Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Plants
  • Letter
  • Published:

Two Y-chromosome-encoded genes determine sex in kiwifruit

Nature Plantsvolume 5pages801–809 (2019)Cite this article

Subjects

Abstract

Dioecy, the presence of male and female individuals, has evolved independently in multiple flowering plant lineages1,2,3. Although theoretical models for the evolution of dioecy, such as the ‘two-mutations’ model, are well established4,5, little is known about the specific genes determining sex and their evolutionary history3. Kiwifruit, a major tree crop consumed worldwide, is a dioecious species. In kiwifruit we previously identified a Y-encoded sex-determinant candidate gene acting as the suppressor of feminization (SuF), namedShy Girl (SyGI)6. Here, we identify a second Y-encoded sex-determinant that we namedFriendly Boy (FrBy), which exhibits strong expression in tapetal cells. Gene-editing and complementation analyses inArabidopsis thaliana andNicotiana tabacum indicated thatFrBy acts for the maintenance of male (M) functions, independently ofSyGI, and that these functions are conserved across angiosperm species. We further characterized the genomic architecture of the small (<1 megabase pairs (Mb)) male-specific region of the Y chromosome (MSY), which harbours only two genes expressed extensively in developing gynoecia and androecia, respectively:SyGI andFrBy. Re-sequencing of the genome of a natural hermaphrodite kiwifruit revealed that this individual is genetically male but carries deletion(s) of parts of the Y chromosome, includingSyGI. Additionally, expression ofFrBy in female kiwifruit resulted in hermaphrodite plants. These results clearly indicate that Y-encodedSyGI andFrBy act independently as the SuF and M factors in kiwifruit, respectively, and provide insight into not only the evolutionary path leading to a two-factor sex-determination system, but also a new breeding approach for dioecious species.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of the fasciclin-likeFrBy as the candidate of the M factor.
Fig. 2: Functional validation ofFrBy in two model plants.
Fig. 3: Sequence architecture of the kiwifruit Y chromosome, including the two sex determinants.
Fig. 4: Loss ofSyGI, or gain ofFrBy, resulted in a natural and synthetic hermaphrodite kiwifruit, respectively.
Fig. 5: Evolutionary model for the establishment of dioecy inActinidia.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. All sequence data generated in the context of this manuscript have been deposited in the appropriate DNA Database of Japan: Illumina reads for gDNA-seq and mRNA-seq in the Short Read Archives (SRA) database (SRA Submission ID: DRA008474, Run IDs: DRR180225–180236), and the genomic contig sets constructed with 10X Genomics reads were submitted to Genbank (IDs LC482704–482713).

References

  1. Ming, R., Bendahmane, A. & Renner, S. S. Sex chromosomes in land plants.Ann. Rev. Plant Biol.62, 485–514 (2011).

    Article CAS  Google Scholar 

  2. Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database.Am. J. Bot.101, 1588–1596 (2014).

    Article  Google Scholar 

  3. Henry, I. M., Akagi, T., Tao, R. & Comai, L. One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants.Annu. Rev. Plant Biol.69, 553–575 (2018).

    Article CAS  Google Scholar 

  4. Westergaard, M. The mechanism of sex determination in dioecious flowering plants.Adv. Genet.9, 217–281 (1958).

    Article CAS  Google Scholar 

  5. Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy.Am. Nat.112, 975–997 (1978).

    Article  Google Scholar 

  6. Akagi, T. et al. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit.Plant Cell30, 780–795 (2018).

    Article CAS  Google Scholar 

  7. Charlesworth, D. Plant sex chromosome evolution.J. Exp. Bot.64, 405–420 (2013).

    Article CAS  Google Scholar 

  8. Charlesworth, D. Plant contributions to our understanding of sex chromosome evolution.New Phytol.208, 52–65 (2015).

    Article CAS  Google Scholar 

  9. Kazama, Y. et al. A new physical mapping approach refines the sex-determining gene positions on theSilene latifolia Y-chromosome.Sci. Rep.6, 18917 (2016).

    Article CAS  Google Scholar 

  10. Liu, Z. et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution.Nature427, 348–352 (2004).

    Article CAS  Google Scholar 

  11. Wang, J. et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.Proc. Natl Acad. Sci. USA109, 13710–13715 (2012).

    Article CAS  Google Scholar 

  12. Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons.Science346, 646–650 (2014).

    Article CAS  Google Scholar 

  13. Harkess, A. et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome.Nat. Commun.8, 1279 (2017).

    Article  Google Scholar 

  14. Akagi, T. et al. Epigenetic regulation of the sex determination geneMeGI in polyploid persimmon.Plant Cell28, 2905–2915 (2016).

    Article CAS  Google Scholar 

  15. Datson, P. M. & Ferguson, A. R.Wild Crop Relatives: Genomic and Breeding Resources. Tropical and Subtropical Fruits (ed. Kole, C.) 1–20 (Springer, 2011).

  16. Fraser, L. G. et al. A gene-rich linkage map in the dioecious speciesActinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes.BMC Genom.10, 102 (2009).

    Article  Google Scholar 

  17. Zhang, Q. et al. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers.DNA Res.22, 367–375 (2015).

    Article CAS  Google Scholar 

  18. Messina, R. Microsporogenesis in male-fertile cv. Matua and male-sterile cv. Hayward ofActinidia deliciosa var.deliciosa (Kiwifruit).Adv. Hort. Sci.7, 77–81 (1993).

    Google Scholar 

  19. Falasca, G. et al. Tapetum and middle layer control male fertility inActinidia deliciosa.Ann. Bot.112, 1045–1055 (2013).

    Article CAS  Google Scholar 

  20. Tan, H., Liang, W., Hu, J. & Zhang, D. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice.Dev. Cell22, 1127–1137 (2012).

    Article CAS  Google Scholar 

  21. Pilkington, S. M. et al. A manually annotatedActinidia chinensis var.chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants.BMC Genom.19, 257 (2018).

    Article  Google Scholar 

  22. Zhang, D. & Yang, L. Specification of tapetum and microsporocyte cells within the anther.Curr. Opin. Plant Biol.17, 49–55 (2014).

    Article CAS  Google Scholar 

  23. Ye, J. et al. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers.Plant J.84, 527–544 (2015).

    Article CAS  Google Scholar 

  24. Ye, J. et al. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.J. Exp. Bot.67, 4993–5008 (2016).

    Article CAS  Google Scholar 

  25. Tsugama, D. et al. A putative MYB35 ortholog is a candidate for the sex-determining genes inAsparagus officinalis.Sci. Rep.7, 41497 (2017).

    Article CAS  Google Scholar 

  26. Murase, K. et al. MYB transcription factor gene involved in sex determination inAsparagus officinalis.Genes Cells22, 115–123 (2017).

    Article CAS  Google Scholar 

  27. Huang, S. et al. Draft genome of the kiwifruitActinidia chinensis.Nat. Comm.4, 2640 (2013).

    Article  Google Scholar 

  28. Weisenfeld, N. I. et al. Direct determination of diploid genome sequences.Genome Res.27, 757–767 (2017).

    Article CAS  Google Scholar 

  29. Ben-Dor, A., Chor, B. & Pelleg, D. RHO - radiation hybrid ordering.Genome Res.10, 365–378 (2000).

    Article CAS  Google Scholar 

  30. Schäffer, A. A., Rice, E. S., Cook, W. & Agarwala, R. rh_tsp_map 3.0: end-to-end radiation hybrid mapping with improved speed and quality control.Bioinformatics23, 1156–1158 (2007).

    Article  Google Scholar 

  31. Bachtrog, D. et al. Sex determination: why so many ways of doing it?PLoS Biol.12, e1001899 (2014).

    Article  Google Scholar 

  32. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes.Nucleic Acids Res.32, 309–312 (2004).

    Article  Google Scholar 

  33. McNeilage, M. A. & Steinhagen, S. Flower and fruit characters in a kiwifruit hermaphrodite.Euphytica101, 69–72 (1998).

    Article  Google Scholar 

  34. Varkonyi-Gasic, E. et al. Mutagenesis of kiwifruitCENTRORADIALIS‐like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering.Plant Biotech. J.17, 869–880 (2019).

    Article CAS  Google Scholar 

  35. Mayer, S. S. & Charlesworth, D. Cryptic dioecy in flowering plants.Trends Ecol. Evol.6, 320–325 (1991).

    Article CAS  Google Scholar 

  36. Torres, M. et al. Genus-wide sequencing supports a two-locus model for sex-determination inPhoenix.Nat. Comm.9, 3969 (2018).

    Article  Google Scholar 

  37. Yang, H.-W., Akagi, T., Kawakatsu, T. & Tao, R. Gene networks orchestrated byMeGI: a single‐factor mechanism underlying sex determination in persimmon.Plant J.98, 97–111 (2019).

    Article CAS  Google Scholar 

  38. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760 (2009).

    Article CAS  Google Scholar 

  39. Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009).

    Article  Google Scholar 

  40. Anders, S. & Huber, W. Differential expression analysis for sequence count data.Genome Biol.11, R106 (2010).

    Article CAS  Google Scholar 

  41. Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants.Arch. Histol. Cytol.66, 123–143 (2003).

    Article  Google Scholar 

  42. Tamura, K. et al. MEGA5: molecular evolution genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Mol. Biol. Evol.28, 2731–2739 (2011).

    Article CAS  Google Scholar 

  43. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments.Nucleic Acids Res.34, W609–W612 (2006).

    Article CAS  Google Scholar 

  44. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Bioinformatics25, 1451–1452 (2009).

    Article CAS  Google Scholar 

  45. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood.Comput. Appl. Biosci.13, 555–556 (1997).

    CAS  Google Scholar 

  46. Robinson, J. T. et al. Integrative genomics viewer.Nat. Biotech.29, 24–26 (2011).

    Article CAS  Google Scholar 

  47. Tsutsui, H. & Higashiyama, T. pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout inArabidopsis thaliana.Plant Cell Physiol.58, 46–56 (2017).

    Article CAS  Google Scholar 

  48. Voogd, C., Wang, T. & Varkonyi-Gasic, E. Functional and expression analyses of kiwifruitSOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy.J. Exp. Bot.66, 4699–4710 (2015).

    Article CAS  Google Scholar 

  49. Wang, T. et al. Transformation ofActinidia eriantha: a potential species for functional genomics studies inActinidia.Plant Cell Rep.25, 425 (2006).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Comai (UC Davis Department Plant Biology and Genome Center) for technical advice and bioinformatics support; Y. Kazama and K. Ishii (Riken Institute) for technical support in using the DelMapper programme; and N. Nieuwenhuizen and J. (L.) Zhang (Plant and Food Research) for vector construction. The KE population was originally provided by Kagawa Prefectural Agricultural Experiment Station. Some of this work was performed at the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH Instrumentation (grant No. S10 OD018174). This work was supported by PRESTO (grant Nos. JPMJPR15Q1 (to T.A.) and JPMJPR15Q6 (to S.S.S.)) from the Japan Science and Technology Agency (JST), by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 19H04862 to T.A.) from JSPS and by the National Science Foundation (NSF) IOS award (grant No. 1457230 to I.M.H.).

Author information

Author notes
  1. Takashi Akagi

    Present address: Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan

Authors and Affiliations

  1. Graduate School of Agriculture, Kyoto University, Kyoto, Japan

    Takashi Akagi, Minori Sonoda & Ryutaro Tao

  2. JST, PRESTO, Kawaguchi-shi, Saitama, Japan

    Takashi Akagi & Shigeo S. Sugano

  3. The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand

    Sarah M. Pilkington, Erika Varkonyi-Gasic, Mark A. McNeilage, Mikaela J. Douglas, Tianchi Wang, Ria Rebstock, Charlotte Voogd, Paul Datson & Andrew C. Allan

  4. Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA

    Isabelle M. Henry & Alana Firl

  5. R-GIRO, Ritsumeikan University, Shiga, Japan

    Shigeo S. Sugano

  6. School of Biological Sciences, University of Auckland, Auckland, New Zealand

    Andrew C. Allan

  7. Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan

    Kenji Beppu & Ikuo Kataoka

Authors
  1. Takashi Akagi
  2. Sarah M. Pilkington
  3. Erika Varkonyi-Gasic
  4. Isabelle M. Henry
  5. Shigeo S. Sugano
  6. Minori Sonoda
  7. Alana Firl
  8. Mark A. McNeilage
  9. Mikaela J. Douglas
  10. Tianchi Wang
  11. Ria Rebstock
  12. Charlotte Voogd
  13. Paul Datson
  14. Andrew C. Allan
  15. Kenji Beppu
  16. Ikuo Kataoka
  17. Ryutaro Tao

Contributions

T.A., I.K. and R.T. conceived the study. T.A. designed the experiments. T.A., S.M.P., E.V.-G., S.S.S., M.S., A.F., M.J.D., T.W., R.R. and C.V. conducted the experiments. T.A., S.M.P., E.V.-G., S.S.S., M.S., I.M.H. and A.F. analysed the data. S.M.P., M.A.M., P.D., A.C.A., K.B. and I.K. initiated/bred and maintained the plant materials. T.A., S.M.P., E.V. and I.M.H. drafted the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence toTakashi Akagi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information:Nature Plants thanks Roberta Bergero, Susanne Renner and Qi Zhou for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–14 and Supplementary Tables 1–12.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akagi, T., Pilkington, S.M., Varkonyi-Gasic, E.et al. Two Y-chromosome-encoded genes determine sex in kiwifruit.Nat. Plants5, 801–809 (2019). https://doi.org/10.1038/s41477-019-0489-6

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp