- Letter
- Published:
Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar
- H. T. Cromartie ORCID:orcid.org/0000-0002-6039-692X1,
- E. Fonseca ORCID:orcid.org/0000-0001-8384-50492,
- S. M. Ransom ORCID:orcid.org/0000-0001-5799-97143,
- P. B. Demorest4,
- Z. Arzoumanian5,
- H. Blumer6,7,
- P. R. Brook6,7,
- M. E. DeCesar8,
- T. Dolch9,
- J. A. Ellis10,
- R. D. Ferdman ORCID:orcid.org/0000-0002-2223-123511,
- E. C. Ferrara12,13,
- N. Garver-Daniels6,7,
- P. A. Gentile6,7,
- M. L. Jones6,7,
- M. T. Lam6,7,
- D. R. Lorimer6,7,
- R. S. Lynch14,
- M. A. McLaughlin6,7,
- C. Ng15,16,
- D. J. Nice ORCID:orcid.org/0000-0002-6709-25668,
- T. T. Pennucci ORCID:orcid.org/0000-0001-5465-288917,
- R. Spiewak ORCID:orcid.org/0000-0002-6730-329818,
- I. H. Stairs15,
- K. Stovall4,
- J. K. Swiggum19 &
- …
- W. W. Zhu20
Nature Astronomyvolume 4, pages72–76 (2020)Cite this article
5839Accesses
1641Citations
855Altmetric
Abstract
Despite its importance to our understanding of physics at supranuclear densities, the equation of state (EoS) of matter deep within neutron stars remains poorly understood. Millisecond pulsars (MSPs) are among the most useful astrophysical objects in the Universe for testing fundamental physics, and place some of the most stringent constraints on this high-density EoS. Pulsar timing—the process of accounting for every rotation of a pulsar over long time periods—can precisely measure a wide variety of physical phenomena, including those that allow the measurement of the masses of the components of a pulsar binary system1. One of these, called relativistic Shapiro delay2, can yield precise masses for both an MSP and its companion; however, it is only easily observed in a small subset of high-precision, highly inclined (nearly edge-on) binary pulsar systems. By combining data from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-yr data set with recent orbital-phase-specific observations using the Green Bank Telescope, we have measured the mass of the MSP J0740+6620 to be\({\mathbf{2}}{\mathbf{.14}}_{ - {\mathbf{0}}{\mathbf{.09}}}^{ + {\mathbf{0}}{\mathbf{.10}}}\) M⊙ (68.3% credibility interval; the 95.4% credibility interval is\({\mathbf{2}}{\mathbf{.14}}_{ - {\mathbf{0}}{\mathbf{.18}}}^{ + {\mathbf{0}}{\mathbf{.20}}}\) M⊙). It is highly likely to be the most massive neutron star yet observed, and serves as a strong constraint on the neutron star interior EoS.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
PSR J0740+6620 TOAs from both the 12.5-yr data set and from the two supplemental GBT observations will be available athttps://data.nanograv.org on publication of this manuscript.
Code availability
All code mentioned in this work is open source and available at the links provided in the manuscript.
References
Lorimer, D. R. & Kramer, M.Handbook of Pulsar Astronomy (Cambridge University Press, 2005).
Shapiro, I. I. Fourth test of general relativity.Phys. Rev. Lett.13, 789–791 (1964).
Freire, P. C. C. & Wex, N. The orthometric parametrization of the Shapiro delay and an improved test of general relativity with binary pulsars.Mon. Not. R. Astron. Soc.409, 199–212 (2010).
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay.Nature467, 1081–1083 (2010).
Fonseca, E. et al. The NANOGrav nine-year data set: mass and geometric measurements of binary millisecond pulsars.Astrophys. J.832, 167 (2016).
Antoniadis, J. et al. A massive pulsar in a compact relativistic binary.Science340, 448 (2013).
Friere, P. C. C. et al. On the nature and evolution of the unique binary pulsar J1903+0327.Mon. Not. R. Astron. Soc.412, 2763–2780 (2011).
Margalit, B. & Metzger, B. D. Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817.Astrophys. J. Lett.850, L19 (2017).
Linares, M., Shahbaz, T. & Casares, J. Peering into the dark side: magnesium lines establish a massive neutron star in PSR J2215+5135.Astrophys. J.859, 54 (2018).
Arzoumanian, Z. et al. The NANOGrav 11-year data set: pulsar-timing constraints on the stochastic gravitational-wave background.Astrophys. J.859, 47 (2018).
Stovall, K. et al. The Green Bank Northern Celestial Cap pulsar survey. I. Survey description, data analysis, and initial results.Astrophys. J.791, 67 (2014).
Lynch, R. S. et al. The Green Bank North Celestial Cap pulsar survey. III. 45 new pulsar timing solutions.Astrophys. J.859, 93 (2018).
Beronya, D. M. et al. The ultracool helium-atmosphere white dwarf companion of PSR J0740+6620?.Mon. Not. R. Astron. Soc.485, 3715–3720 (2019).
Watts, A. et al. Probing the neutron star interior and the Equation of State of cold dense matter with the SKA.Proc. Sci.215, 43 (2015).
Özel, F. & Freire, P. Masses, radii, and the equation of state of neutron stars.Annu. Rev. Astron. Astrophys.54, 401–440 (2016).
Bedaque, P. F. & Steiner, A. W. Hypernuclei and the hyperon problem in neutron stars.Phys. Rev. C92, 025803 (2015).
Antoniadis, J. et al. The millisecond pulsar mass distribution: Evidence for bimodality and constraints on the maximum neutron star mass. Preprint athttps://arxiv.org/abs/1605.01665 (2016).
Tauris, T. M., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions—I. PSR J1614-2230: evidence for a neutron star born massive.Mon. Not. R. Astron. Soc.416, 2130–2142 (2011).
Cognard, I. et al. A massive-born neutron star with a massive white dwarf companion.Astrophys. J.844, 128 (2017).
Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. The relation between white dwarf mass and orbital period in wide binary radio pulsars.Mon. Not. R. Astron. Soc.273, 731–741 (1995).
Tauris, T. M. & Savonije, G. J. Formation of millisecond pulsars. I. Evolution of low-mass X-ray binaries withPorb > 2 days.Astron. Astrophys.350, 928–944 (1999).
Ng, C. Pulsar science with the CHIME telescope. InProc.International Astronomical Union Vol. 13, Symp. 337: Pulsar Astrophysics —The Next Fifty Years (eds Weltevrede, P. et al.) 179–182 (Cambridge University Press, 2018).
DuPlain, R. et al. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument.Proc. SPIE7019, 70191D (2008).
Arzoumanian, Z. et al. The NANOGrav nine-year data set: observations, arrival time measurements, and analysis of 37 millisecond pulsars.Astrophys. J.813, 65 (2015).
Demorest, P. B. nanopipe: calibration and data reduction pipeline for pulsar timing.Astrophysics Source Code Library ascl:1803.004 (2018).
van Straten, W. et al. PSRCHIVE: development library for the analysis of pulsar astronomical data.Astrophysics Source Code Library ascl:1105.014 (2011).
Hobbs, G. & Edwards, R. Tempo2: pulsar timing package.Astrophysics Source Code Library ascl:1210.015 (2012).
Lange, Ch et al. Precision timing measurements of PSR J1012+5307.Mon. Not. R. Astron. Soc.326, 274–282 (2001).
Lam, M. T. et al. Systematic and stochastic variations in pulsar dispersion measures.Astrophys. J.821, 66 (2015).
Jones, M. L. et al. The NANOGrav nine-year data set: measurement and interpretation of variations in dispersion measures.Astrophys. J.841, 125 (2017).
Acknowledgements
The NANOGrav Project receives support from NSF Physics Frontiers Center award no. 1430284. Pulsar research at UBC is supported by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research (CIFAR). The National Radio Astronomy Observatory and the Green Bank Observatory are facilities of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. S.M.R is a CIFAR Senior Fellow. W.W.Z. is supported by the CAS Pioneer Hundred Talents Program, the Strategic Priority Research Program of the Chinese Academy of Sciences grant no. XDB23000000 and the National Natural Science Foundation of China grant nos. 11690024, 11743002 and 11873067. Supplementary Green Bank conjunction-phase observing project codes were 18B-289 and 18B-372 (DDT).
Author information
Authors and Affiliations
Department of Astronomy, University of Virginia, Charlottesville, VA, USA
H. T. Cromartie
Department of Physics, McGill University, Montreal, QC, Canada
E. Fonseca
National Radio Astronomy Observatory, Charlottesville, VA, USA
S. M. Ransom
National Radio Astronomy Observatory, Socorro, NM, USA
P. B. Demorest & K. Stovall
X-ray Astrophysics Laboratory, Code 662, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Z. Arzoumanian
Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA
H. Blumer, P. R. Brook, N. Garver-Daniels, P. A. Gentile, M. L. Jones, M. T. Lam, D. R. Lorimer & M. A. McLaughlin
Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, WV, USA
H. Blumer, P. R. Brook, N. Garver-Daniels, P. A. Gentile, M. L. Jones, M. T. Lam, D. R. Lorimer & M. A. McLaughlin
Department of Physics, Lafayette College, Easton, PA, USA
M. E. DeCesar & D. J. Nice
Department of Physics, Hillsdale College, Hillsdale, MI, USA
T. Dolch
Infinia ML, Durham, NC, USA
J. A. Ellis
School of Chemistry, University of East Anglia, Norwich, UK
R. D. Ferdman
NASA Goddard Space Flight Center, Greenbelt, MD, USA
E. C. Ferrara
Department of Astronomy, University of Maryland, College Park, MD, USA
E. C. Ferrara
Green Bank Observatory, Green Bank, WV, USA
R. S. Lynch
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
C. Ng & I. H. Stairs
Dunlap Institute, University of Toronto, Toronto, ON, Canada
C. Ng
Hungarian Academy of Sciences MTA-ELTE ‘Extragalactic Astrophysics Research Group’, Institute of Physics, Eötvös Loránd University, Budapest, Hungary
T. T. Pennucci
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC, Australia
R. Spiewak
Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin—Milwaukee, Milwaukee, WI, USA
J. K. Swiggum
CAS Key Laboratory of FAST, NAOC, Chinese Academy of Sciences, Beijing, China
W. W. Zhu
- H. T. Cromartie
Search author on:PubMed Google Scholar
- E. Fonseca
Search author on:PubMed Google Scholar
- S. M. Ransom
Search author on:PubMed Google Scholar
- P. B. Demorest
Search author on:PubMed Google Scholar
- Z. Arzoumanian
Search author on:PubMed Google Scholar
- H. Blumer
Search author on:PubMed Google Scholar
- P. R. Brook
Search author on:PubMed Google Scholar
- M. E. DeCesar
Search author on:PubMed Google Scholar
- T. Dolch
Search author on:PubMed Google Scholar
- J. A. Ellis
Search author on:PubMed Google Scholar
- R. D. Ferdman
Search author on:PubMed Google Scholar
- E. C. Ferrara
Search author on:PubMed Google Scholar
- N. Garver-Daniels
Search author on:PubMed Google Scholar
- P. A. Gentile
Search author on:PubMed Google Scholar
- M. L. Jones
Search author on:PubMed Google Scholar
- M. T. Lam
Search author on:PubMed Google Scholar
- D. R. Lorimer
Search author on:PubMed Google Scholar
- R. S. Lynch
Search author on:PubMed Google Scholar
- M. A. McLaughlin
Search author on:PubMed Google Scholar
- C. Ng
Search author on:PubMed Google Scholar
- D. J. Nice
Search author on:PubMed Google Scholar
- T. T. Pennucci
Search author on:PubMed Google Scholar
- R. Spiewak
Search author on:PubMed Google Scholar
- I. H. Stairs
Search author on:PubMed Google Scholar
- K. Stovall
Search author on:PubMed Google Scholar
- J. K. Swiggum
Search author on:PubMed Google Scholar
- W. W. Zhu
Search author on:PubMed Google Scholar
Contributions
The creation of the NANOGrav 12.5-yr data set was made possible through extensive observations and pulsar-timing activities conducted by all the authors. H.T.C. was responsible for the NANOGrav-adjacent concentrated observing campaigns and the majority of this manuscript’s contents. H.T.C., E.F., S.M.R. and P.B.D. were responsible for the extended J0740+6620 data analysis (the merging of NANOGrav and conjunction-phase observations) and modelling effort. E.F. was responsible for much of the initial work on J0740+6620 that informed the supplementary observing proposals, and for the development of the gridding code that yielded both the mass and inclination credibility intervals and Fig.2.
Corresponding author
Correspondence toH. T. Cromartie.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review informationNature Astronomy thanks John Antoniadis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cromartie, H.T., Fonseca, E., Ransom, S.M.et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar.Nat Astron4, 72–76 (2020). https://doi.org/10.1038/s41550-019-0880-2
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Inferring three-nucleon couplings from multi-messenger neutron-star observations
- Rahul Somasundaram
- Isak Svensson
- Ingo Tews
Nature Communications (2025)
Temperature Effects in the Proto Neutron Star Phase of PSR J0740+6620
- Xian-Feng Zhao
- Wen-Bo Ding
- Bin Tang
Astrophysics (2025)
Viscous damping of r-modes and emission of gravitational waves
- Debasis Atta
- D N Basu
Pramana (2025)
Heavy neutron stars from light scalars
- Reuven Balkin
- Javi Serra
- Andreas Weiler
Journal of High Energy Physics (2025)
Constraint on the symmetry energy at high densities from neutron star observations using relativistic mean-field models
- Ying Cui
- Yuan Tian
- Zhu-Xia Li
Nuclear Science and Techniques (2025)


