- Letter
- Published:
The dipole repeller
- Yehuda Hoffman1,
- Daniel Pomarède ORCID:orcid.org/0000-0003-2038-04882,
- R. Brent Tully3 &
- …
- Hélène M. Courtois4
Nature Astronomyvolume 1, Article number: 0036 (2017)Cite this article
48kAccesses
91Citations
731Altmetric
Abstract
Our Local Group of galaxies is moving with respect to the cosmic microwave background (CMB) with a velocity1 ofVCMB = 631 ± 20 km s−1 and participates in a bulk flow that extends out to distances of ~20,000 km s−1 or more2–4. There has been an implicit assumption that overabundances of galaxies induce the Local Group motion5–7. Yet underdense regions push as much as overdensities attract8, but they are deficient in light and consequently difficult to chart. It was suggested a decade ago that an underdensity in the northern hemisphere roughly 15,000 km s−1 away contributes significantly to the observed flow9. We show here that repulsion from an underdensity is important and that the dominant influences causing the observed flow are a single attractor — associated with the Shapley concentration — and a single previously unidentified repeller, which contribute roughly equally to the CMB dipole. The bulk flow is closely anti-aligned with the repeller out to 16,000 ± 4,500 km s−1. This ‘dipole repeller’ is predicted to be associated with a void in the distribution of galaxies.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Fixsen, D. J. et al. The spectrum cosmic microwave background from the full COBE FIRAS data set.Astrophys. J.473, 576–587 (1996).
Nusser, A. & Davis, M. The cosmological bulk flow: Consistency with ΛCDM andz ≈ 0 constraints onσ 8 andγ .Astrophys. J.736, 93 (2011).
Watkins, R. & Feldman, H. A. Large-scale bulk flows from the Cosmicflows-2 catalogue.Mon. Not. R. Astron. Soc.447, 132–139 (2015).
Hoffman, Y., Courtois, H. M. & Tully, R. B. Cosmic bulk flow and the local motion from Cosmicflows-2.Mon. Not. R. Astron. Soc.449, 4494–4505 (2015).
Lilje, P. B., Yahil, A. & Jones, B. J. T. The tidal velocity field in the Local Supercluster.Astrophys. J.307, 91–96 (1986).
Lynden-Bell, D. et al. Spectroscopy and photometry of elliptical galaxies. V: Galaxy streaming toward the new supergalactic center.Astrophys. J.326, 19–49 (1988).
Dressler, A. The Great Attractor: Do galaxies trace the large-scale mass distribution?Nature350, 391–397 (1991).
Lahav, O., Lynden-Bell, D. & Rowan-Robinson, M. The peculiar acceleration of the Local Group as deduced from the optical and IRAS flux dipoles.Mon. Not. R. Astron. Soc.234, 677–701 (1988).
Kocevski, D. D. & Ebeling, H. On the origin of the Local Group peculiar velocity.Astrophys. J.645, 1043–1053 (2006).
Dekel, A., Bertschinger, E. & Faber, S. M. Potential, velocity, and density fields from sparse and noisy redshift–distance samples: Method.Astrophys. J.364, 349–369 (1990).
Zaroubi, S., Hoffman, Y. & Dekel, A. Wiener reconstruction of large-scale structure from peculiar velocities.Astrophys. J.520, 413–425 (1999).
Courtois, H. M., Hoffman, Y., Tully, R. B. & Gottloeber, S. Three-dimensional velocity and density reconstructions of the local Universe with Cosmicflows-1.Astrophys. J.744, 43 (2012).
Courtois, H. M., Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, D. Cosmography of the local Universe.Astron. J.146, 69 (2013).
Tully, R.B., Courtois, H., Hoffman, Y. & Pomarède, D .The Laniakea supercluster of galaxies.Nature513, 71–73 (2014).
Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, H. M. The Arrowhead mini-supercluster of galaxies.Astrophys. J.812, 17 (2015).
Tully, R. B. et al. Cosmicflows-2: The data.Astron. J.146, 86 (2013).
Hoffman, Y. et al. A kinematic classification of the cosmic web.Mon. Not. R. Astron. Soc.425, 2049–2057 (2012).
Jaffe, A. H. & Kaiser, N. Likelihood analysis of large-scale flows.Astrophys. J.455, 26 (1995).
Hoffman, Y., Eldar, A., Zaroubi, S. & Dekel, A. The large-scale tidal velocity field. Preprint athttps://arxiv.org/abs/astro-ph/0102190 (2001).
Feldman, H. A., Watkins, R. & Hudson, M. J. Cosmic flows on 100 h−1 Mpc scales: standardized minimum variance bulk flow, shear and octupole moments.Mon. Not. R. Astron. Soc.407, 2328–2338 (2010).
Scaramella, R., Baiesi-Pillastrini, G., Chincarini, G., Vettolani, G. & Zamorani, G. A marked concentration of galaxy clusters - Is this the origin of large-scale motions?Nature338, 562–564 (1989).
Raychaudhury, S. The distribution of galaxies in the direction of the ‘Great Attractor’.Nature342, 251–255 (1989).
Peebles, P. J. E.The Large-Scale Structure of the Universe (Princeton Univ. Press, 1980).
Hoffman, Y. & Ribak, E. Constrained realizations of Gaussian fields: A simple algorithm.Astrophys. J.380, L5–L8 (1991).
Hoffman, Y. inData Analysis in Cosmology Lecture Notes in Physics Vol. 665 (ed. Martínez, V. J., Saar, E., Martínez-González, E. & Pons-Bordería, M.-J. ) 565–583 (Springer, 2009).
Zaroubi, S., Hoffman, Y., Fisher, K. B. & Lahav, O. Wiener reconstruction of the large-scale structure.Astrophys. J.449, 446–459 (1995).
Acknowledgements
We thank J. Sorce and S. Gottloeber for discussions and A. Dupuy for her help in preparingFig. 3. We thank K. Bowles and S. Thompson for the narration in theSupplementary Video. Support has been provided by the Israel Science Foundation (1013/12), the Institut Universitaire de France, the US National Science Foundation, Space Telescope Science Institute for observations with Hubble Space Telescope, the Jet Propulsion Lab for observations with Spitzer Space Telescope and NASA for analysis of data from the Wide-field Infrared Survey Explorer.
Author information
Authors and Affiliations
Racah Institute of Physics, Hebrew University, Jerusalem, 91904, Israel
Yehuda Hoffman
Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
Daniel Pomarède
Institute for Astronomy (IFA), University of Hawaii, 2680 Woodlawn Drive, Honolulu, 96822, Hawaii, USA
R. Brent Tully
IPN Lyon, UCB Lyon 1/CNRS/IN2P3, University of Lyon, Villeurbanne, 69622, France
Hélène M. Courtois
- Yehuda Hoffman
Search author on:PubMed Google Scholar
- Daniel Pomarède
Search author on:PubMed Google Scholar
- R. Brent Tully
Search author on:PubMed Google Scholar
- Hélène M. Courtois
Search author on:PubMed Google Scholar
Contributions
R.B.T. and H.M.C. carried out the observations and data analysis; D.P. contributed graphics and visualization; Y.H. carried out the numerical and theoretical analysis. All co-authors contributed to the writing of the paper, led by Y.H.
Corresponding author
Correspondence toYehuda Hoffman.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures 1–3, Supplementary Table 1. (PDF 1220 kb)
Supplementary Video
The dipole repeller. (MP4 83651 kb)
Rights and permissions
About this article
Cite this article
Hoffman, Y., Pomarède, D., Tully, R.et al. The dipole repeller.Nat Astron1, 0036 (2017). https://doi.org/10.1038/s41550-016-0036
Received:
Accepted:
Published:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Cosmological distance scale. Part 17: Coincidence of coincidences
- S. F. Levin
Measurement Techniques (2024)
Cosmological Distance Scale. Part 14: “Hubble Bubble” and the Gravitational Dipole
- S. F. Levin
Measurement Techniques (2023)
Cosmological Distance Scale. Part 16: Hubble Dipole
- S. F. Levin
Measurement Techniques (2023)
The Bulk Flow Motion and the Hubble-Lemaître Law in the Local Universe with the ALFALFA Survey
- Felipe Avila
- Jezebel Oliveira
- Armando Bernui
Brazilian Journal of Physics (2023)
Testing fundamental physics with astrophysical transients
- Jun-Jie Wei
- Xue-Feng Wu
Frontiers of Physics (2021)


