- Article
- Published:
Pterosaur integumentary structures with complex feather-like branching
- Zixiao Yang1,
- Baoyu Jiang ORCID:orcid.org/0000-0002-3016-18041,
- Maria E. McNamara ORCID:orcid.org/0000-0003-0968-46242,
- Stuart L. Kearns3,
- Michael Pittman ORCID:orcid.org/0000-0002-6149-30784,
- Thomas G. Kaye ORCID:orcid.org/0000-0001-7996-618X5,
- Patrick J. Orr6,
- Xing Xu7 &
- …
- Michael J. Benton ORCID:orcid.org/0000-0002-4323-18243
Nature Ecology & Evolutionvolume 3, pages24–30 (2019)Cite this article
5739Accesses
90Citations
1172Altmetric
Subjects
Matters Arising to this article was published on 28 September 2020
Abstract
Pterosaurs were the first vertebrates to achieve true flapping flight, but in the absence of living representatives, many questions concerning their biology and lifestyle remain unresolved. Pycnofibres—the integumentary coverings of pterosaurs—are particularly enigmatic: although many reconstructions depict fur-like coverings composed of pycnofibres, their affinities and function are not fully understood. Here, we report the preservation in two anurognathid pterosaur specimens of morphologically diverse pycnofibres that show diagnostic features of feathers, including non-vaned grouped filaments and bilaterally branched filaments, hitherto considered unique to maniraptoran dinosaurs, and preserved melanosomes with diverse geometries. These findings could imply that feathers had deep evolutionary origins in ancestral archosaurs, or that these structures arose independently in pterosaurs. The presence of feather-like structures suggests that anurognathids, and potentially other pterosaurs, possessed a dense filamentous covering that probably functioned in thermoregulation, tactile sensing, signalling and aerodynamics.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout




Yuan Zhang
Similar content being viewed by others
Data availability
The data that support the findings of this study are available in the Supplementary Information.
References
Lucas, A. M. S. & Peter, R.Avian Anatomy: Integument (US Agricultural Research Service, Washington DC, 1972).
Barrett, P. M., Evans, D. C. & Campione, N. E. Evolution of dinosaur epidermal structures.Biol. Lett.11, 20150229 (2015).
Xu, X. et al. An integrative approach to understanding bird origins.Science346, 1253293 (2014).
Di-Poï, N. & Milinkovitch, M. C. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes.Sci. Adv.2, e1600708 (2016).
Chen, C. F. et al. Development, regeneration, and evolution of feathers.Annu. Rev. Anim. Biosci.3, 169–195 (2015).
Mayr, G., Pittman, M., Saitta, E., Kaye, T. G. & Vinther, J. Structure and homology ofPsittacosaurus tail bristles.Palaeontology59, 793–802 (2016).
Zheng, X. T., You, H. L., Xu, X. & Dong, Z. M. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.Nature458, 333–336 (2009).
Godefroit, P. et al. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales.Science345, 451–455 (2014).
Kellner, A. W. et al. The soft tissue ofJeholopterus (Pterosauria, Anurognathidae, Batrachognathinae) and the structure of the pterosaur wing membrane.Proc. R. Soc. B277, 321–329 (2010).
Sharov, A. G. New flying reptiles from the Mesozoic of Kazakhstan and Kirgizia [in Russian].Tr. Inst. Palaeontol. Akad. Nauk SSSR130, 104–113 (1971).
Czerkas, S. A. & Ji, Q. inFeathered Dinosaurs and the Origin of Flight (ed. Czerkas, S. J.) 15–41 (The Dinosaur Museum, Blanding, 2002).
Unwin, D. M. & Bakhurina, N. N.Sordes pilosus and the nature of the pterosaur flight apparatus.Nature371, 62–64 (1994).
Ji, Q. & Yuan, C. Discovery of two kinds of protofeathered pterosaurs in the Mesozoic Daohugou Biota in the Ningcheng region and its stratigraphic and biologic significances.Geol. Rev.48, 221–224 (2002).
Xu, X., Zhou, Z., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle–Late Jurassic Yanliao Biota: chronology, taphonomy, paleontology and paleoecology.Acta Geol. Sin.90, 2229–2243 (2016).
Unwin, D. M. On the phylogeny and evolutionary history of pterosaurs.Geol. Soc. Lond. Spec. Publ.217, 139–190 (2003).
Frey, E., Tischlinger, H., Buchy, M. C. & Martill, D. M. New specimens of Pterosauria (Reptilia) with soft parts with implications for pterosaurian anatomy and locomotion.Geol. Soc. Lond. Spec. Publ.217, 233–266 (2003).
Lindgren, J. et al. Interpreting melanin-based coloration through deep time: a critical review.Proc. R. Soc. B282, 20150614 (2015).
Lindgren, J. et al. Molecular composition and ultrastructure of Jurassic paravian feathers.Sci. Rep.5, 13520 (2015).
Barden, H. E. et al. Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird,Gansus yumenensis.PLoS ONE6, e25494 (2011).
Bendit, E. Infrared absorption spectrum of keratin. I. Spectra of α-, β-, and supercontracted keratin.Biopolymers4, 539–559 (1966).
Martinez-Hernandez, A. L., Velasco-Santos, C., De Icaza, M. & Castano, V. M. Microstructural characterisation of keratin fibres from chicken feathers.Int. J. Envir. Pollut.23, 162–178 (2005).
Liu, Y. et al. Comparison of structural and chemical properties of black and red human hair melanosomes.Photochem. Photobiol.81, 135–144 (2005).
Alibardi, L. Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes.J. Exp. Zool.298B, 12–41 (2009).
Kreplak, L., Doucet, J., Dumas, P. & Briki, F. New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers.Biophys. J.87, 640–647 (2004).
Yassine, W. et al. Reversible transition between α-helix and β-sheet conformation of a transmembrane domain.Biochim. Biophys. Acta – Biomembr.1788, 1722–1730 (2009).
Xu, X. et al. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings.Nature521, 70–73 (2015).
Donoghue, P. C. J. & Benton, M. J. Rocks and clocks: calibrating the Tree of Life using fossils and molecules.Trends Ecol. Evol.22, 424–431 (2007).
Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution.Nature543, 501–506 (2017).
Persons, W. S. IV & Currie, P. J. Bristles before down: a new perspective on the functional origin of feathers.Evolution69, 857–862 (2015).
Ruxton, G. D., Persons, W. S. IV & Currie, P. J. A continued role for signaling functions in the early evolution of feathers.Evolution71, 797–799 (2017).
Bullen, R. D. & McKenzie, N. L. The pelage of bats (Chiroptera) and the presence of aerodynamic riblets: the effect on aerodynamic cleanliness.Zoology111, 279–286 (2008).
Caro, T. The adaptive significance of coloration in mammals.Bioscience55, 125–136 (2005).
Homberger, D. G. & de Silva, K. N. Functional microanatomy of the feather-bearing integument: implications for the evolution of birds and avian flight.Am. Zool.40, 553–574 (2000).
Scholander, P., Walters, V., Hock, R. & Irving, L. Body insulation of some arctic and tropical mammals and birds.Biol. Bull.99, 225–236 (1950).
Ling, J. K. Pelage and molting in wild mammals with special reference to aquatic forms.Q. Rev. Biol.45, 16–54 (1970).
Gao, J., Yu, W. & Pan, N. Structures and properties of the goose down as a material for thermal insulation.Text. Res. J.77, 617–626 (2007).
Cunningham, S. J., Alley, M. R. & Castro, I. Facial bristle feather histology and morphology in New Zealand birds: implications for function.J. Morphol.272, 118–128 (2011).
McNamara, M. E., Briggs, D. E. G., Orr, P. J., Field, D. J. & Wang, Z. Experimental maturation of feathers: implications for reconstructions of fossil feather colour.Biol. Lett.9, 20130184 (2013).
Colleary, C. et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils.Proc. Natl Acad. Sci. USA112, 12592–12597 (2015).
Wang, X. et al. Basal paravian functional anatomy illuminated by high-detail body outline.Nat. Commun.8, 14576 (2017).
Kaye, T. G. et al. Laser-stimulated fluorescence in paleontology.PLoS ONE10, e0125923 (2015).
Xu, X., Zheng, X. & You, H. Exceptional dinosaur fossils show ontogenetic development of early feathers.Nature464, 1338–1341 (2010).
Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters.Proc. R. Soc. Lond. B255, 37–45 (1994).
Paradis, E.Analysis of Phylogenetics and Evolution with R (Springer Science & Business Media, New York, 2011).
Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution.Methods Ecol. Evol.3, 803–807 (2012).
Bell, M. A. & Lloyd, G. T. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence.Palaeontol.58, 379–389 (2015).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things).Methods Ecol. Evol.3, 217–223 (2012).
Acknowledgements
We thank Q. Ji, S. Ji and H. Huang for access to the specimen CAGS–Z070, as well as S. C. Kohn, Y. Fang, C. Wang and T. He for laboratory assistance. This work was supported by the National Natural Science Foundation of China (41672010 and 41688103) and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB26000000) to B.J., Research Grant Council of Hong Kong-General Research Fund (17103315) to M.P., ERC-StG-2014-637691-ANICOLEVO to M.E.M. and Natural Environment Research Council Standard Grant NE/1027630/1 to M.J.B.
Author information
Authors and Affiliations
Center for Research and Education on Biological Evolution and Environments, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
Zixiao Yang & Baoyu Jiang
School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
Maria E. McNamara
Department of Earth Sciences, University of Bristol, Bristol, UK
Stuart L. Kearns & Michael J. Benton
Vertebrate Palaeontology Laboratory, Department of Earth Sciences, University of Hong Kong, Pokfulam, China
Michael Pittman
Foundation for Scientific Advancement, Sierra Vista, AZ, USA
Thomas G. Kaye
UCD School of Earth Sciences, University College Dublin, Dublin, Ireland
Patrick J. Orr
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
Xing Xu
- Zixiao Yang
Search author on:PubMed Google Scholar
- Baoyu Jiang
Search author on:PubMed Google Scholar
- Maria E. McNamara
Search author on:PubMed Google Scholar
- Stuart L. Kearns
Search author on:PubMed Google Scholar
- Michael Pittman
Search author on:PubMed Google Scholar
- Thomas G. Kaye
Search author on:PubMed Google Scholar
- Patrick J. Orr
Search author on:PubMed Google Scholar
- Xing Xu
Search author on:PubMed Google Scholar
- Michael J. Benton
Search author on:PubMed Google Scholar
Contributions
B.J. and M.J.B. designed the research. Z.Y., B.J. and X.X. systematically studied the specimens. Z.Y., S.L.K., M.E.M. and P.J.O. performed the SEM analysis. Z.Y. and B.J. performed the FTIR analysis. M.P. and T.G.K. performed the laser-stimulated fluorescence imaging, data reduction and interpretation. M.J.B. performed the maximum-likelihood analyses. Z.Y., B.J., M.J.B., M.E.M., X.X. and P.J.O. wrote the paper. All authors approved the final draft of the paper.
Corresponding authors
Correspondence toBaoyu Jiang orMichael J. Benton.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Results, Figures, Tables and References
Rights and permissions
About this article
Cite this article
Yang, Z., Jiang, B., McNamara, M.E.et al. Pterosaur integumentary structures with complex feather-like branching.Nat Ecol Evol3, 24–30 (2019). https://doi.org/10.1038/s41559-018-0728-7
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Cellular-level preservation of cutaneous spikes in an Early Cretaceous iguanodontian dinosaur
- Jiandong Huang
- Wenhao Wu
- Pascal Godefroit
Nature Ecology & Evolution (2026)
Triassic diapsid shows early diversification of skin appendages in reptiles
- Stephan N. F. Spiekman
- Christian Foth
- Rainer R. Schoch
Nature (2025)
Unusual fossil skin appendage is not a feather
- Richard O. Prum
Nature (2025)
From melanogenesis to melanin technologies
- Noah Al-Shamery
- Dauren Biyashev
- Micaela Matta
Communications Chemistry (2025)
Predatory synapsid ecomorphology signals growing dynamism of late Palaeozoic terrestrial ecosystems
- Suresh A. Singh
- Armin Elsler
- Michael J. Benton
Communications Biology (2024)


