Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Nanotechnology
  • Article
  • Published:

Positive and negative chemotaxis of enzyme-coated liposome motors

Nature Nanotechnologyvolume 14pages1129–1134 (2019)Cite this article

Subjects

Abstract

The ability of cells or cell components to move in response to chemical signals is critical for the survival of living systems. This motion arises from harnessing free energy from enzymatic catalysis. Artificial model protocells derived from phospholipids and other amphiphiles have been made and their enzymatic-driven motion has been observed. However, control of directionality based on chemical cues (chemotaxis) has been difficult to achieve. Here we show both positive or negative chemotaxis of liposomal protocells. The protocells move autonomously by interacting with concentration gradients of either substrates or products in enzyme catalysis, or Hofmeister salts. We hypothesize that the propulsion mechanism is based on the interplay between enzyme-catalysis-induced positive chemotaxis and solute–phospholipid-based negative chemotaxis. Controlling the extent and direction of chemotaxis holds considerable potential for designing cell mimics and delivery vehicles that can reconfigure their motion in response to environmental conditions.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of liposomes in the gradients and the experimental set-up.
Fig. 2: Catalysis-induced positive chemotaxis of catalase-coated liposomes and negative chemotaxis of urease-coated liposomes.
Fig. 3: Reconfiguration of direction of movement in ATPase-bound liposomes.
Fig. 4: Ruling out electrolyte diffusiophoretic transport.
Fig. 5: Ruling out density-driven transport.
Fig. 6: Chemotactic movement of inactive liposomes in glucose.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from A.Sen upon reasonable request.

References

  1. Xu, C., Hu, S. & Chen, X. Artificial cells: from basic science to applications.Biochem. Pharmacol.19, 516–532 (2016).

    CAS  Google Scholar 

  2. Wang, W., Duan, W., Ahmed, S., Sen, A. & Mallouk, T. E. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors.Acc. Chem. Res.48, 1938–1946 (2015).

    Article CAS  Google Scholar 

  3. Tu, Y. et al. Mimicking the cell: bio-inspired functions of supramolecular assemblies.Chem. Rev.116, 2023–2078 (2016).

    Article CAS  Google Scholar 

  4. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments.Nat. Nanotechnol.11, 409–420 (2016).

    Article CAS  Google Scholar 

  5. Kumar, B. V. V. S. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells.Nat. Chem.10 (2018), 1154–1163.

  6. Sengupta, S., Ibele, M. E. & Sen, A. Fantastic voyage: designing self-powered nanorobots.Angew. Chem. Int. Ed.51, 8434–8445 (2012).

    Article CAS  Google Scholar 

  7. Duan, W. et al. Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation.Annu. Rev. Anal. Chem.8, 311–333 (2015).

    Article  Google Scholar 

  8. Hong, Y., Blackman, N. M. K., Kopp, N. D., Sen, A. & Velegol, D. Chemotaxis of nonbiological colloidal rods.Phys. Rev. Lett.99, 1–4 (2007).

    Google Scholar 

  9. Baraban, L., Harazim, S. M., Sanchez, S. & Schmidt, O. G. Chemotactic behavior of catalytic motors in microfluidic channels.Angew. Chem. Int. Ed.52, 5552–5556 (2013).

    Article CAS  Google Scholar 

  10. Patra, D. et al. Intelligent, self-powered, drug delivery systems.Nanoscale5, 1273–1283 (2013).

    Article CAS  Google Scholar 

  11. Sengupta, S. et al. Enzyme molecules as nanomotors.J. Am. Chem. Soc.135, 1406–1414 (2012).

    Article CAS  Google Scholar 

  12. Dey, K. K. et al. Micromotors powered by enzyme catalysis.Nano Lett.15, 8311–8315 (2015).

    Article CAS  Google Scholar 

  13. Sengupta, S. et al. DNA polymerase as a molecular motor and pump.ACS Nano8, 2410–2418 (2014).

    Article CAS  Google Scholar 

  14. Zhao, X. et al. Substrate-driven chemotactic assembly in an enzyme cascade.Nat. Chem.10, 311–317 (2018).

    Article CAS  Google Scholar 

  15. Mohajerani, F., Zhao, X., Somasundar, A., Velegol, D. & Sen, A. A theory of enzyme chemotaxis: from experiments to modeling.Biochemistry57, 6256–6263 (2018).

  16. Jee, A.-Y., Dutta, S., Cho, Y.-K., Tlusty, T. & Granick, S. Enzyme leaps fuel antichemotaxis.Proc. Natl Acad. Sci. USA115, 14–18 (2017).

    Article CAS  Google Scholar 

  17. Agudo-Canalejo, J., Illien, P. & Golestanian, R. Phoresis and enhanced diffusion compete in enzyme chemotaxis.Nano Lett.18, 2711–2717 (2018).

    Article CAS  Google Scholar 

  18. Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series.Curr. Opin. Chem. Biol.10, 658–663 (2006).

    Article CAS  Google Scholar 

  19. Baldwin, R. L. How Hofmeister ion interactions affect protein stability.Biophys. J.71, 2056–2063 (1996).

    Article CAS  Google Scholar 

  20. Collins, K. D. & Washabaugh, M. W. The Hofmeister effect and the behavior of water at interfaces.Q. Rev. Biophys.18, 323–422 (1985).

    Article CAS  Google Scholar 

  21. Okur, H. I. et al. Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions.J. Phys. Chem. B121, 1997–2014 (2017).

    Article CAS  Google Scholar 

  22. Monteiro, N., Martins, A., Reis, R. L. & Neves, N. M. Liposomes in tissue engineering and regenerative medicine.J. R. Soc. Interface11, 20140459 (2014).

  23. Joseph, A. et al. Chemotactic synthetic vesicles: design and applications in blood–brain barrier crossing.Sci. Adv.3, e1700362 (2017).

    Article CAS  Google Scholar 

  24. Wilson, D. A., Nolte, R. J. M. & Van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes.Nat. Chem.4, 268–274 (2012).

    Article CAS  Google Scholar 

  25. Peng, F., Tu, Y., Van Hest, J. C. M. & Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells.Angew. Chem. Int. Ed.54, 11662–11665 (2015).

    Article CAS  Google Scholar 

  26. Jang, W.-S., Kim, H. J., Gao, C., Lee, D. & Hammer, D. A. Enzymatically powered surface-associated self-motile protocells.Small14, 1801715 (2018).

    Article CAS  Google Scholar 

  27. Guha, R. et al. Chemotaxis of molecular dyes in polymer gradients in solution.J. Am. Chem. Soc.139, 15588–15591 (2017).

    Article CAS  Google Scholar 

  28. Dey, K. K. et al. Chemotactic separation of enzymes.ACS Nano8, 11941–11949 (2014).

    Article CAS  Google Scholar 

  29. Xia, L. et al. Kinetic studies on Na+/K+-ATPase and inhibition of Na+/K+-ATPase by ATP.J. Enzym. Inhib. Med. Chem.19, 333–338 (2004).

    Article  Google Scholar 

  30. Noske, R., Cornelius, F. & Clarke, R. J. Investigation of the enzymatic activity of the Na+,K+-ATPase via isothermal titration microcalorimetry.Biochim. Biophys. Acta1797, 1540–1545 (2010).

    Article CAS  Google Scholar 

  31. Kodama, A. et al. Migration of phospholipid vesicles can be selectively driven by concentration gradients of metal chloride solutions.Langmuir33, 10698–10706 (2017).

    Article CAS  Google Scholar 

  32. Shin, S. et al. Size-dependent control of colloid transport via solute gradients in dead-end channels.Proc. Natl Acad. Sci. USA113, 257–261 (2016).

    Article CAS  Google Scholar 

  33. Gupta, S., Sreeja, K. K. & Thakur, S. Autonomous movement of a chemically powered vesicle.Phys. Rev. E92, 1–8 (2015).

    CAS  Google Scholar 

  34. Anderson, J. L. Transport mechanisms of biological colloids.Ann. NY Acad. Sci.469, 166–177 (1986).

    Article CAS  Google Scholar 

  35. Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. Origins of concentration gradients for diffusiophoresis.Soft Matter12, 4686–4703 (2016).

    Article CAS  Google Scholar 

  36. Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy effects in self-powered phosphatase micropumps.Soft Matter13, 2800–2807 (2017).

    Article CAS  Google Scholar 

  37. Sengupta, S. et al. Self-powered enzyme micropumps.Nat. Chem.6, 415–422 (2014).

    Article CAS  Google Scholar 

  38. Anderson, J. L. Movement of a semipermeable vesicle through an osmotic gradient.Phys. Fluids26, 2871 (1983).

    Article CAS  Google Scholar 

  39. Nardi, J., Bruinsma, R. & Sackmann, E. Vesicles as osmotic motors.Phys. Rev. Lett.82, 5168–5171 (1999).

    Article CAS  Google Scholar 

  40. Leontidis, E. Investigations of the Hofmeister series and other specific ion effects using lipid model systems.Adv. Colloid Inteface Sci.243, 8–22 (2017).

    Article CAS  Google Scholar 

  41. Clarke, R. J. & Lu, C. Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect.Biophys. J.76, 2614–2624 (1999).

    Article CAS  Google Scholar 

  42. Mclaughin, S., Bruder, A., Chen, S. & Moser, C. Chaotropic anions and the surface potential of bilayer membranes.Bioehimica Biophys. Acta394, 304–313 (1975).

    Article  Google Scholar 

  43. Hatefi, Y. & Hanstein, W. G. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents.Proc. Natl Acad. Sci. USA62, 1129–1136 (1969).

    Article CAS  Google Scholar 

  44. Hyde, A. M. et al. General principles and strategies for salting-out informed by the Hofmeister series.Org. Process Res. Dev.21, 1355–1370 (2017).

    Article CAS  Google Scholar 

  45. Zhang, Y., Furyk, S., Bergbreiter, D. E. & Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series.J. Am. Chem. Soc.127, 14505–14510 (2005).

    Article CAS  Google Scholar 

  46. Zhang, Y. et al. Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight.J. Phys. Chem. C111, 8916–8924 (2007).

    Article CAS  Google Scholar 

  47. Melander, W. & Horváth, C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series.Arch. Biochem. Biophys.183, 200–215 (1977).

    Article CAS  Google Scholar 

  48. Frisken, B. J., Asman, C. & Patty, P. J. Studies of vesicle extrusion.Langmuir16, 928–933 (2000).

    Article CAS  Google Scholar 

  49. Loughrey, H., Choi, L., Wong, K. & Cullis, P. R. Preparation of streptavidin-liposomes for use in ligand-specific targeting applications.Liposome Technol.III, 163–178 (1993).

    Google Scholar 

  50. Walde, P. & Ichikawa, S. Enzymes inside lipid vesicles: preparation, reactivity and applications.Biomol. Eng.18, 143–177 (2001).

    Article CAS  Google Scholar 

  51. Akashi, K. I., Miyata, H., Itoh, H. & Kinosita, K. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope.Biophys. J.71, 3242–3250 (1996).

    Article CAS  Google Scholar 

  52. Ghosh, S. et al. Motility of enzyme-powered vesicles.Nano Lett.19, 6019–6026 (2019).

    Article CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Center for Chemical Innovation funded by the National Science Foundation (grant no. CHE-1740630). P.S.C. and D.V. acknowledge the National Science foundation for funding their work (grant nos. CHE-1709735 and CBET-1603716, respectively)

Author information

Authors and Affiliations

  1. Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA

    Ambika Somasundar, Farzad Mohajerani & Darrell Velegol

  2. Department of Chemistry, The Pennsylvania State University, University Park, PA, USA

    Subhadip Ghosh, Tinglu Yang, Paul S. Cremer & Ayusman Sen

  3. Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA

    Lynnicia N. Massenburg

Authors
  1. Ambika Somasundar

    You can also search for this author inPubMed Google Scholar

  2. Subhadip Ghosh

    You can also search for this author inPubMed Google Scholar

  3. Farzad Mohajerani

    You can also search for this author inPubMed Google Scholar

  4. Lynnicia N. Massenburg

    You can also search for this author inPubMed Google Scholar

  5. Tinglu Yang

    You can also search for this author inPubMed Google Scholar

  6. Paul S. Cremer

    You can also search for this author inPubMed Google Scholar

  7. Darrell Velegol

    You can also search for this author inPubMed Google Scholar

  8. Ayusman Sen

    You can also search for this author inPubMed Google Scholar

Contributions

The work was conceived by P.S.C., D.V. and A.Sen. A.Somasundar, S.G., F.M., L.N.M. and T.Y. performed the experiments. F.M. carried out the modelling. All the authors contributed to the discussion of results and the writing of the manuscript.

Corresponding authors

Correspondence toPaul S. Cremer,Darrell Velegol orAyusman Sen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Nanotechnology thanks Jinyao Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and refs. 1–5.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somasundar, A., Ghosh, S., Mohajerani, F.et al. Positive and negative chemotaxis of enzyme-coated liposome motors.Nat. Nanotechnol.14, 1129–1134 (2019). https://doi.org/10.1038/s41565-019-0578-8

Download citation

Access through your institution
Buy or subscribe

Associated content

Hofmeister interaction in the driver’s seat

  • Jinyao Tang
Nature NanotechnologyNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp