Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Astronomy
  • Letter
  • Published:

Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar

Nature Astronomyvolume 4pages72–76 (2020)Cite this article

Subjects

Abstract

Despite its importance to our understanding of physics at supranuclear densities, the equation of state (EoS) of matter deep within neutron stars remains poorly understood. Millisecond pulsars (MSPs) are among the most useful astrophysical objects in the Universe for testing fundamental physics, and place some of the most stringent constraints on this high-density EoS. Pulsar timing—the process of accounting for every rotation of a pulsar over long time periods—can precisely measure a wide variety of physical phenomena, including those that allow the measurement of the masses of the components of a pulsar binary system1. One of these, called relativistic Shapiro delay2, can yield precise masses for both an MSP and its companion; however, it is only easily observed in a small subset of high-precision, highly inclined (nearly edge-on) binary pulsar systems. By combining data from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-yr data set with recent orbital-phase-specific observations using the Green Bank Telescope, we have measured the mass of the MSP J0740+6620 to be\({\mathbf{2}}{\mathbf{.14}}_{ - {\mathbf{0}}{\mathbf{.09}}}^{ + {\mathbf{0}}{\mathbf{.10}}}\)M (68.3% credibility interval; the 95.4% credibility interval is\({\mathbf{2}}{\mathbf{.14}}_{ - {\mathbf{0}}{\mathbf{.18}}}^{ + {\mathbf{0}}{\mathbf{.20}}}\)M). It is highly likely to be the most massive neutron star yet observed, and serves as a strong constraint on the neutron star interior EoS.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timing residuals from all observations of J0740+6620 as a function of orbital phase, with superior conjunction at orbital phase = 0.25.
Fig. 2: Map of fittedχ2 distributions and corresponding probability density functions formp,mc andi.
Fig. 3: Timing residuals and DMX for all epochs of J0740+6620 data.

Similar content being viewed by others

ArticleOpen access20 June 2023

Data availability

PSR J0740+6620 TOAs from both the 12.5-yr data set and from the two supplemental GBT observations will be available athttps://data.nanograv.org on publication of this manuscript.

Code availability

All code mentioned in this work is open source and available at the links provided in the manuscript.

References

  1. Lorimer, D. R. & Kramer, M.Handbook of Pulsar Astronomy (Cambridge University Press, 2005).

  2. Shapiro, I. I. Fourth test of general relativity.Phys. Rev. Lett.13, 789–791 (1964).

    Article ADS MathSciNet  Google Scholar 

  3. Freire, P. C. C. & Wex, N. The orthometric parametrization of the Shapiro delay and an improved test of general relativity with binary pulsars.Mon. Not. R. Astron. Soc.409, 199–212 (2010).

    Article ADS  Google Scholar 

  4. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay.Nature467, 1081–1083 (2010).

    Article ADS  Google Scholar 

  5. Fonseca, E. et al. The NANOGrav nine-year data set: mass and geometric measurements of binary millisecond pulsars.Astrophys. J.832, 167 (2016).

    Article ADS  Google Scholar 

  6. Antoniadis, J. et al. A massive pulsar in a compact relativistic binary.Science340, 448 (2013).

    Article ADS  Google Scholar 

  7. Friere, P. C. C. et al. On the nature and evolution of the unique binary pulsar J1903+0327.Mon. Not. R. Astron. Soc.412, 2763–2780 (2011).

    Article ADS  Google Scholar 

  8. Margalit, B. & Metzger, B. D. Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817.Astrophys. J. Lett.850, L19 (2017).

    Article ADS  Google Scholar 

  9. Linares, M., Shahbaz, T. & Casares, J. Peering into the dark side: magnesium lines establish a massive neutron star in PSR J2215+5135.Astrophys. J.859, 54 (2018).

    Article ADS  Google Scholar 

  10. Arzoumanian, Z. et al. The NANOGrav 11-year data set: pulsar-timing constraints on the stochastic gravitational-wave background.Astrophys. J.859, 47 (2018).

    Article ADS  Google Scholar 

  11. Stovall, K. et al. The Green Bank Northern Celestial Cap pulsar survey. I. Survey description, data analysis, and initial results.Astrophys. J.791, 67 (2014).

    Article ADS  Google Scholar 

  12. Lynch, R. S. et al. The Green Bank North Celestial Cap pulsar survey. III. 45 new pulsar timing solutions.Astrophys. J.859, 93 (2018).

    Article ADS  Google Scholar 

  13. Beronya, D. M. et al. The ultracool helium-atmosphere white dwarf companion of PSR J0740+6620?.Mon. Not. R. Astron. Soc.485, 3715–3720 (2019).

    Article ADS  Google Scholar 

  14. Watts, A. et al. Probing the neutron star interior and the Equation of State of cold dense matter with the SKA.Proc. Sci.215, 43 (2015).

    ADS  Google Scholar 

  15. Özel, F. & Freire, P. Masses, radii, and the equation of state of neutron stars.Annu. Rev. Astron. Astrophys.54, 401–440 (2016).

    Article ADS  Google Scholar 

  16. Bedaque, P. F. & Steiner, A. W. Hypernuclei and the hyperon problem in neutron stars.Phys. Rev. C92, 025803 (2015).

    Article ADS  Google Scholar 

  17. Antoniadis, J. et al. The millisecond pulsar mass distribution: Evidence for bimodality and constraints on the maximum neutron star mass. Preprint athttps://arxiv.org/abs/1605.01665 (2016).

  18. Tauris, T. M., Langer, N. & Kramer, M. Formation of millisecond pulsars with CO white dwarf companions—I. PSR J1614-2230: evidence for a neutron star born massive.Mon. Not. R. Astron. Soc.416, 2130–2142 (2011).

    Article ADS  Google Scholar 

  19. Cognard, I. et al. A massive-born neutron star with a massive white dwarf companion.Astrophys. J.844, 128 (2017).

    Article ADS  Google Scholar 

  20. Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. The relation between white dwarf mass and orbital period in wide binary radio pulsars.Mon. Not. R. Astron. Soc.273, 731–741 (1995).

    Article ADS  Google Scholar 

  21. Tauris, T. M. & Savonije, G. J. Formation of millisecond pulsars. I. Evolution of low-mass X-ray binaries withPorb > 2 days.Astron. Astrophys.350, 928–944 (1999).

    ADS  Google Scholar 

  22. Ng, C. Pulsar science with the CHIME telescope. InProc.International Astronomical Union Vol. 13, Symp. 337: Pulsar AstrophysicsThe Next Fifty Years (eds Weltevrede, P. et al.) 179–182 (Cambridge University Press, 2018).

  23. DuPlain, R. et al. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument.Proc. SPIE7019, 70191D (2008).

    Article  Google Scholar 

  24. Arzoumanian, Z. et al. The NANOGrav nine-year data set: observations, arrival time measurements, and analysis of 37 millisecond pulsars.Astrophys. J.813, 65 (2015).

    Article ADS  Google Scholar 

  25. Demorest, P. B. nanopipe: calibration and data reduction pipeline for pulsar timing.Astrophysics Source Code Library ascl:1803.004 (2018).

  26. van Straten, W. et al. PSRCHIVE: development library for the analysis of pulsar astronomical data.Astrophysics Source Code Library ascl:1105.014 (2011).

  27. Hobbs, G. & Edwards, R. Tempo2: pulsar timing package.Astrophysics Source Code Library ascl:1210.015 (2012).

  28. Lange, Ch et al. Precision timing measurements of PSR J1012+5307.Mon. Not. R. Astron. Soc.326, 274–282 (2001).

    Article ADS  Google Scholar 

  29. Lam, M. T. et al. Systematic and stochastic variations in pulsar dispersion measures.Astrophys. J.821, 66 (2015).

    Article ADS  Google Scholar 

  30. Jones, M. L. et al. The NANOGrav nine-year data set: measurement and interpretation of variations in dispersion measures.Astrophys. J.841, 125 (2017).

    Article ADS  Google Scholar 

Download references

Acknowledgements

The NANOGrav Project receives support from NSF Physics Frontiers Center award no. 1430284. Pulsar research at UBC is supported by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research (CIFAR). The National Radio Astronomy Observatory and the Green Bank Observatory are facilities of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. S.M.R is a CIFAR Senior Fellow. W.W.Z. is supported by the CAS Pioneer Hundred Talents Program, the Strategic Priority Research Program of the Chinese Academy of Sciences grant no. XDB23000000 and the National Natural Science Foundation of China grant nos. 11690024, 11743002 and 11873067. Supplementary Green Bank conjunction-phase observing project codes were 18B-289 and 18B-372 (DDT).

Author information

Authors and Affiliations

  1. Department of Astronomy, University of Virginia, Charlottesville, VA, USA

    H. T. Cromartie

  2. Department of Physics, McGill University, Montreal, QC, Canada

    E. Fonseca

  3. National Radio Astronomy Observatory, Charlottesville, VA, USA

    S. M. Ransom

  4. National Radio Astronomy Observatory, Socorro, NM, USA

    P. B. Demorest & K. Stovall

  5. X-ray Astrophysics Laboratory, Code 662, NASA Goddard Space Flight Center, Greenbelt, MD, USA

    Z. Arzoumanian

  6. Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA

    H. Blumer, P. R. Brook, N. Garver-Daniels, P. A. Gentile, M. L. Jones, M. T. Lam, D. R. Lorimer & M. A. McLaughlin

  7. Center for Gravitational Waves and Cosmology, West Virginia University, Morgantown, WV, USA

    H. Blumer, P. R. Brook, N. Garver-Daniels, P. A. Gentile, M. L. Jones, M. T. Lam, D. R. Lorimer & M. A. McLaughlin

  8. Department of Physics, Lafayette College, Easton, PA, USA

    M. E. DeCesar & D. J. Nice

  9. Department of Physics, Hillsdale College, Hillsdale, MI, USA

    T. Dolch

  10. Infinia ML, Durham, NC, USA

    J. A. Ellis

  11. School of Chemistry, University of East Anglia, Norwich, UK

    R. D. Ferdman

  12. NASA Goddard Space Flight Center, Greenbelt, MD, USA

    E. C. Ferrara

  13. Department of Astronomy, University of Maryland, College Park, MD, USA

    E. C. Ferrara

  14. Green Bank Observatory, Green Bank, WV, USA

    R. S. Lynch

  15. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada

    C. Ng & I. H. Stairs

  16. Dunlap Institute, University of Toronto, Toronto, ON, Canada

    C. Ng

  17. Hungarian Academy of Sciences MTA-ELTE ‘Extragalactic Astrophysics Research Group’, Institute of Physics, Eötvös Loránd University, Budapest, Hungary

    T. T. Pennucci

  18. Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC, Australia

    R. Spiewak

  19. Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin—Milwaukee, Milwaukee, WI, USA

    J. K. Swiggum

  20. CAS Key Laboratory of FAST, NAOC, Chinese Academy of Sciences, Beijing, China

    W. W. Zhu

Authors
  1. H. T. Cromartie
  2. E. Fonseca
  3. S. M. Ransom
  4. P. B. Demorest
  5. Z. Arzoumanian
  6. H. Blumer
  7. P. R. Brook
  8. M. E. DeCesar
  9. T. Dolch
  10. J. A. Ellis
  11. R. D. Ferdman
  12. E. C. Ferrara
  13. N. Garver-Daniels
  14. P. A. Gentile
  15. M. L. Jones
  16. M. T. Lam
  17. D. R. Lorimer
  18. R. S. Lynch
  19. M. A. McLaughlin
  20. C. Ng
  21. D. J. Nice
  22. T. T. Pennucci
  23. R. Spiewak
  24. I. H. Stairs
  25. K. Stovall
  26. J. K. Swiggum
  27. W. W. Zhu

Contributions

The creation of the NANOGrav 12.5-yr data set was made possible through extensive observations and pulsar-timing activities conducted by all the authors. H.T.C. was responsible for the NANOGrav-adjacent concentrated observing campaigns and the majority of this manuscript’s contents. H.T.C., E.F., S.M.R. and P.B.D. were responsible for the extended J0740+6620 data analysis (the merging of NANOGrav and conjunction-phase observations) and modelling effort. E.F. was responsible for much of the initial work on J0740+6620 that informed the supplementary observing proposals, and for the development of the gridding code that yielded both the mass and inclination credibility intervals and Fig.2.

Corresponding author

Correspondence toH. T. Cromartie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks John Antoniadis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cromartie, H.T., Fonseca, E., Ransom, S.M.et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar.Nat Astron4, 72–76 (2020). https://doi.org/10.1038/s41550-019-0880-2

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp