for this author inPubMed Google Scholar

Contributions

Introduction (P.R.); Epidemiology (P.R. and F.F.H.); Mechanisms/pathophysiology (L.B., H.D. and S.S.); Diagnosis/screening/prevention (F.C.F., V.J. and M.V.); Management (V.J., M.V. and J.W.); Quality of life (V.J. and A.T.); Outlooks (P.R. and L.B.); Overview of the Primer (P.R.).

Corresponding author

Correspondence toPierre Ronco.

Ethics declarations

Competing interests

L.B. is co-inventor on the patent “Diagnostics for Membranous Nephropathy” and has received consultancy fees from Alexion, Ionis, Genentech and Visterra for topics related to membranous nephropathy as well as research support from Sanofi Genzyme and Pfizer. P.R. has received consultancy fees from Alexion and MorphoSys for topics related to membranous nephropathy. F.C.F. has received consultancy fees from Alexion and MorphoSys for topics related to membranous nephropathy. F.F.H. has received consultancy fees from AbbVie and AstraZeneca. J.W. has received consultancy fees from Novartis and MorphoSys for topics related to membranous nephropathy. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks L. Barisoni, S. Maruyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Podocytopathy

A disease of the podocyte, the main glomerular cell controlling the filtration of proteins.

Glomerular filtration rate

(GFR). The most reliable parameter to assess renal function and can be evaluated with formulas (eGFR) or measured (mGFR).

Heymann nephritis

A model of membranous nephropathy developed by Walter Heymann in the rat in the 1950s that is still the most reliable experimental model for human membranous nephropathy.

Allo-immunization

Immunization against a non-self human antigen (protein or sugar) as occurs after blood transfusions or in case of Rhesus incompatibility during pregnancy, resulting in the production of allo-antibodies.

Epitope spreading

Diffusion of the immune response to additional epitopes on the same molecule or different molecules.

Full-house pattern

Immunofluorescence studies show staining for IgA, IgG, IgM, C1q, C3, κ and λ light chains.

Xeno-antibodies

Production of xeno-antibodies results from immunization against a non-self, non-human antigen (protein or sugar); a process termed xeno-immunization.

Anaphylatoxins

One of several proteolytic fragments generated by complement activation that promote acute inflammation and mediation of the immune response.

Anasarca

Severe and generalized form of oedema, with subcutaneous tissue swelling, that usually involves the cavities of the body.

Thrombophilic state

A pathological condition that predisposes to thrombosis.

Rights and permissions

About this article

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Membranous nephropathy

Nature Reviews Disease PrimersPrimeView

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp