- Review Article
- Published:
The cell biology of archaea
- Marleen van Wolferen ORCID:orcid.org/0000-0002-4867-21351,
- Andre Arashiro Pulschen2,
- Buzz Baum ORCID:orcid.org/0000-0002-9201-61862,
- Simonetta Gribaldo3 &
- …
- Sonja-Verena Albers ORCID:orcid.org/0000-0003-2459-22261
Nature Microbiologyvolume 7, pages1744–1755 (2022)Cite this article
13kAccesses
100Citations
208Altmetric
Subjects
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Caforio, A. & Driessen, A. J. M. Archaeal phospholipids: structural properties and biosynthesis.Biochim. Biophys. Acta Mol. Cell Biol. Lipids1862, 1325–1339 (2017).
Albers, S. V. & Jarrell, K. F. The archaellum: how archaea swim.Front. Microbiol.6, 23 (2015).
Albers, S. V. & Jarrell, K. F. The archaellum: an update on the unique archaeal motility structure.Trends Microbiol.26, 351–362 (2018).
Lyu, Z., Shao, N., Akinyemi, T. & Whitman, W. B. Methanogenesis.Curr. Biol.28, R727–R732 (2018).
Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of archaea: new perspectives on their diversity, evolution and ecology.ISME J.11, 2407–2425 (2017).
Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life.Science357, eaaf3883 (2017).
Baker, B. J. et al. Diversity, ecology and evolution of archaea.Nat. Microbiol.5, 887–900 (2020).
Youngblut, N. D. et al. Vertebrate host phylogeny influences gut archaeal diversity.Nat. Microbiol.6, 1443–1454 (2021).
Geesink, P. & Ettema, T. J. G. The human archaeome in focus.Nat. Microbiol.7, 10–11 (2022).
Thomas, C., Quemener, E. D.-L., Gribaldo, S. & Borrel, G. Factors shaping the abundance and diversity of archaea in the animal gut.Nat. Commun.13, 3358 (2022).
Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea.FEMS Microbiol. Lett.366, fnz008 (2019).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes.Nature521, 173–179 (2015).
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity.Nature541, 353–358 (2017).
Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes.Nat. Rev. Microbiol.15, 711–723 (2017).
Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface.Nature577, 519–525 (2020).
Walsh, J. C. et al. Division plane placement in pleomorphic archaea is dynamically coupled to cell shape.Mol. Microbiol.112, 785–799 (2019).
Huber, H. et al.Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species,Ignicoccus islandicus sp nov andIgnicoccus pacificus sp nov. andIgnicoccus pacificus sp. nov.Int. J. Syst. Evol. Microbiol.50, 2093–2100 (2000).
Rachel, R., Wyschkony, I., Riehl, S. & Huber, H. The ultrastructure ofIgnicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon.Archaea1, 9–18 (2002).
Heimerl, T. et al. A complex endomembrane system in the archaeonIgnicoccus hospitalis tapped byNanoarchaeum equitans.Front. Microbiol.8, 1072 (2017).
Kuper, U., Meyer, C., Muller, V., Rachel, R. & Huber, H. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic archaeonIgnicoccus hospitalis.Proc. Natl Acad. Sci. USA107, 3152–3156 (2010).
Junglas, B. et al.Ignicoccus hospitalis andNanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography.Arch. Microbiol.190, 395–408 (2008).
Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape.Nature519, 362–365 (2015).
Abdul-Halim, M. F. et al. Lipid anchoring of archaeosortase substrates and midcell growth in Haloarchaea.mBio11, e00349-20 (2020).
de Silva, R. T. et al. Improved growth and morphological plasticity ofHaloferax volcanii.Microbiology167, 001012 (2021).
Bisson-Filho, A. W., Zheng, J. & Garner, E. Archaeal imaging: leading the hunt for new discoveries.Mol. Biol. Cell29, 1675–1681 (2018).
Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the archaea.Proc. Natl Acad. Sci. USA105, 8102–8107 (2008).
Ettema, T. J. G., Lindås, A.-C. & Bernander, R. An actin-based cytoskeleton in archaea.Mol. Microbiol.80, 1052–1061 (2011).
Zeikus, J. G. & Wolfe, R. S. Fine structure ofMethanobacterium thermoautotrophicum: effect of growth temperature on morphology and ultrastructure.J. Bacteriol.113, 461–467 (1973).
La Cono, V. et al. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides.Proc. Natl Acad. Sci. USA117, 20223–20234 (2020).
Jahn, U. et al.Nanoarchaeum equitans andIgnicoccus hospitalis: new insights into a unique, intimate association of two archaea.J. Bacteriol.190, 1743–1750 (2008).
Huber, H. et al. A new phylum of archaea represented by a nanosized hyperthermophilic symbiont.Nature417, 63–67 (2002).
Wurch, L. et al. Genomics-informed isolation and characterization of a symbiotic nanoarchaeota system from a terrestrial geothermal environment.Nat. Commun.7, 12115 (2016).
Waters, E. et al. The genome ofNanoarchaeum equitans: insights into early archaeal evolution and derived parasitism.Proc. Natl Acad. Sci. USA100, 12984–12988 (2003).
Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life.Cell172, 1181–1197 (2018).
de Sousa Machado, N. J., Albers, S.-V. & Daum, B. Towards elucidating the rotary mechanism of the archaellum machinery.Front. Microbiol.13, 848597 (2022).
Bharat, T. A. M., von Kügelgen, A. & Alva, V. Molecular logic of prokaryotic surface layer structures.Trends Microbiol.29, 405–415 (2021).
Albers, S. V. & Meyer, B. H. The archaeal cell envelope.Nat. Rev. Microbiol.9, 414–426 (2011).
Rodrigues-Oliveira, T., Belmok, A., Vasconcellos, D., Schuster, B. & Kyaw, C. M. Archaeal S-layers: overview and current state of the art.Front. Microbiol.8, 2597 (2017).
Jarrell, K. F. et al.N-linked glycosylation in archaea: a structural, functional, and genetic analysis.Microbiol. Mol. Biol. Rev.78, 304–341 (2014).
Engelhardt, H. Are S-layers exoskeletons? The basic function of protein surface layers revisited.J. Struct. Biol.160, 115–124 (2007).
Zhang, C. et al. Cell structure changes in the hyperthermophilic crenarchaeonSulfolobus islandicus lacking the S-layer.mBio10, e01589-19 (2019).
Banerjee, A. et al. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein.Structure23, 863–872 (2015).
Tsai, C.-L. et al. The structure of the periplasmic FlaG–FlaF complex and its essential role for archaellar swimming motility.Nat. Microbiol.5, 216–225 (2020).
Zhang, C., Phillips, A. P. R., Wipfler, R. L., Olsen, G. J. & Whitaker, R. J. The essential genome of the crenarchaeal modelSulfolobus islandicus.Nat. Commun.9, 4908 (2018).
Wirth, R. et al. The mode of cell wall growth in selected archaea is similar to the general mode of cell wall growth in bacteria as revealed by fluorescent dye analysis.Appl. Environ. Microbiol.77, 1556–1562 (2011).
Nickell, S., Hegerl, R., Baumeister, W. & Rachel, R.Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography.J. Struct. Biol.141, 34–42 (2003).
Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks.Mol. Microbiol.56, 361–370 (2005).
Perras, A. K. et al. Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm.Front. Microbiol.5, 397 (2014).
Hartman, R. et al. The molecular mechanism of cellular attachment for an archaeal virus.Structure27, 1634–1646 (2019).
Pohlschroder, M. & Esquivel, R. N. Archaeal type IV pili and their involvement in biofilm formation.Front. Microbiol.6, 190 (2015).
Tittes, C., Schwarzer, S. & Quax, T. E. F. Viral hijack of filamentous surface structures in archaea and bacteria.Viruses13, 164 (2021).
Beeby, M., Ferreira, J. L., Tripp, P., Albers, S.-V. & Mitchell, D. R. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia.FEMS Microbiol. Rev.44, 253–304 (2020).
Albers, S.-V., Szabó, Z. & Driessen, A. J. M. Protein secretion in the archaea: multiple paths towards a unique cell surface.Nat. Rev. Microbiol.4, 537–547 (2006).
Driessen, A. J., Fekkes, P. & van der Wolk, J. P. The Sec system.Curr. Opin. Microbiol.1, 216–222 (1998).
Rose, R. W., Brüser, T., Kissinger, J. C. & Pohlschröder, M. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway.Mol. Microbiol.45, 943–950 (2002).
Storf, S. et al. Mutational and bioinformatic analysis of haloarchaeal lipobox-containing proteins.Archaea2010, 410975 (2010).
Makarova, K. S., Koonin, E. V. & Albers, S. V. Diversity and evolution of type IV pili systems in archaea.Front. Microbiol.7, 667 (2016).
Ayers, M., Howell, P. L. & Burrows, L. L. Architecture of the type II secretion and type IV pilus machineries.Future Microbiol.5, 1203–1218 (2010).
Zolghadr, B., Klingl, A., Rachel, R., Driessen, A. J. M. & Albers, S.-V. The bindosome is a structural component of theSulfolobus solfataricus cell envelope.Extremophiles15, 235–244 (2011).
Costa, T. R. D. et al. Type IV secretion systems: advances in structure, function, and activation.Mol. Microbiol.115, 436–452 (2021).
van Wolferen, M., Wagner, A., van der Does, C. & Albers, S.-V. The archaeal Ced system imports DNA.Proc. Natl Acad. Sci. USA113, 2496–2501 (2016).
Eichler, J. Extreme sweetness: protein glycosylation in archaea.Nat. Rev. Microbiol.11, 151–156 (2013).
Kaminski, L. et al. Add salt, add sugar:N-glycosylation inHaloferax volcanii.Biochem. Soc. Trans.41, 432–435 (2013).
Meyer, B. H. & Albers, S. V. Hot and sweet: protein glycosylation in Crenarchaeota.Biochem. Soc. Trans.41, 384–392 (2013).
van Wolferen, M. et al. Species-specific recognition of Sulfolobales mediated by UV-inducible pili and S-layer glycosylation patterns.mBio11, e03014-19 (2020).
Shalev, Y., Turgeman-Grott, I., Tamir, A., Eichler, J. & Gophna, U. Cell surface glycosylation is required for efficient mating ofHaloferax volcanii.Front. Microbiol.8, 1253 (2017).
Chai, Q. et al. Organization of ribosomes and nucleoids inEscherichia coli cells during growth and in quiescence.J. Biol. Chem.289, 11342–11352 (2014).
Gristwood, T., Duggin, I. G., Wagner, M., Albers, S. V. & Bell, S. D. The sub-cellular localization ofSulfolobus DNA replication.Nucleic Acids Res.40, 5487–5496 (2012).
Pelve, E. A. et al. Cdv-based cell division and cell cycle organization in the thaumarchaeonNitrosopumilus maritimus.Mol. Microbiol.82, 555–566 (2011).
Liu, J. et al. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily.Cell184, 3660–3673 (2021).
Liu, J. et al. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments.ISME J.15, 2892–2905 (2021).
Hatano, T. et al. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery.Nat. Commun.13, 3398 (2022).
McBride, H. M. Mitochondria and endomembrane origins.Curr. Biol.28, R367–R372 (2018).
Bagatolli, L., Gratton, E., Khan, T. K. & Chong, P. L. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteriaSulfolobus acidocaldarius.Biophys. J.79, 416–425 (2000).
Greci, M. D. & Bell, S. D. Archaeal DNA replication.Annu. Rev. Microbiol.74, 65–80 (2020).
Takemata, N. & Bell, S. D. Emerging views of genome organization in archaea.J. Cell Sci.133, jcs243782 (2020).
Pérez-Arnaiz, P., Dattani, A., Smith, V. & Allers, T.Haloferax volcanii—a model archaeon for studying DNA replication and repair.Open Biol.10, 200293 (2020).
Tarrason Risa, G. et al. The proteasome controls ESCRT-III-mediated cell division in an archaeon.Science369, eaaz2532 (2020).
Takemata, N., Samson, R. Y. & Bell, S. D. Physical and functional compartmentalization of archaeal chromosomes.Cell179, 165–179 (2019).
Badel, C., Samson, R. Y. & Bell, S. D. Chromosome organization affects genome evolution inSulfolobus archaea.Nat. Microbiol.7, 820–830 (2022).
Henneman, B., van Emmerik, C., van Ingen, H. & Dame, R. T. Structure and function of archaeal histones.PLoS Genet.14, e1007582 (2018).
Stevens, K. M. & Warnecke, T. Histone variants in archaea—an undiscovered country.Semin. Cell Dev. Biol.https://doi.org/10.1016/j.semcdb.2022.02.016 (2022).
Pulschen, A. A. et al. Live imaging of a hyperthermophilic archaeon reveals distinct roles for two ESCRT-III homologs in ensuring a robust and symmetric division.Curr. Biol.30, 2852–2859 (2020).
Yen, C.-Y. et al. Chromosome segregation in archaea: SegA– and SegB–DNA complex structures provide insights into segrosome assembly.Nucleic Acids Res.49, 13150–13164 (2021).
Kalliomaa-Sanford, A. K. et al. Chromosome segregation in archaea mediated by a hybrid DNA partition machine.Proc. Natl Acad. Sci. USA109, 3754–3759 (2012).
Wagstaff, J. & Lowe, J. Prokaryotic cytoskeletons: protein filaments organizing small cells.Nat. Rev. Microbiol.16, 187–201 (2018).
Carballido-Lopez, R. & Errington, J. The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl ofBacillus subtilis.Dev. Cell4, 19–28 (2003).
Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments inB. subtilis.Science333, 222–225 (2011).
Izore, T., Kureisaite-Ciziene, D., McLaughlin, S. H. & Lowe, J. Crenactin forms actin-like double helical filaments regulated by arcadin-2.eLife5, e21600 (2016).
Akıl, C. & Robinson, R. C. Genomes of Asgard archaea encode profilins that regulate actin.Nature562, 439–443 (2018).
Akıl, C. et al. Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea.Proc. Natl Acad. Sci. USA117, 19904–19913 (2020).
Hussain, S. et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis.eLife7, e32471 (2018).
Ithurbide, S., Gribaldo, S., Albers, S.-V. & Pende, N. Spotlight on FtsZ-based cell division in archaea.Trends Microbiol.https://doi.org/10.1016/j.tim.2022.01.005 (2022).
Svitkina, T. The actin cytoskeleton and actin-based motility.Cold Spring Harb. Perspect. Biol.10, a018267 (2018).
Svitkina, T. M. Ultrastructure of the actin cytoskeleton.Curr. Opin. Cell Biol.54, 1–8 (2018).
Jung, M. Y., Islam, M. A., Gwak, J. H., Kim, J. G. & Rhee, S. K.Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil.Int. J. Syst. Evol. Microbiol.68, 3084–3095 (2018).
Yutin, N. & Koonin, E. V. Archaeal origin of tubulin.Biol. Direct7, 10 (2012).
Lee, K.-C. et al. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes.BMC Microbiol.9, 5 (2009).
Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division.Science355, 739–743 (2017).
Stoten, C. L. & Carlton, J. G. ESCRT-dependent control of membrane remodelling during cell division.Semin. Cell Dev. Biol.74, 50–65 (2018).
Liao, Y., Ithurbide, S., Evenhuis, C., Löwe, J. & Duggin, I. G. Cell division in the archaeonHaloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction.Nat. Microbiol.6, 594–605 (2021).
Pende, N. et al. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system.Nat. Commun.12, 3214 (2021).
Nußbaum, P., Gerstner, M., Dingethal, M., Erb, C. & Albers, S.-V. The archaeal protein SepF is essential for cell division inHaloferax volcanii.Nat. Commun.12, 3469 (2021).
Nußbaum, P. et al. An oscillating MinD protein determines the cellular positioning of the motility machinery in archaea.Curr. Biol.30, 4956–4972 (2020).
Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in archaea.Science322, 1710–1713 (2008).
Lindås, A.-C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. G. & Bernander, R. A unique cell division machinery in the archaea.Proc. Natl Acad. Sci. USA105, 18942–18946 (2008).
Pfitzner, A.-K. et al. An ESCRT-III polymerization sequence drives membrane deformation and fission.Cell182, 1140–1155 (2020).
Samson, R. Y. et al. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division.Mol. Cell41, 186–196 (2011).
Ellen, A. F. et al. Proteomic analysis of secreted membrane vesicles of archaealSulfolobus species reveals the presence of endosome sorting complex components.Extremophiles13, 67–79 (2009).
Liu, J. et al. Functional assignment of multiple ESCRT-III homologs in cell division and budding inSulfolobus islandicus.Mol. Microbiol.105, 540–553 (2017).
Snyder, J. C., Samson, R. Y., Brumfield, S. K., Bell, S. D. & Young, M. J. Functional interplay between a virus and the ESCRT machinery in archaea.Proc. Natl Acad. Sci. USA110, 10783–10787 (2013).
Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea.Nat. Rev. Microbiol.8, 731–741 (2010).
Aylett, C. H. S. & Duggin, I. G. The tubulin superfamily in archaea.Subcell. Biochem.84, 393–417 (2017).
Ranjit, D. K., Liechti, G. W. & Maurelli, A. T. Chlamydial MreB directs cell division and peptidoglycan synthesis inEscherichia coli in the absence of FtsZ activity.mBio11, e03222-19 (2020).
Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view.Nat. Rev. Microbiol.4, 837–848 (2006).
Burns, D. G., Camakaris, H. M., Janssen, P. H. & Dyall-Smith, M. L. Cultivation of Walsby’s square haloarchaeon.FEMS Microbiol. Lett.238, 469–473 (2004).
Gambelli, L. et al. Architecture and modular assembly ofSulfolobus S-layers revealed by electron cryotomography.Proc. Natl Acad. Sci. USA116, 25278–25286 (2019).
Anderson, I. et al. Complete genome sequence ofMethanothermus fervidus type strain (V24ST).Stand. Genom. Sci.3, 315–324 (2010).
Burghardt, T. et al. The interaction ofNanoarchaeum equitans withIgnicoccus hospitalis: proteins in the contact site between two cells.Biochem. Soc. Trans.37, 127–132 (2009).
Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon.Nature437, 543–546 (2005).
Fiala, G. & Stetter, K. O.Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C.Arch. Microbiol.145, 56–61 (1986).
Bang, C. & Schmitz, R. A. Archaea associated with human surfaces: not to be underestimated.FEMS Microbiol. Rev.39, 631–648 (2015).
Turkowyd, B. et al. Establishing live-cell single-molecule localization microscopy imaging and single-particle tracking in the archaeonHaloferax volcanii.Front. Microbiol.11, 583010 (2020).
Cui, H.-L. & Dyall-Smith, M. L. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments.Mar. Life Sci. Technol.3, 243–251 (2021).
Poplawski, A., Gullbrand, B. & Bernander, R. TheftsZ gene ofHaloferax mediterranei: sequence, conserved gene order, and visualization of the FtsZ ring.Gene242, 357–367 (2000).
Roppelt, V. et al. The archaeal exosome localizes to the membrane.FEBS Lett.584, 2791–2795 (2010).
Herzog, B. & Wirth, R. Swimming behavior of selected species of archaea.Appl. Environ. Microbiol.78, 1670–1674 (2012).
Lassak, K. et al. Molecular analysis of the crenarchaeal flagellum.Mol. Microbiol.83, 110–124 (2012).
Mora, M., Bellack, A., Ugele, M., Hopf, J. & Wirth, R. The temperature gradient-forming device, an accessory unit for normal light microscopes to study the biology of hyperthermophilic microorganisms.Appl. Environ. Microbiol.80, 4764–4770 (2014).
Haurat, M. F. et al. ArnS, a kinase involved in starvation-induced archaellum expression.Mol. Microbiol.103, 181–194 (2017).
Wirth, R., Luckner, M. & Wanner, G. Validation of a hypothesis: colonization of black smokers by hyperthermophilic microorganisms.Front. Microbiol.9, 524 (2018).
Horn, C., Paulmann, B., Kerlen, G., Junker, N. & Huber, H. In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope.J. Bacteriol.181, 5114–5118 (1999).
Charles-Orszag, A., Lord, S. J. & Mullins, R. D. High-temperature live-cell imaging of cytokinesis, cell motility, and cell–cell interactions in the thermoacidophilic crenarchaeonSulfolobus acidocaldarius.Front. Microbiol.12, 707124 (2021).
Cava, F. et al. Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology.Environ. Microbiol.10, 605–613 (2008).
Henche, A. L., Koerdt, A., Ghosh, A. & Albers, S. V. Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein.Environ. Microbiol.14, 779–793 (2012).
Khelaifia, S. & Drancourt, M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology.Clin. Microbiol. Infect.18, 841–848 (2012).
Atomi, H., Imanaka, T. & Fukui, T. Overview of the genetic tools in the archaea.Front. Microbiol.https://doi.org/10.3389/fmicb.2012.00337 (2012).
Metcalf, W. W., Zhang, J. K., Apolinario, E., Sowers, K. R. & Wolfe, R. S. A genetic system for archaea of the genusMethanosarcina: liposome-mediated transformation and construction of shuttle vectors.Proc. Natl Acad. Sci. USA94, 2626–2631 (1997).
Tumbula, D. L. & Whitman, W. B. Genetics ofMethanococcus: possibilities for functional genomics in archaea.Mol. Microbiol.33, 1–7 (1999).
Holmes, M. L. & Dyall-Smith, M. L. A plasmid vector with a selectable marker for halophilic archaebacteria.J. Bacteriol.172, 756–761 (1990).
Peck, R. F., DasSarma, S. & Krebs, M. P. Homologous gene knockout in the archaeonHalobacterium salinarum with ura3 as a counterselectable marker.Mol. Microbiol.35, 667–676 (2000).
Bitan-Banin, G., Ortenberg, R. & Mevarech, M. Development of a gene knockout system for the halophilic archaeonHaloferax volcanii by use of thepyrE gene.J. Bacteriol.185, 772–778 (2003).
Allers, T., Ngo, H.-P., Mevarech, M. & Lloyd, R. G. Development of additional selectable markers for the halophilic archaeonHaloferax volcanii based on theleuB andtrpA genes.Appl. Environ. Microbiol.70, 943–953 (2004).
Sato, T., Fukui, T., Atomi, H. & Imanaka, T. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeonThermococcus kodakaraensis KOD1.J. Bacteriol.185, 210–220 (2003).
Lipscomb, G. L. et al. Natural competence in the hyperthermophilic archaeonPyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases.Appl. Environ. Microbiol.77, 2232–2238 (2011).
She, Q. et al. Genetic analyses in the hyperthermophilic archaeonSulfolobus islandicus.Biochem. Soc. Trans.37, 92–96 (2009).
Wagner, M. et al. Versatile genetic tool box for the crenarchaeoteSulfolobus acidocaldarius.Front. Microbiol.3, 214 (2012).
Zhang, C. & Whitaker, R. J. A broadly applicable gene knockout system for the thermoacidophilic archaeonSulfolobus islandicus based on simvastatin selection.Microbiology158, 1513–1522 (2012).
Leigh, J. A., Albers, S.-V., Atomi, H. & Allers, T. Model organisms for genetics in the domain archaea: methanogens, halophiles, Thermococcales and Sulfolobales.FEMS Microbiol. Rev.35, 577–608 (2011).
Zink, I. A., Wimmer, E. & Schleper, C. Heavily armed ancestors: CRISPR immunity and applications in archaea with a comparative analysis of CRISPR types in Sulfolobales.Biomolecules10, 1523 (2020).
Acknowledgements
M.v.W. was supported by a Momentum grant from the VW Foundation (grant no. 94933). A.A.P. was supported by the Wellcome Trust (grant no. 203276/Z/16/Z) and HFSP (grant no. LT001027/2019). B.B. received generous support from the MRC-LMB, The Wellcome Trust (grant no. 203276/Z/16/Z), the VW Foundation (Life? grant no. 94933), the Gordon and Betty Moore Foundation’s Symbiosis in Aquatic Systems Initiative (grant no. 9346), and from the Moore-Simons Project on the Origin of the Eukaryotic Cell (Simons Foundation 735929LPI). S.G. acknowledges funding from the French National Agency for Research Grant Archaevol (grant no. ANR-16-CE02-0005-01) and the French Government’s Investissement d’Avenir programme, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID). S.-V.A. received funding from the Life grant Az96727 from the VW foundation and the SFB 1381/German Research Foundation under project no. 403222702-SFB 1381.
Author information
Authors and Affiliations
Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
Marleen van Wolferen & Sonja-Verena Albers
Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
Andre Arashiro Pulschen & Buzz Baum
Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France
Simonetta Gribaldo
- Marleen van Wolferen
Search author on:PubMed Google Scholar
- Andre Arashiro Pulschen
Search author on:PubMed Google Scholar
- Buzz Baum
Search author on:PubMed Google Scholar
- Simonetta Gribaldo
Search author on:PubMed Google Scholar
- Sonja-Verena Albers
Search author on:PubMed Google Scholar
Contributions
M.v.W., A.A.P., B.B., S.G. and S.-V.A. contributed equally to all aspects of the article.
Corresponding authors
Correspondence toBuzz Baum,Simonetta Gribaldo orSonja-Verena Albers.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Microbiology thanks Iain Duggin, Dyche Mullins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
van Wolferen, M., Pulschen, A.A., Baum, B.et al. The cell biology of archaea.Nat Microbiol7, 1744–1755 (2022). https://doi.org/10.1038/s41564-022-01215-8
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
A systematic review on the dynamic interplay between the immune system and gut microbiome in inflammatory bowel disease patients
- Danah Almusallam
- Samiah Alhabardi
Future Journal of Pharmaceutical Sciences (2025)
The environmental adaptation of acidophilic archaea: promotion of horizontal gene transfer by genomic islands
- Jingxuan Qiu
- Huiling Tao
- Liyuan Ma
BMC Genomics (2025)
Uncovering dynamic transcriptional regulation of methanogenesis via single-cell imaging of archaeal gene expression
- Yijing Dong
- Lanting Qi
- Heng Xu
Nature Communications (2025)
A previously undescribed archaeal virus suppresses host immunity
- Israela Turgeman-Grott
- Noam Golan
- Uri Gophna
EMBO Reports (2025)
Advancing archaeal research through FAIR resource and data sharing, and inclusive community building
- Solenne Ithurbide
- Nicole Buan
- Stefan Schulze
Communications Biology (2025)


