Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Astronomy
  • Letter
  • Published:

The dipole repeller

Nature Astronomyvolume 1, Article number: 0036 (2017)Cite this article

Subjects

Abstract

Our Local Group of galaxies is moving with respect to the cosmic microwave background (CMB) with a velocity1 ofVCMB = 631 ± 20 km s−1 and participates in a bulk flow that extends out to distances of ~20,000 km s−1 or more24. There has been an implicit assumption that overabundances of galaxies induce the Local Group motion57. Yet underdense regions push as much as overdensities attract8, but they are deficient in light and consequently difficult to chart. It was suggested a decade ago that an underdensity in the northern hemisphere roughly 15,000 km s−1 away contributes significantly to the observed flow9. We show here that repulsion from an underdensity is important and that the dominant influences causing the observed flow are a single attractor — associated with the Shapley concentration — and a single previously unidentified repeller, which contribute roughly equally to the CMB dipole. The bulk flow is closely anti-aligned with the repeller out to 16,000 ± 4,500 km s−1. This ‘dipole repeller’ is predicted to be associated with a void in the distribution of galaxies.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1:A face-on view of a slice 6,000kms−1thick, normal to the direction of the pointing vectorrˆ=(0.604,0.720,0.342).
Figure 2: A 3D view of the velocity field.
Figure 3: Aitoff projection in galactic coordinates of the principal structures and directions that characterize the flow.

Similar content being viewed by others

References

  1. Fixsen, D. J. et al. The spectrum cosmic microwave background from the full COBE FIRAS data set.Astrophys. J.473, 576–587 (1996).

    Article ADS  Google Scholar 

  2. Nusser, A. & Davis, M. The cosmological bulk flow: Consistency with ΛCDM andz ≈ 0 constraints onσ 8 andγ .Astrophys. J.736, 93 (2011).

    Article ADS  Google Scholar 

  3. Watkins, R. & Feldman, H. A. Large-scale bulk flows from the Cosmicflows-2 catalogue.Mon. Not. R. Astron. Soc.447, 132–139 (2015).

    Article ADS  Google Scholar 

  4. Hoffman, Y., Courtois, H. M. & Tully, R. B. Cosmic bulk flow and the local motion from Cosmicflows-2.Mon. Not. R. Astron. Soc.449, 4494–4505 (2015).

    Article ADS  Google Scholar 

  5. Lilje, P. B., Yahil, A. & Jones, B. J. T. The tidal velocity field in the Local Supercluster.Astrophys. J.307, 91–96 (1986).

    Article ADS  Google Scholar 

  6. Lynden-Bell, D. et al. Spectroscopy and photometry of elliptical galaxies. V: Galaxy streaming toward the new supergalactic center.Astrophys. J.326, 19–49 (1988).

    Article ADS  Google Scholar 

  7. Dressler, A. The Great Attractor: Do galaxies trace the large-scale mass distribution?Nature350, 391–397 (1991).

    Article ADS  Google Scholar 

  8. Lahav, O., Lynden-Bell, D. & Rowan-Robinson, M. The peculiar acceleration of the Local Group as deduced from the optical and IRAS flux dipoles.Mon. Not. R. Astron. Soc.234, 677–701 (1988).

    Article ADS  Google Scholar 

  9. Kocevski, D. D. & Ebeling, H. On the origin of the Local Group peculiar velocity.Astrophys. J.645, 1043–1053 (2006).

    Article ADS  Google Scholar 

  10. Dekel, A., Bertschinger, E. & Faber, S. M. Potential, velocity, and density fields from sparse and noisy redshift–distance samples: Method.Astrophys. J.364, 349–369 (1990).

    Article ADS  Google Scholar 

  11. Zaroubi, S., Hoffman, Y. & Dekel, A. Wiener reconstruction of large-scale structure from peculiar velocities.Astrophys. J.520, 413–425 (1999).

    Article ADS  Google Scholar 

  12. Courtois, H. M., Hoffman, Y., Tully, R. B. & Gottloeber, S. Three-dimensional velocity and density reconstructions of the local Universe with Cosmicflows-1.Astrophys. J.744, 43 (2012).

    Article ADS  Google Scholar 

  13. Courtois, H. M., Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, D. Cosmography of the local Universe.Astron. J.146, 69 (2013).

    Article ADS  Google Scholar 

  14. Tully, R.B., Courtois, H., Hoffman, Y. & Pomarède, D .The Laniakea supercluster of galaxies.Nature513, 71–73 (2014).

    Article ADS  Google Scholar 

  15. Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, H. M. The Arrowhead mini-supercluster of galaxies.Astrophys. J.812, 17 (2015).

    Article ADS  Google Scholar 

  16. Tully, R. B. et al. Cosmicflows-2: The data.Astron. J.146, 86 (2013).

    Article ADS  Google Scholar 

  17. Hoffman, Y. et al. A kinematic classification of the cosmic web.Mon. Not. R. Astron. Soc.425, 2049–2057 (2012).

    Article ADS  Google Scholar 

  18. Jaffe, A. H. & Kaiser, N. Likelihood analysis of large-scale flows.Astrophys. J.455, 26 (1995).

    Article ADS  Google Scholar 

  19. Hoffman, Y., Eldar, A., Zaroubi, S. & Dekel, A. The large-scale tidal velocity field. Preprint athttps://arxiv.org/abs/astro-ph/0102190 (2001).

  20. Feldman, H. A., Watkins, R. & Hudson, M. J. Cosmic flows on 100 h−1 Mpc scales: standardized minimum variance bulk flow, shear and octupole moments.Mon. Not. R. Astron. Soc.407, 2328–2338 (2010).

    Article ADS  Google Scholar 

  21. Scaramella, R., Baiesi-Pillastrini, G., Chincarini, G., Vettolani, G. & Zamorani, G. A marked concentration of galaxy clusters - Is this the origin of large-scale motions?Nature338, 562–564 (1989).

    Article ADS  Google Scholar 

  22. Raychaudhury, S. The distribution of galaxies in the direction of the ‘Great Attractor’.Nature342, 251–255 (1989).

    Article ADS  Google Scholar 

  23. Peebles, P. J. E.The Large-Scale Structure of the Universe (Princeton Univ. Press, 1980).

    Google Scholar 

  24. Hoffman, Y. & Ribak, E. Constrained realizations of Gaussian fields: A simple algorithm.Astrophys. J.380, L5–L8 (1991).

    Article ADS  Google Scholar 

  25. Hoffman, Y. inData Analysis in Cosmology Lecture Notes in Physics Vol. 665 (ed. Martínez, V. J., Saar, E., Martínez-González, E. & Pons-Bordería, M.-J. ) 565–583 (Springer, 2009).

    MATH  Google Scholar 

  26. Zaroubi, S., Hoffman, Y., Fisher, K. B. & Lahav, O. Wiener reconstruction of the large-scale structure.Astrophys. J.449, 446–459 (1995).

    Article ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Sorce and S. Gottloeber for discussions and A. Dupuy for her help in preparingFig. 3. We thank K. Bowles and S. Thompson for the narration in theSupplementary Video. Support has been provided by the Israel Science Foundation (1013/12), the Institut Universitaire de France, the US National Science Foundation, Space Telescope Science Institute for observations with Hubble Space Telescope, the Jet Propulsion Lab for observations with Spitzer Space Telescope and NASA for analysis of data from the Wide-field Infrared Survey Explorer.

Author information

Authors and Affiliations

  1. Racah Institute of Physics, Hebrew University, Jerusalem, 91904, Israel

    Yehuda Hoffman

  2. Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191, France

    Daniel Pomarède

  3. Institute for Astronomy (IFA), University of Hawaii, 2680 Woodlawn Drive, Honolulu, 96822, Hawaii, USA

    R. Brent Tully

  4. IPN Lyon, UCB Lyon 1/CNRS/IN2P3, University of Lyon, Villeurbanne, 69622, France

    Hélène M. Courtois

Authors
  1. Yehuda Hoffman
  2. Daniel Pomarède
  3. R. Brent Tully
  4. Hélène M. Courtois

Contributions

R.B.T. and H.M.C. carried out the observations and data analysis; D.P. contributed graphics and visualization; Y.H. carried out the numerical and theoretical analysis. All co-authors contributed to the writing of the paper, led by Y.H.

Corresponding author

Correspondence toYehuda Hoffman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Table 1. (PDF 1220 kb)

Supplementary Video

The dipole repeller. (MP4 83651 kb)

Rights and permissions

About this article

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Collection

First year anniversary collection

Large-scale structure: Going with the flow

  • Michael J. Hudson
Nature AstronomyNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp