- Article
- Published:
Origin of angiosperms and the puzzle of the Jurassic gap
- Hong-Tao Li1 na1,
- Ting-Shuang Yi1 na1,
- Lian-Ming Gao2 na1,
- Peng-Fei Ma ORCID:orcid.org/0000-0003-3061-14541 na1,
- Ting Zhang1 na1,
- Jun-Bo Yang1 na1,
- Matthew A. Gitzendanner3,4 na1,
- Peter W. Fritsch5,
- Jie Cai1,
- Yang Luo2,
- Hong Wang2,
- Michelle van der Bank6,
- Shu-Dong Zhang1,
- Qing-Feng Wang ORCID:orcid.org/0000-0001-9143-88497,
- Jian Wang8,
- Zhi-Rong Zhang1,
- Chao-Nan Fu2,9,
- Jing Yang1,
- Peter M. Hollingsworth ORCID:orcid.org/0000-0003-0602-065410,
- Mark W. Chase11,12,
- Douglas E. Soltis ORCID:orcid.org/0000-0001-8638-41373,4,13,14,
- Pamela S. Soltis ORCID:orcid.org/0000-0001-9310-86593,13,14 &
- …
- De-Zhu Li ORCID:orcid.org/0000-0002-4990-724X1,2,9
Nature Plantsvolume 5, pages461–470 (2019)Cite this article
17kAccesses
118Altmetric
Abstract
Angiosperms are by far the most species-rich clade of land plants, but their origin and early evolutionary history remain poorly understood. We reconstructed angiosperm phylogeny based on 80 genes from 2,881 plastid genomes representing 85% of extant families and all orders. With a well-resolved plastid tree and 62 fossil calibrations, we dated the origin of the crown angiosperms to the Upper Triassic, with major angiosperm radiations occurring in the Jurassic and Lower Cretaceous. This estimated crown age is substantially earlier than that of unequivocal angiosperm fossils, and the difference is here termed the ‘Jurassic angiosperm gap’. Our time-calibrated plastid phylogenomic tree provides a highly relevant framework for future comparative studies of flowering plant evolution.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
Sequence alignments underlying analyses and all trees are available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.bq091cg.
References
Friis, E. M., Crane, P. R. & Pedersen, K. R.Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).
Benton, M. J. The origins of modern biodiversity on land.Phil. Trans. R. Soc. Lond. B365, 3667–3679 (2010).
Darwin, C. inMore Letters of Charles Darwin Vol. 12 (eds Darwin, F. & Seward, A. C.) Vol. 2, 12–13 (John Murray, 1903).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution.Science346, 763–767 (2014).
Peters, R. S. et al. Evolutionary history of the Hymenoptera.Curr. Biol.27, 1013–1018 (2017).
Roelants, K. et al. Global patterns of diversification in the history of modern amphibians.Proc. Natl Acad. Sci. USA104, 887–892 (2007).
Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals.Nature446, 507–512 (2007).
Schneider, H. et al. Ferns diversified in the shadow of angiosperms.Nature428, 553–557 (2004).
Davis, C. C., Xi, Z. & Mathews, S. Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there.BMC Biol.12, 11 (2014).
Angiosperm Phylogeny Group IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV.Bot. J. Linn. Soc.181, 1–20 (2016).
Qiu, Y.-L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes.Nature402, 404–407 (1999).
Soltis, D. E. et al. Angiosperms phylogeny: 17 genes, 640 taxa.Am. J. Bot.98, 704–730 (2011).
Moore, M. J., Bell, C. D., Soltis, P. S. & Soltis, D. E. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms.Proc. Natl Acad. Sci. USA104, 19363–19368 (2007).
Cantino, P. D. et al. Towards a phylogenetic nomenclature ofTracheophyta.Taxon56, 822–846 (2007).
Zeng, L. et al. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times.Nat. Comm.5, 4956 (2014).
Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification land plants.Proc. Natl Acad. Sci. USA111, E4859–E4868 (2014).
Gitzendanner, M. A., Soltis, P. S., Wong, G. K.-S., Ruhfel, B. R. & Solits, D. E. Plastid phylogenomic analysis of green plants: a billion years of evolutionary history.Am. J. Bot.105, 291–301 (2018).
Drew, B. T. et al. Another look at the root of the angiosperms reveals a familiar tale.Syst. Biol.63, 368–382 (2014).
Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms?New Phytol.https://doi.org/10.1111/nph.15708 (2019).
Barba-Montoya, J., Dos Reis, M., Schneider, H., Donoghue, P. C. J. & Yang, Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of Cretaceous terrestrial revolution.New Phytol.218, 819–834 (2018).
Foster, C. S. P. et al. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale.Syst. Biol.66, 338–351 (2017).
Magallón, S., Hilu, K. W. & Quandt, D. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates.Am. J. Bot.100, 556–573 (2013).
Murat, F., Armero, A., Pont, C., Klopp, C. & Salse, J. Reconstructing the genome of the most recent common ancestor of flowering plants.Nat. Genet.49, 490–496 (2017).
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.New Phytol.207, 437–453 (2015).
Bell, C. D., Soltis, D. E. & Soltis, P. S. The age and diversification of the angiosperms re-revisited.Am. J. Bot.97, 1296–1303 (2010).
Beaulieu, J. M., O’Meara, B. C., Crane, P. & Donoghue, M. J. Heterogeneous rates of molecular evolution and diversification could explain the Triassic age estimate for angiosperms.Syst. Biol.64, 869–878 (2015).
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing enviroments.Nature506, 89–92 (2014).
Doyle, J. A. Molecular and fossil evidence on the origin of angiosperms.Annu. Rev. Earth Planet. Sci.40, 301–326 (2012).
Hochuli, P. A. & Feist-Burkhardt, S. Angiosperm-like pollen andAfropollis from the Middle Triassic (Anisian) of the Germanic Basin (northern Switzerland).Front. Plant Sci.4, 344 (2013).
Herendeen, P. S., Peter, B. G. & Snapp, S. S. Palaeobotanical redux: revisiting the age of the angiosperms.Nat. Plants3, 17015 (2017).
Friis, E. M., Crane, P. R., Pedersen, K. R., Stampanoni, M. & Marone, F. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms.Nature528, 551–554 (2015).
Labandeira, C. C. inEvolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life (ed. Pontarotti, P.) 261–299 (Springer, 2014).
Davies, T. J. et al. Darwin’s abominable mystery: insights from a supertree of the angiosperms.Proc. Natl Acad. Sci. USA101, 1904–1909 (2004).
Dilcher, D. Toward a new synthesis: major evolutionary trends in the angiosperm fossil record.Proc. Natl Acad. Sci. USA97, 7030–7036 (2000).
Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification.Science334, 521–524 (2011).
Cardinal, S. & Danforth, B. N. Bees diversified in the age of eudicots.P. R. Soc. B280, 20122686 (2013).
Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B. & Pierce, N. E. Phylogeny of the ants: diversification in the age of angiosperms.Science312, 101–104 (2006).
Augusto, L., Davies, T. J., Delzon, S. & De Schrijver, A. The enigma of the rise of angiosperms: can we untie the knot?Ecol. Lett.17, 1326–1338 (2014).
Wang, H. C. et al. Rosid radiation and the rapid rise of angiosperm-dominated forests.Proc. Natl Acad. Sci. USA106, 3853–3858 (2009).
Chaboureau, A. C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms.Proc. Natl Acad. Sci. USA111, 14066–14070 (2014).
Deenen, M. H. L. et al. A new chronology for the end-Triassic mass extinction.Earth Planet. Sci. Lett.291, 113–125 (2010).
Huynh, T. T. & Poulsen, C. J. Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction.Palaeogeogr. Palaeoclimatol. Palaeoecol.217, 223–242 (2005).
McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic–Jurassic boundary.Science285, 1386–1390 (1999).
Ren, D. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins.Science280, 85–88 (1998).
Nel, A. et al. The earliest known holometabolous insects.Nature503, 257–261 (2013).
Blomenkemper, P., Kerp, H., Hamad, A. A., DiMichele, W. A. & Bomfleur, B. A hidden cradle of plant evolution in Permian tropical lowlands.Science362, 1414–1416 (2018).
Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem. Bull.19, 11–15 (1987).
Yang, J.-B., Li, D.-Z. & Li, H.-T. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.Mol. Ecol. Resour.14, 1024–1031 (2014).
Zhang, T., Zeng, C.-X., Yang, J.-B., Li, H.-T. & Li, D.-Z. Fifteen novel universal primer pairs for sequencing whole chloroplast genomes and a primer pair for nuclear ribosomal DNAs.J. Syst. Evol.54, 219–229 (2016).
Zhang, Y.-J., Ma, P.-F. & Li, D.-Z. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae).PLoS ONE6, e20596 (2011).
Huang, C.-H. et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution.Mol. Biol. Evol.33, 394–412 (2016).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.J. Comput. Biol.19, 455–477 (2012).
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.GigaScience1, 18 (2012).
Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment.Nucleic Acids Res.33, 511–518 (2005).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Res.32, 1792–1797 (2004).
Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Bioinformatics28, 1647–1649 (2012).
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Mol. Biol. Evol.17, 540–552 (2000).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics30, 1312–1313 (2014).
Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Mol. Biol. Evol.29, 1695–1701 (2012).
Smith, S. A. & O’Meara, B. C. TreePL: divergence time estimation using penalized likelihood for large phylogenies.Bioinformatics28, 2689–2690 (2012).
Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis.PLoS Comput. Biol.10, e1003537 (2014).
Bell, C. D., Soltis, D. E. & Soltis, P. S. The age of the angiosperms: a molecular timescale without a clock.Evolution59, 1245–1258 (2005).
Magallón, S. & Castillo, A. Angiosperm diversification through time.Am. J. Bot.96, 349–365 (2009).
Smith, S. A., Beaulieu, J. M. & Donoghue, M. J. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants.Proc. Natl Acad. Sci. USA107, 5897–5902 (2010).
Clarke, J. T., Warnock, R. C. M. & Donoghue, C. J. Establishing a time-scale for plant evolution.New Phytol.192, 266–301 (2011).
Acknowledgements
We thank the Germplasm Bank of Wild Species at the Kunming Institute of Botany (KIB) for facilitating this study; the curators and staff of the Beijing Botanical Garden (BG), Blue Mountains BG, Brisbane BG, Kunming BG, Missouri BG, Wuhan BG, Royal BG Edinburgh, RBG Kew, RBG Sydney, RBG Victoria (both Melbourne and Cranbourne), San Francisco BG, Shanghai Chenshan BG, South China BG, UC Berkeley BG, Xianhu BG Shenzhen, Xishuangbanna Tropical BG, Yinchuan BG and O. Maurin (Johannesburg, now Kew), J. R. Shevock (California), Y.-M. Shui (Kunming), and N. Zamora (Costa Rica) for samples; and S. R. Manchester (Florida) for critical discussion on fossil selection and calibration. This work was funded by the Strategic Priority Research Programme of the Chinese Academy of Sciences (CAS) (grant No. XDB31000000 to D.-Z.L.), CAS’ Large-scale Scientific Facilities (grant No. 2017-LSF-GBOWS-02 to D.-Z.L. and J.-B.Y.), KIB’s iFlora initiative (grant No. 2014-4-11 to D.-Z.L.) and the National Natural Science Foundation of China (grant No. 31570333 to H.-T.L.). P.-F.M. was supported by CAS’ Youth Innovation Promotion Association (grant No. 2015321) and P.S.S. was supported by the Ten Thousand Talents Programme of China and the Yunling International High-end Experts Programme of Yunnan Province.
Author information
These authors contributed equally: Hong-Tao Li, Ting-Shuang Yi, Lian-Ming Gao, Peng-Fei Ma, Ting Zhang, Jun-Bo Yang, Matthew A. Gitzendanner.
Authors and Affiliations
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
Hong-Tao Li, Ting-Shuang Yi, Peng-Fei Ma, Ting Zhang, Jun-Bo Yang, Jie Cai, Shu-Dong Zhang, Zhi-Rong Zhang, Jing Yang & De-Zhu Li
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
Lian-Ming Gao, Yang Luo, Hong Wang, Chao-Nan Fu & De-Zhu Li
Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
Matthew A. Gitzendanner, Douglas E. Soltis & Pamela S. Soltis
Department of Biology, University of Florida, Gainesville, FL, USA
Matthew A. Gitzendanner & Douglas E. Soltis
Botanical Research Institute of Texas, Fort Worth, TX, USA
Peter W. Fritsch
Department of Botany & Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
Michelle van der Bank
Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
Qing-Feng Wang
Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens, Toowong, Queensland, Australia
Jian Wang
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
Chao-Nan Fu & De-Zhu Li
Royal Botanic Garden Edinburgh, Edinburgh, UK
Peter M. Hollingsworth
Royal Botanic Gardens, Kew, UK
Mark W. Chase
Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
Mark W. Chase
Genetics Institute, University of Florida, Gainesville, FL, USA
Douglas E. Soltis & Pamela S. Soltis
Biodiversity Institute, University of Florida, Gainesville, FL, USA
Douglas E. Soltis & Pamela S. Soltis
- Hong-Tao Li
You can also search for this author inPubMed Google Scholar
- Ting-Shuang Yi
You can also search for this author inPubMed Google Scholar
- Lian-Ming Gao
You can also search for this author inPubMed Google Scholar
- Peng-Fei Ma
You can also search for this author inPubMed Google Scholar
- Ting Zhang
You can also search for this author inPubMed Google Scholar
- Jun-Bo Yang
You can also search for this author inPubMed Google Scholar
- Matthew A. Gitzendanner
You can also search for this author inPubMed Google Scholar
- Peter W. Fritsch
You can also search for this author inPubMed Google Scholar
- Jie Cai
You can also search for this author inPubMed Google Scholar
- Yang Luo
You can also search for this author inPubMed Google Scholar
- Hong Wang
You can also search for this author inPubMed Google Scholar
- Michelle van der Bank
You can also search for this author inPubMed Google Scholar
- Shu-Dong Zhang
You can also search for this author inPubMed Google Scholar
- Qing-Feng Wang
You can also search for this author inPubMed Google Scholar
- Jian Wang
You can also search for this author inPubMed Google Scholar
- Zhi-Rong Zhang
You can also search for this author inPubMed Google Scholar
- Chao-Nan Fu
You can also search for this author inPubMed Google Scholar
- Jing Yang
You can also search for this author inPubMed Google Scholar
- Peter M. Hollingsworth
You can also search for this author inPubMed Google Scholar
- Mark W. Chase
You can also search for this author inPubMed Google Scholar
- Douglas E. Soltis
You can also search for this author inPubMed Google Scholar
- Pamela S. Soltis
You can also search for this author inPubMed Google Scholar
- De-Zhu Li
You can also search for this author inPubMed Google Scholar
Contributions
D.-Z.L, J.-B.Y., H.-T.L., T.-S.Y., D.E.S. and P.S.S. conceived the project and designed the research. T.-S.Y., T.Z., J.C., L.-M.G. and S.-D.Z. designed and carried out field collection work. Q.-F.W., J.W., P.W.F., M.v.d.B., P.M.H. and M.W.C. provided and/or collected samples. J.-B.Y., H.-T.L., Z.-R.Z., C.-N.F. and J.Y. performed DNA laboratory work. M.A.G., D.E.S. and P.S.S. prepared the OneKP dataset. H.-T.L., L.-M.G., T.-S.Y., P.-F.M., D.E.S. and P.S.S. designed and coordinated computational analyses. H.-T.L., T.Z., J.C., Y.L. and H.W. prepared the Figures and Tables. T.-S.Y., Y.L., L.-M.G., P.-F.M., D.-Z.L. and H.W. wrote the supplementary information. D.-Z.L., T.-S.Y., L.-M.G., P.-F.M. and P.W.F. wrote the first manuscript draft with input from all co-authors, particularly P.S.S., M.W.C., D.E.S. and P.M.H.
Corresponding authors
Correspondence toPamela S. Soltis orDe-Zhu Li.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Journal peer review information:Nature Plants thanks Jennifer Mandel and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Supplementary Information
Supplementary Text and Supplementary Figures 1–6.
Supplementary Table 1
Species sampled, including 1,659 newly sequenced samples for this study.
Supplementary Table 2
The details of removal of most rapidly evolving sites using Gblocks.
Supplementary Table 3
Ordinal and interordinal node age estimates using treePL based on the phylogenetics trees of 80 plastid genes of 2,881 samples with ML analysis.
Supplementary Table 4
Familial and interfamilial node age estimates using treePL based on the phylogenetics trees of 80 plastid genes of 2,881 samples with ML analysis.
Supplementary Table 5
Families age estimates using treePL based on the phylogenetics trees of 80 plastid genes of 2,881 samples with ML analysis.
Supplementary Data
The configuration file for running the software TreePL.
Rights and permissions
About this article
Cite this article
Li, HT., Yi, TS., Gao, LM.et al. Origin of angiosperms and the puzzle of the Jurassic gap.Nat. Plants5, 461–470 (2019). https://doi.org/10.1038/s41477-019-0421-0
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Phylogenomics of angiosperms based on mitochondrial genes: insights into deep node relationships
- Dongliang Lin
- Bingyi Shao
- Xiaohua Jin
BMC Biology (2025)
Plastome phylogenomics unravels the evolutionary relationships and biogeographic history of Chloranthaceae
- Peng-Wei Li
- Yong-Bin Lu
- Qiang Zhang
BMC Plant Biology (2025)
The complete chloroplast genome sequences of monotypic genus Pseudogalium, and comparative analyses with its relative genera
- Wei Yu
- Xiao-Juan Li
- De-Li Peng
BMC Genomics (2025)
Convergent evidence for the temperature-dependent emergence of silicification in terrestrial plants
- Zhihao Pang
- Félix de Tombeur
- Yongchao Liang
Nature Communications (2025)
A pangenome reference of wild and cultivated rice
- Dongling Guo
- Yan Li
- Bin Han
Nature (2025)