Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Chemistry
  • Comment
  • Published:

Neutron stardust and the elements of Earth

Nature Chemistryvolume 11pages4–10 (2019)Cite this article

Subjects

APublisher Correction to this article was published on 10 January 2019

This article has beenupdated

At its inception, the periodic table sorted elements by weight, so it may be surprising that the heaviest natural element on Earth remains controversial, or at best, nebulous. In the strange, perhaps-unfinished search for this weightiest nucleus, the only definitive conclusion is that it lies somewhere beyond uranium.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nuclear reactions that produce, or have the potential to produce, transuranium elements on Earth
Fig. 2: The fermium wall.

Change history

  • 10 January 2019

    In the version of this Comment originally published, the image was incorrectly credited to Chelsea Anne Bar; it should have been to Brett F. Thornton. This has now been corrected.

References

  1. Bensaude-Vincent, B.Brit. J. Hist. Sci.15, 183–188 (1982).

    Article  Google Scholar 

  2. Thornton, B. F. & Burdette, S. C.Nat. Chem.5, 979–981 (2013).

    Article CAS  Google Scholar 

  3. Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, T.Pure Appl. Chem.88, 139–153 (2016).

    CAS  Google Scholar 

  4. Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, T.Pure Appl. Chem.88, 155–160 (2016).

    CAS  Google Scholar 

  5. Hofmann, S. et al.Eur. Phys. J. A52, 180 (2016).

    Article  Google Scholar 

  6. Oganessian, Y. T., Sobiczewski, A. & Ter-Akopian, G. M.Phys. Scripta92, 023003 (2017).

    Article  Google Scholar 

  7. Pyykkö, P.Phys. Chem. Chem. Phys.13, 161–168 (2011).

    Article  Google Scholar 

  8. Karol, P.J. Chem. Int.39, 10 (2017).

    CAS  Google Scholar 

  9. Fricke, B., Greiner, W. & Waber, J. T.Theoret. Chim. Acta21, 235–260 (1971).

    Article CAS  Google Scholar 

  10. Türler, A. & Pershina, V.Chem. Rev.113, 1237–1312 (2013).

    Article  Google Scholar 

  11. Thomsen, J.Z. Anorg. Chemie9, 283–288 (1895).

    Article CAS  Google Scholar 

  12. Swinne, R.Naturwissenschaften7, 529–530 (1919).

    Article  Google Scholar 

  13. Kragh, H. inFrom Transuranic to Superheavy Elements: A Story of Dispute and Creation (ed. Kragh, H.) 1–16 (Springer, 2018).

  14. Hulubei, H. & Cauchois, Y.C. R. Acad. Sci.209, 476–479 (1939).

    CAS  Google Scholar 

  15. Tsaletka, R. & Lapitskii, A.Russ. Chem. Rev.29, 684–689 (1960).

    Article  Google Scholar 

  16. Essien, I. O.J. Radioanal. Nucl. Chem.147, 269–275 (1991).

    Article CAS  Google Scholar 

  17. Winkler, S. R., Steier, P. & Carilli, J.Earth Planet. Sci. Lett.359, 124–130 (2012).

    Article  Google Scholar 

  18. Seaborg, G. T. & Perlman, M. L.J. Am. Chem. Soc.70, 1571–1573 (1948).

    Article CAS  Google Scholar 

  19. Curtis, D., Fabryka-Martin, J., Dixon, P. & Cramer, J.Geochim. Cosmochim. Acta63, 275–285 (1999).

    Article CAS  Google Scholar 

  20. Peppard, D. F., Mason, G. W., Gray, P. R. & Mech, J. F.J. Am. Chem. Soc.74, 6081–6084 (1952).

    Article CAS  Google Scholar 

  21. Kenna, B. T. & Kuroda, P. K.J. Inorg. Nucl. Chem.26, 493–499 (1964).

    Article CAS  Google Scholar 

  22. Attrep, M. & Kuroda, P. K.J. Inorg. Nucl. Chem.30, 699–703 (1968).

    Article CAS  Google Scholar 

  23. Casali, N. et al.J. Phys. G: Nucl. Part. Phys.41, 075101 (2014).

    Article  Google Scholar 

  24. Karlik, B. & Bernert, T.Naturwissenschaften30, 685–686 (1942).

    Article CAS  Google Scholar 

  25. Perey, M.C. R. Acad. Sci.208, 97 (1939).

    CAS  Google Scholar 

  26. Tissot, F. L. H., Dauphas, N. & Grossman, L.Sci. Adv.2, 1501400 (2016).

    Article  Google Scholar 

  27. Yin, Q., Jacobsen, S. B. & Yamashita, K.Nature415, 881–883 (2002).

    Article CAS  Google Scholar 

  28. Turner, G. et al.Earth Planet. Sci. Lett.261, 491–499 (2007).

    Article CAS  Google Scholar 

  29. Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E.Nature551, 80–84 (2017).

    PubMed  Google Scholar 

  30. Brennecka, G. A. et al.Science327, 449–451 (2010).

    Article CAS  Google Scholar 

  31. Turner, G., Harrison, T. M., Holland, G., Mojzsis, S. J. & Gilmour, J.Science306, 89–91 (2004).

    Article CAS  Google Scholar 

  32. Hoffman, D. C., Lawrence, F. O., Mewherter, J. L. & Rourke, F. M.Nature234, 132–134 (1971).

    Article CAS  Google Scholar 

  33. Kuroda, P. K.Acc. Chem. Res.12, 73–78 (1979).

    Article CAS  Google Scholar 

  34. Lachner, J. et al.Phys. Rev. C85, 015801 (2012).

    Article  Google Scholar 

  35. Connelly, J.Science327, 422–423 (2010).

    Article CAS  Google Scholar 

  36. Tanvir, N. R. et al.Nature500, 547–549 (2013).

    Article CAS  Google Scholar 

  37. Hotokezaka, K., Piran, T. & Paul, M.Nat. Phys.11, 1042–1044 (2015).

    Article CAS  Google Scholar 

  38. Kuroda, P. K.J. Chem. Phys.25, 781–782 (1956).

    Article CAS  Google Scholar 

  39. Baudin, G. et al.C. R. Acad. Sci.275, 2291–2294 (1972).

    CAS  Google Scholar 

  40. Cowan, G. A.Sci. Am.235, 36–47 (1976).

    Article CAS  Google Scholar 

  41. Bentridi, S.-E., Gall, B., Gauthier-Lafaye, F., Seghour, A. & Medjadi, D.-E.C. R. Geosci.343, 738–748 (2011).

    Article CAS  Google Scholar 

  42. Bros, R., Carpena, J., Sere, V. & Beltritti, A.Radiochim. Acta74, 277 (1996).

    Article CAS  Google Scholar 

  43. Meshik, A. P., Hohenberg, C. M. & Pravdivtseva, O. V.Phys. Rev. Lett.93, 182302 (2004).

    Article CAS  Google Scholar 

  44. Essien, I. & Kuroda, P.Geochem. J.18, 101–108 (1984).

    Article CAS  Google Scholar 

  45. Levine, C. A. & Seaborg, G. T.J. Am. Chem. Soc.73, 3278–3283 (1951).

    Article CAS  Google Scholar 

  46. Thielemann, F.-K.Nat. Phys.11, 993–994 (2015).

    Article CAS  Google Scholar 

  47. Wallner, A. et al.Nat. Commun.6, 6956 (2015).

    Article  Google Scholar 

  48. Goriely, S. & Martínez Pinedo, G.Nucl. Phys. A944, 158–176 (2015).

    Article CAS  Google Scholar 

  49. Wallner, C. et al.Nucl. Instrum. Methods Phys. Res. Sect. B172, 333–337 (2000).

    Article CAS  Google Scholar 

  50. Wallner, C. et al.New Astron. Rev.48, 145–150 (2004).

    Article CAS  Google Scholar 

  51. Paul, M. et al.J. Radioanal. Nucl. Chem.272, 243–245 (2007).

    Article CAS  Google Scholar 

  52. Donnelly, J. et al.Astrophys. J.747, 40 (2012).

    Article  Google Scholar 

  53. Maurette, M., Pellas, P. & Walker, R. M.Nature204, 821–823 (1964).

    Article  Google Scholar 

  54. Stoyer, M. A.Nature442, 876–877 (2006).

    Article CAS  Google Scholar 

  55. Zagrebaev, V., Karpov, A. & Greiner, W.J. Phys. Conf. Series420, 012001 (2013).

    Article  Google Scholar 

  56. Alexeev, V. et al.Astrophys. J.829, 120–137 (2016).

    Article  Google Scholar 

  57. Lingenfelter, R. E., Higdon, J. C., Kratz, K. L. & Pfeiffer, B.Astrophys. J.591, 228–237 (2003).

    Article CAS  Google Scholar 

  58. Dzuba, V. A., Flambaum, V. V. & Webb, J. K.Phys. Rev. A95, 062515 (2017).

    Article  Google Scholar 

  59. Gopka, V. F., Yushchenko, A. V., Yushchenko, V. A., Panov, I. V. & Kim, C.Kinemat. Phys. Celest. Bod.24, 89–98 (2008).

    Article  Google Scholar 

  60. Ackermann, D. & Theisen, C.Phys. Scr.92, 083002 (2017).

    Article  Google Scholar 

  61. Ter-Akopian, G. M. & Dmitriev, S. N.Nucl. Phys. A944, 177–189 (2015).

    Article CAS  Google Scholar 

  62. Swinne, R.Zeits. Techn. Phys.7, 205–216 (1926).

    Google Scholar 

  63. Stephens, W., Klein, J. & Zurmühle, R.Phys. Rev. C21, 1664–1666 (1980).

    Article CAS  Google Scholar 

  64. Dmitriev, S. N. et al.JINR Rapid Commun.5, 13–20 (1988).

    Google Scholar 

  65. Barton, J. C., Hatton, C. J. & McMillan, J. E.J. Phys. G17, 1901–1907 (1991).

    Article CAS  Google Scholar 

  66. Popeko, A. G. inExciting Interdisciplinary Physics: Quarks and Gluons / Atomic Nuclei / Relativity and Cosmology / Biological Systems (ed Walter Greiner) 43–54 (Springer, 2013).

  67. Belli, P. et al.Phys. Scr.90, 085301 (2015).

    Article  Google Scholar 

  68. Flerov, G., Ter-Akop’yan, G., Skobelev, N., Popeko, A. & Ivanov, M.Yadernaya Fizika20, 472–482 (1974).

    CAS  Google Scholar 

  69. Flerov, G. N. et al.Z. Phys. A292, 43–48 (1979).

    Article CAS  Google Scholar 

  70. Testov, D. A. et al.Phys. Atom. Nucl.72, 1–5 (2009).

    Article CAS  Google Scholar 

  71. Svirikhin, A. et al.AIP Conf. Proc.1175, 297–300 (2009).

    Article CAS  Google Scholar 

  72. Marinov, A. et al.Int. J. Mod. Phys. E19, 131–140 (2010).

    Article CAS  Google Scholar 

  73. Marinov, A. et al.Int. J. Mod. Phys. E18, 621–629 (2009).

    Article CAS  Google Scholar 

  74. Korschinek, G. & Kutschera, W.Nucl. Phys. A944, 190–203 (2015).

    Article CAS  Google Scholar 

  75. Ludwig, P. et al.Phys. Rev. C85, 024315 (2012).

    Article  Google Scholar 

  76. Dellinger, F. et al.Phys. Rev. C83, 015801 (2011).

    Article  Google Scholar 

  77. Dellinger, F. et al.Phys. Rev. C83, 065806 (2011).

    Article  Google Scholar 

  78. Chowdhury, P. R., Samanta, C. & Basu, D. N.Phys. Rev. C77, 044603 (2008).

    Article  Google Scholar 

  79. Dean, T.New Sci.199, 32–35 (2008).

    Article  Google Scholar 

  80. Haxton, W. C. et al.Phys. Rev. C28, 467–470 (1983).

    Article CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

    Brett F. Thornton

  2. Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA

    Shawn C. Burdette

Authors
  1. Brett F. Thornton
  2. Shawn C. Burdette

Corresponding authors

Correspondence toBrett F. Thornton orShawn C. Burdette.

Additional information

Twitter: @geochembrett, @WPIBurdette

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thornton, B.F., Burdette, S.C. Neutron stardust and the elements of Earth.Nature Chem11, 4–10 (2019). https://doi.org/10.1038/s41557-018-0190-9

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Collection

The International Year of the Periodic Table

Focus

The periodic table

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp