Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Structural & Molecular Biology
  • Article
  • Published:

Regulation of histone acetylation and nucleosome assembly by transcription factor JDP2

Nature Structural & Molecular Biologyvolume 13pages331–338 (2006)Cite this article

Abstract

Jun dimerization protein-2 (JDP2) is a component of the AP-1 transcription factor that represses transactivation mediated by the Jun family of proteins. Here, we examine the functional mechanisms of JDP2 and show that it can inhibit p300-mediated acetylation of core histonesin vitro andin vivo. Inhibition of histone acetylation requires the N-terminal 35 residues and the DNA-binding region of JDP2. In addition, we demonstrate that JDP2 has histone-chaperone activityin vitro. These results suggest that the sequence-specific DNA-binding protein JDP2 may control transcription via direct regulation of the modification of histones and the assembly of chromatin.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition by JDP2 of histone acetylation.
Figure 2: Interaction of JDP2 with histones.
Figure 3: Mapping of the histone-binding and HAT-inhibition domains of JDP2.
Figure 4: The histone-chaperone activity of JDP2.
Figure 5: Role of histone-binding and HAT-inhibition activities of JDP2 in transcription and differentiation of F9 cells.

Similar content being viewed by others

References

  1. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications.Nature403, 41–45 (2000).

    Article CAS  Google Scholar 

  2. Turner, B.M. Cellular memory and the histone code.Cell111, 285–291 (2002).

    Article CAS  Google Scholar 

  3. Chakravarti, D. et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity.Cell96, 393–403 (1999).

    Article CAS  Google Scholar 

  4. Hamamori, Y. et al. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein Twist and adenoviral oncoprotein E1A.Cell96, 405–413 (1999).

    Article CAS  Google Scholar 

  5. Weissman, J.D. et al. HIV-1 tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes.Proc. Natl. Acad. Sci. USA95, 11601–11606 (1998).

    Article CAS  Google Scholar 

  6. Creaven, M. et al. Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat.Biochemistry38, 8826–8830 (1999).

    Article CAS  Google Scholar 

  7. Barlev, N.A. et al. Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex.Mol. Cell. Biol.18, 1349–1358 (1998).

    Article CAS  Google Scholar 

  8. Kitabayashi, I. et al. Phosphorylation of the adenovirus-associated p300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells.EMBO J.14, 3496–3509 (1995).

    Article CAS  Google Scholar 

  9. Ait-Si-Ali, S. et al. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A.Nature396, 184–186 (1998).

    Article CAS  Google Scholar 

  10. Kawasaki, H. et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation.Nature405, 195–200 (2000).

    Article CAS  Google Scholar 

  11. Seo, S.B. et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the Set oncoprotein.Cell104, 119–130 (2001).

    Article CAS  Google Scholar 

  12. Kawase, H. et al. NAP-1 is a functional homologue of TAF-1 that is required for replication and transcription of the adenovirus genome in a chromatin-like structure.Genes Cells1, 1045–1056 (1996).

    Article CAS  Google Scholar 

  13. Okuwaki, M. & Nagata, K. Template-activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template.J. Biol. Chem.273, 34511–34518 (1998).

    Article CAS  Google Scholar 

  14. Aronheim, A., Zandi, E., Hennemann, H., Elledge, S.J. & Karin, M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions.Mol. Cell Biol.17, 3094–3102 (1997).

    Article CAS  Google Scholar 

  15. Broder, Y., Katz, S. & Aronheim, A. The Ras recruitment system, a novel approach to the study of protein-protein interactions.Curr. Biol.8, 1121–1124 (1998).

    Article CAS  Google Scholar 

  16. Jin, C. et al. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2.FEBS Lett.489, 34–41 (2001).

    Article CAS  Google Scholar 

  17. Piu, F., Aronheim, A., Katz, S. & Karin, M. AP-1 repressor protein JDP-2: Inhibition of UV-mediated apoptosis through p53 down-regulation.Mol. Cell Biol.21, 3012–3024 (2001).

    Article CAS  Google Scholar 

  18. Jin, C. et al. JDP2, a repressor of AP-1, recruits a histone deacetylase 3 complex to inhibit the retinoic acid-induced differentiation of F9 cells.Mol. Cell Biol.22, 4815–4826 (2002).

    Article CAS  Google Scholar 

  19. Ostrovsky, O., Bengal, E. & Aronheim, A. Induction of terminal differentiation by the c-Jun dimerization protein, JDP2, in C2 myoblasts and rhabdomyosarcoma cells.J. Biol. Chem.277, 40043–40054 (2002).

    Article CAS  Google Scholar 

  20. Hwang,, H.C. et al. Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis.Proc. Natl. Acad. Sci. USA99, 11293–11298 (2002).

    Article CAS  Google Scholar 

  21. Heinrich, R., Livne, E., Ben-Izhak, O. & Aronheim, A. The c-Jun dimerization protein 2 inhibits cell transformation and acts as a tumor suppressor gene.J. Biol. Chem.279, 5708–5715 (2004).

    Article CAS  Google Scholar 

  22. Wardell, S.E., Boonyaratanakornkit, V., Adelman, J.S., Aronheim, A. & Edwards, D.P. Jun dimerization protein 2 functions as a progesterone receptor N-terminal domain coactivator.Mol. Cell Biol.22, 5451–5466 (2002).

    Article CAS  Google Scholar 

  23. Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, R.H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases.Cell87, 953–959 (1996).

    Article CAS  Google Scholar 

  24. Munakata, T., Adachi, N., Yokoyama, N., Kuzuhara, T. & Horikoshi, M. A human homologue of yeast anti-silencing factor has histone-chaperone activity.Genes Cells5, 221–233 (2000).

    Article CAS  Google Scholar 

  25. Umehara, T., Chimura, T., Ichikawa, N. & Horikoshi, M. Polyanionic stretch-deleted histone chaperone cia1/Asf1p is functional bothin vivo andin vitro.Genes Cells7, 59–73 (2002).

    Article CAS  Google Scholar 

  26. Wells, J.A. Systematic mutation analyses of protein-protein interfaces.Methods Enzymol.202, 390–411 (1991).

    Article CAS  Google Scholar 

  27. Kitabayashi, I. et al. Transcriptional regulation of thec-jun gene by retinoic acid and E1A during differentiation of F9 cells.EMBO J.11, 167–175 (1992).

    Article CAS  Google Scholar 

  28. Makowski, A.M., Dutnall, R.N. & Annunziato, A.T. Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase.J. Biol. Chem.276, 43499–43502 (2001).

    Article CAS  Google Scholar 

  29. Carrozza, M.J., Utley, R.T., Workman, J.L. & Cote, J. The diverse functions of histone acetyltransferase complexes.Trends Genet.19, 321–329 (2003).

    Article CAS  Google Scholar 

  30. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltranferase MOF.Cell121, 873–885 (2005).

    Article CAS  Google Scholar 

  31. Taipale, M. et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells.Mol. Cell Biol.25, 6798–6810 (2005).

    Article CAS  Google Scholar 

  32. Fraga, M.F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.Nat. Genet.37, 391–400 (2005).

    Article CAS  Google Scholar 

  33. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin.Cell96, 575–585 (1999).

    Article CAS  Google Scholar 

  34. Moggs, J.G. et al. CAF-1-PCNA-mediated chromatin-assembly pathways triggered by sensing DNA damage.Mol. Cell Biol.20, 1206–1218 (2000).

    Article CAS  Google Scholar 

  35. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome-assembly pathways dependent or independent of DNA synthesis.Cell116, 51–61 (2004).

    Article CAS  Google Scholar 

  36. Brownell, J.E. & Allis, C.D. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit inTetrahymena macronuclei.Proc. Natl. Acad. Sci. USA92, 6364–6368 (1995).

    Article CAS  Google Scholar 

  37. Lomvardas, S. & Thanos, D. Modification of gene expression programs by altering core promoter chromatin architecture.Cell110, 261–271 (2002).

    Article CAS  Google Scholar 

  38. Pfeifer, G.P. & Riggs, A.D. Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR.Genes Dev.5, 1102–1113 (1991).

    Article CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Calhoun, K. Itakura, G. Gachelin, H. Ugai, Y. Shinozuka, M. Kimura, J. Svejstrup, K. Ura, J.L. Workman, K. Ikeda and G. Felsenfeld for reagents and/or many helpful discussions, suggestions and critical reading of the manuscript. This work was supported by grants from the RIKEN Bioresource Project and by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to K.K.Y.).

Author information

Author notes
  1. Chunyuan Jin

    Present address: Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA

Authors and Affiliations

  1. Gene Engineering Division, Dept. of Biological Systems, BioResource Center, RIKEN (The Institute of Physical & Chemical Research), Tsukuba Science City, Ibaraki, 305-0074, Japan

    Chunyuan Jin, Takahito Yamasaki, Koji Nakade, Takehide Murata, Hongjie Li, Jianzhi Pan & Kazunari K Yokoyama

  2. Dept. of Medical Genetics, China Medical University, Shenyang, 110001, China

    Chunyuan Jin, Hongjie Li & Kailai Sun

  3. Dept. of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan

    Kohsuke Kato & Kyosuke Nagata

  4. Institute of Molecular & Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan

    Takahiko Chimura & Masami Horikoshi

  5. Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, 20031, China

    Mujun Zhao

  6. Dental Research Institute, University of California at Los Angeles School of Medicine, Los Angeles, 90095-1668, California, USA

    Robert Chiu

  7. Dept. of Biochemistry, Nagasaki University School of Medicine, 1-24-4 Sakamoto, Nagasaki, 852-8523, Japan

    Takashi Ito

Authors
  1. Chunyuan Jin
  2. Kohsuke Kato
  3. Takahiko Chimura
  4. Takahito Yamasaki
  5. Koji Nakade
  6. Takehide Murata
  7. Hongjie Li
  8. Jianzhi Pan
  9. Mujun Zhao
  10. Kailai Sun
  11. Robert Chiu
  12. Takashi Ito
  13. Kyosuke Nagata
  14. Masami Horikoshi
  15. Kazunari K Yokoyama

Corresponding author

Correspondence toKazunari K Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Characterization of the HAT assay (PDF 337 kb)

Supplementary Fig. 2

His-JDP2 has INHAT activity (PDF 244 kb)

Supplementary Fig. 3

Interactions between reconstituted mononucleosomes and JDP2 (PDF 225 kb)

Supplementary Fig. 4

The purity and stability of wild-type JDP2 and its derivatives (PDF 98 kb)

Rights and permissions

About this article

Cite this article

Jin, C., Kato, K., Chimura, T.et al. Regulation of histone acetylation and nucleosome assembly by transcription factor JDP2.Nat Struct Mol Biol13, 331–338 (2006). https://doi.org/10.1038/nsmb1063

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp