- Article
- Published:
The evolutionary road from wild moth to domestic silkworm
- Hui Xiang1,2 na1,
- Xiaojing Liu3,4 na1,
- Muwang Li5 na1,
- Ya’nan Zhu2,
- Lizhi Wang1,
- Yong Cui1,
- Liyuan Liu2,
- Gangqi Fang3,4,
- Heying Qian5,
- Anying Xu ORCID:orcid.org/0000-0003-2105-27185,
- Wen Wang ORCID:orcid.org/0000-0002-7801-20662,6 &
- …
- Shuai Zhan ORCID:orcid.org/0000-0002-1378-67653
Nature Ecology & Evolutionvolume 2, pages1268–1279 (2018)Cite this article
4087Accesses
133Citations
99Altmetric
Abstract
The Silk Road, which derives its name from the trade of silk produced by the domestic silkwormBombyx mori, was an important episode in the development and interaction of human civilizations. However, the detailed history behind silkworm domestication remains ambiguous, and little is known about the underlying genetics with respect to important aspects of its domestication. Here, we reconstruct the domestication processes and identify selective sweeps by sequencing 137 representative silkworm strains. The results present an evolutionary scenario in which silkworms may have been initially domesticated in China as trimoulting lines, then subjected to independent spreads along the Silk Road that gave rise to the development of most local strains, and further improved for modern silk production in Japan and China, having descended from diverse ancestral sources. We find that genes with key roles in nitrogen and amino acid metabolism may have contributed to the promotion of silk production, and that circadian-related genes are generally selected for their adaptation. We additionally identify associations between several candidate genes and important breeding traits, thereby advancing the applicable value of our resources.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Larson, G. & Fuller, D. Q. The evolution of animal domestication.Annu. Rev. Ecol. Evol. Syst.45, 115–136 (2014).
Jensen, P. Behavior genetics and the domestication of animals.Annu. Rev. Anim. Biosci.2, 85–104 (2014).
Wang, G.-D., Xie, H.-B., Peng, M.-S., Irwin, D. & Zhang, Y.-P. Domestication genomics: evidence from animals.Annu. Rev. Anim. Biosci.2, 65–84 (2014).
Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice.Nature490, 497–501 (2012).
Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement.Nat. Genet.44, 808–811 (2012).
Qi, J. et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity.Nat. Genet.45, 1510–1515 (2013).
Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean.Nat. Biotechnol.33, 408–414 (2015).
Mascher, M. et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley.Nat. Genet.48, 1089–1093 (2016).
Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding.Nat. Genet.46, 1220–1226 (2014).
Arunkumar, K. P., Metta, M. & Nagaraju, J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth,Bombyx mori from ChineseBombyx mandarina and paternal inheritance ofAntheraea proylei mitochondrial DNA.Mol. Phylogenet. Evol.40, 419–427 (2006).
Xia, Q. et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx).Science326, 433–436 (2009).
Peter, B. M. & Slatkin, M. Detecting range expansions from genetic data.Evolution67, 3274–3289 (2013).
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data.PLoS Genet.8, e1002967 (2012).
Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012).
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences.Nat. Genet.46, 919–925 (2014).
Hirayama, C. & Nakamura, M. Regulation of glutamine metabolism during the development ofBombyx mori larvae.Biochim. Biophys. Acta1571, 131–137 (2002).
Osanai, M., Okudaira, M., Naito, J., Demura, M. & Asakura, T. Biosynthesis ofl-alanine, a major amino acid of fibroin inSamia cynthia ricini.Insect Biochem. Mol. Biol.30, 225–232 (2000).
Hirayama, C., Konno, K. & Shinbo, H. The pathway of ammonia assimilation in the silkworm,Bombyx mori.J. Insect Physiol.43, 959–964 (1997).
Sasaki, T., Kawamura, M. & Ishikawa, H. Nitrogen recycling in the brown planthopper,Nilaparvata lugens: involvement of yeast-like endosymbionts in uric acid metabolism.J. Insect Physiol.42, 125–129 (1996).
Krall, A. S., Xu, S., Graeber, T. G., Braas, D. & Christofk, H. R. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor.Nat. Commun.7, 11457 (2016).
Li, Z. et al. Amino acid deprivation-induced expression of asparagine synthetase regulates the growth and survival of cultured silkworm cells.Arch. Insect Biochem. Physiol.83, 57–68 (2013).
Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.Nat. Cell Biol.17, 1556–1568 (2015).
Xia, Q., Li, S. & Feng, Q. Advances in silkworm studies accelerated by the genome sequencing ofBombyx mori.Annu. Rev. Entomol.59, 513–536 (2014).
Otto-Ślusarczyk, D., Graboń, W. & Mielczarek-Puta, M. Aspartate aminotransferase—key enzyme in the human systemic metabolism.Postepy Hig. Med. Dosw. (Online)70, 219–230 (2016).
Muller, N. A. et al. Domestication selected for deceleration of the circadian clock in cultivated tomato.Nat. Genet.48, 89–93 (2016).
Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks.Nat. Rev. Genet.2, 702–715 (2001).
Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M. & Bradshaw, W. E. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation?Phil. Trans. R. Soc. B372, 20160257 (2017).
Bodenstein, C., Gosak, M., Schuster, S., Marhl, M. & Perc, M. Modeling the seasonal adaptation of circadian clocks by changes in the network structure of the suprachiasmatic nucleus.PLoS Comput. Biol.8, e1002697 (2012).
Erion, R. & Sehgal, A. Regulation of insect behavior via the insulin-signaling pathway.Front. Physiol.4, 353 (2013).
Zhan, S., Merlin, C., Boore, J. L. & Reppert, S. M. The monarch butterfly genome yields insights into long-distance migration.Cell147, 1171–1185 (2011).
Xu, H.-J. et al. Two insulin receptors determine alternative wing morphs in planthoppers.Nature519, 464–467 (2015).
Sim, C. & Denlinger, D. L. Insulin signaling and FOXO regulate the overwintering diapause of the mosquitoCulex pipiens.Proc. Natl Acad. Sci. USA105, 6777–6781 (2008).
Sakano, D., Furusawa, T., Sugimura, Y., Storey, J. M. & Storey, K. B. Metabolic shifts in carbohydrate metabolism during embryonic development of non-diapause eggs of the silkworm,Bombyx mori.J. Insect Biotechnol. Sericol.73, 15–22 (2004).
Chino, H. Carbohydrate metabolism in diapause egg of the silkworm,Bombyx mori.Dev. Growth Differ.3, 295–316 (1957).
Lee, J. C. et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease.Nat. Genet.49, 262–268 (2017).
Yano, K. et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice.Nat. Genet.48, 927–934 (2016).
Nicola, N. et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior.Nat. Genet.48, 1–7 (2016).
Sakudoh, T. et al. Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of theYellow blood gene.Proc. Natl Acad. Sci. USA104, 8941–8946 (2007).
Yoda, S. et al. The transcription factor Apontic-like controls diverse colouration pattern in caterpillars.Nat. Commun.5, 4936 (2014).
Ito, K. et al. Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to aBombyx parvo-like virus.Proc. Natl Acad. Sci. USA105, 7523–7527 (2008).
Gupta, T., Kadono-Okuda, K., Ito, K., Trivedy, K. & Ponnuvel, K. M. Densovirus infection in silkwormBombyx mori and genes associated with disease resistance.Invertebr. Surviv. J.12, 118–128 (2015).
Sakudoh, T. et al. Diversity in copy number and structure of a silkworm morphogenetic gene as a result of domestication.Genetics187, 965–976 (2011).
Abiko, T. et al. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP (H)-dependent glutamate dehydrogenase (gdhA).Planta232, 299–311 (2010).
Zhou, Y. et al. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds.Theor. Appl. Genet.118, 1381–1390 (2009).
Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding.Nat. Genet.46, 1220–1226 (2014).
Rubin, C. J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication.Nature464, 587–591 (2010).
Wiener, P. & Wilkinson, S. Deciphering the genetic basis of animal domestication.Proc. Biol. Sci.278, 3161–3170 (2011).
Dong, Y. et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus).Nat. Biotechnol.31, 135–141 (2013).
Pennisi, E. The biology of genomes. On the trail of brain domestication genes.Science332, 1030–1031 (2011).
Grimm, D. Animal domestication. The genes that turned wildcats into kitty cats.Science346, 799 (2014).
Li, Y. et al. Domestication of the dog from the wolf was promoted by enhanced excitatory synaptic plasticity: a hypothesis.Genome Biol. Evol.6, 3115–3121 (2014).
Moon, S. et al. A genome-wide scan for signatures of directional selection in domesticated pigs.BMC Genom.16, 130 (2015).
Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication.Science345, 1074–1079 (2014).
Consortium, I. S. G. The genome of a lepidopteran model insect, the silkwormBombyx mori.Insect Biochem. Mol. Biol.38, 1036–1045 (2008).
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.Gigascience1, 18 (2012).
Elsik, C. G. et al. Creating a honey bee consensus gene set.Genome Biol.8, R13 (2007).
Duan, J. et al. SilkDBv2.0: a platform for silkworm (Bombyx mori) genome biology.Nucleic Acids Res.38, D453–D456 (2010).
Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome.Genome Biol.7, S11.1–S11.8 (2006).
Korf, I. Gene finding in novel genomes.BMC Bioinform.5, 59 (2004).
Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA.J. Mol. Biol.268, 78–94 (1997).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.Bioinformatics25, 1754–1760 (2009).
Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009).
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data.Nat. Genet.43, 491–498 (2011).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis.PLoS Genet.2, e190 (2006).
Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration.Nature514, 317–321 (2014).
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Mol. Biol. Evol.30, 2725–2729 (2013).
Tang, H., Peng, J., Wang, P. & Risch, N. J. Estimation of individual admixture: analytical and study design considerations.Genet. Epidemiol.28, 289–301 (2005).
Keightley, P. D. et al. Estimation of the spontaneous mutation rate inHeliconius melpomene.Mol. Biol. Evol.32, 239–243 (2014).
Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps.Bioinformatics21, 263–265 (2004).
Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps.Genome Res.20, 393–402 (2010).
Nielsen, R. et al. Genomic scans for selective sweeps using SNP data.Genome Res.15, 1566–1575 (2005).
Yu, H. S. et al. Evidence of selection at melanin synthesis pathway loci during silkworm domestication.Mol. Biol. Evol.28, 1785–1799 (2011).
Sun, W., Shen, Y. H., Han, M. J., Cao, Y. F. & Zhang, Z. An adaptive transposable element insertion in the regulatory region of theEO gene in the domesticated silkworm,Bombyx mori.Mol. Biol. Evol.31, 3302–3313 (2014).
Wang, Y. et al. The CRISPR/Cas system mediates efficient genome engineering inBombyx mori.Cell Res.23, 1414–1416 (2013).
Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies.Nat. Genet.42, 348–354 (2010).
Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data.Proc. Natl Acad. Sci. USA108, 1513–1518 (2011).
Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE.Bioinformatics27, 578–579 (2010).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.Bioinformatics26, 841–842 (2010).
Acknowledgements
We thank X. Huang, S. Xu and K. Wang for discussion on the evolutionary analyses, X. Hu, W. Wang, A. Wang, H. Liu, Q. Li and J. Lian for early contributions to the wild silkworm genome sequencing, and L. Chen and X. Wang for assistance with DNA preparation. The research was supported by the National Key Basic Research (973) Program in China (grant 2013CB835200), National Science Foundation of China (grants 31522053, 91631103, 31672370, 31501877 and 31371286), Chinese Academy of Sciences programme (grant 173176001000162007) and Thousand Talents Program of China (to S.Z.).
Author information
These authors contributed equally: Hui Xiang, Xiaojing Liu, Muwang Li.
Authors and Affiliations
Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
Hui Xiang, Lizhi Wang & Yong Cui
State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
Hui Xiang, Ya’nan Zhu, Liyuan Liu & Wen Wang
CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
Xiaojing Liu, Gangqi Fang & Shuai Zhan
University of Chinese Academy of Sciences, Beijing, China
Xiaojing Liu & Gangqi Fang
School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
Muwang Li, Heying Qian & Anying Xu
Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
Wen Wang
- Hui Xiang
Search author on:PubMed Google Scholar
- Xiaojing Liu
Search author on:PubMed Google Scholar
- Muwang Li
Search author on:PubMed Google Scholar
- Ya’nan Zhu
Search author on:PubMed Google Scholar
- Lizhi Wang
Search author on:PubMed Google Scholar
- Yong Cui
Search author on:PubMed Google Scholar
- Liyuan Liu
Search author on:PubMed Google Scholar
- Gangqi Fang
Search author on:PubMed Google Scholar
- Heying Qian
Search author on:PubMed Google Scholar
- Anying Xu
Search author on:PubMed Google Scholar
- Wen Wang
Search author on:PubMed Google Scholar
- Shuai Zhan
Search author on:PubMed Google Scholar
Contributions
W.W., S.Z. and H.X. conceived the project. S.Z. and H.X. designed the studies. A.X., H.Q. and M.L. provided silkworm strains. M.L. performed phenotyping. H.X. and L.L. prepared the DNA. S.Z. led the analyses. S.Z., H.X., X.L. and G.F. performed the analyses. H.X. annotated and interpreted the selective sweeps. Y.Z., L.W., L.L., Y.C. and X.L. performed the functional experiments. S.Z., H.X. and X.L. wrote the manuscript. W.W. improved the manuscript. Affiliations are sorted based on the numerical order in the author list.
Corresponding authors
Correspondence toAnying Xu,Wen Wang orShuai Zhan.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary notes, figures, references, and tables 4–8;10; 12–15
Rights and permissions
About this article
Cite this article
Xiang, H., Liu, X., Li, M.et al. The evolutionary road from wild moth to domestic silkworm.Nat Ecol Evol2, 1268–1279 (2018). https://doi.org/10.1038/s41559-018-0593-4
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Adaptive genomic signatures of globally invasive populations of the yellow fever mosquito Aedes aegypti
- Alejandro N. Lozada-Chávez
- Irma Lozada-Chávez
- Mariangela Bonizzoni
Nature Ecology & Evolution (2025)
Multiomics analysis of the Silkworm cocoon shell
- Panagiota Fragkou
- Ioannis Martakos
- Skarlatos G. Dedos
Scientific Data (2025)
A chromosome-level genome assembly of wild silkmoth, Bombyx mandarina
- Jung Lee
- Takashi Kiuchi
- Toru Shimada
Scientific Data (2025)
Influence of Degumming Conditions on the Stable Isotope Composition of Silk
- Gang Lv
- Liling Jia
- Zhiqin Peng
Journal of Archaeological Method and Theory (2025)
QTL analysis to identify genes involved in the trade-off between silk protein synthesis and larva-pupa transition in silkworms
- Rui Gao
- Chunlin Li
- Fangyin Dai
Genetics Selection Evolution (2024)


