Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Microbiology
  • Review Article
  • Published:

Coupling cell movement to multicellular development in myxobacteria

Nature Reviews Microbiologyvolume 1pages45–54 (2003)Cite this article

Key Points

  • Myxobacteria are Gram-negatives commonly found in the top soil that exhibit social, multicellular behaviour.

  • In the presence of nutrients, myxobacteria feed by forming cooperative swarms of cells, and can prey on other bacteria. In the absence of nutrients, at high cell density on a solid surface they undergo a complex developmental programme, which culminates in the formation of a multicellular fruiting body.

  • Myxobacteria move by gliding motility, which is controlled by two different gliding engines: the S-engine and the A-engine. The S-engine acts as the 'puller' and comprises pili that pull the cells forward by retraction. The A-engine acts as the 'pusher' and pushes cells forward by secreting ribbons of polysaccharide-rich slime.

  • The multicellular development programme of myxobacteria is controlled by a cell-contact-dependent signal, the C-signal.

  • The following development scheme for fruiting-body formation is proposed. The first form of organized movement in a myxobacterial culture is the formation of a wave pattern. The collision of travelling waves of cells in an area of high-cell density creates stationary aggregates of cells, which can become motile and fuse with adjacent aggregates by an as-yet-unknown mechanism. Within the motile aggregates, the myxobacterial cells are streaming in cycles. Travelling waves of cells continue to wash over the aggregates, which accumulate in size to form fruiting bodies comprising up to 105 individual cells. Cell-to-cell contact by motile cells within the aggregates transmits the C-signal between cells, and through a positive-feedback mechanism, the level of C-signal reaches the threshold required for sporulation.

  • The 40 different species of myxobacteria can form fruiting bodies in a variety of shapes and sizes, with both depending on multicellular communication through a cell-contact-dependent system. Understanding this fascinating process could have implications for eukaryotic developmental biology.

Abstract

The myxobacteria are Gram-negative organisms that are capable of multicellular, social behaviour. In the presence of nutrients, swarms of myxobacteria feed cooperatively by sharing extracellular digestive enzymes, and can prey on other bacteria. When the food supply runs low, they initiate a complex developmental programme that culminates in the production of a fruiting body. Myxobacteria move by gliding and have two, polarly positioned engines to control their motility. The two engines undergo coordinated reversals, and changes in the reversal frequency and speed are responsible for the different patterns of movement that are seen during development. The myxobacteria communicate with each other and coordinate their movements through a cell-contact-dependent signal. Here, the cell movements that culminate in the development of the multicellular fruiting body are reviewed.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The swarm edges of an AS+ strain and an A+S strain.
Figure 2: The two engines of myxobacteria.
Figure 3: Slime trails at the edge of aMyxococcus xanthus A+S swarm.
Figure 4: Electron micrograph of the sacculus of aMyxococcus xanthus cell.
Figure 5: The directing effect of elasticotaxis on aMyxoccocus swarm towards a colony of prey cells.
Figure 6: The C-signal transduction circuit.
Figure 7: Fruiting-body aggregation in submerged agar culture.
Figure 8: A traffic jam and streaming in the construction of fruiting bodies in submerged agar culture.

Similar content being viewed by others

References

  1. Reichenbach, H. inThe Myxobacteria (ed. Rosenberg, E.) 1–50 (Springer–Verlag, New York, 1984).

    Book  Google Scholar 

  2. Rosenberg, E., Keller, K. H. & Dworkin, M. Cell density-dependent growth ofMyxococcus xanthus on casein.J. Bacteriol.129, 770–777 (1977).

    CAS PubMed PubMed Central  Google Scholar 

  3. Reichenbach, H. inMyxobacteria II (eds Dworkin, M. & Kaiser, D.) 13–62 (ASM Press, Washington DC, 1993).

    Google Scholar 

  4. Burchard, R. P. Gliding motility mutants ofMyxococcus xanthus.J. Bacteriol.104, 940–947 (1970).

    CAS PubMed PubMed Central  Google Scholar 

  5. Kaiser, D. inThe Myxobacteria (ed. Rosenberg, E.) 163–184 (Springer–Verlag, New York, 1984).

    Book  Google Scholar 

  6. Hagen, D. C., Bretscher, A. P. & Kaiser, D. Synergism between morphogenetic mutants ofMyxococcus xanthus.Dev. Biol.64, 284–296 (1978).

    Article CAS PubMed  Google Scholar 

  7. Kim, S. K. & Kaiser, D. C-factor: a cell-cell signalling protein required for fruiting-body morphogenesis ofM. xanthus.Cell61, 19–26 (1990).

    Article CAS PubMed  Google Scholar 

  8. Kuspa, A., Plamann, L. & Kaiser, D. Identification of heat-stable A-factor fromMyxococcus xanthus.J. Bacteriol.174, 3319–3326 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Plamann, L., Kuspa, A. & Kaiser, D. Proteins that rescue A-signal-defective mutants ofMyxococcus xanthus.J. Bacteriol.174, 3311–3318 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Kim, S. K. & Kaiser, D. Purification and properties ofMyxococcus xanthus C-factor, an intercellular signaling protein.Proc. Natl Acad. Sci. USA87, 3635–3639 (1990).

    Article CAS PubMed PubMed Central  Google Scholar 

  11. Søgaard-Andersen, L. & Kaiser, D. C-factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system inMyxococcus xanthus.Proc. Natl Acad. Sci. USA93, 2675–2679 (1996).

    Article PubMed PubMed Central  Google Scholar 

  12. Søgaard-Andersen, L. Coupling gene expression and multicellular morphogenesis during fruiting body formation inMyxococcus xanthus.Mol. Microbiol.48, 1–8 (2003).

    Article PubMed  Google Scholar 

  13. Kim, S. K. & Kaiser, D. Cell alignment required in differentiation ofMyxococcus xanthus.Science249, 926–928 (1990).

    Article CAS PubMed  Google Scholar 

  14. McBride, M. J., Hartzell, P. & Zusman, D. R. inMyxobacteria II (eds Dworkin, M. & Kaiser, D.) 285–305 (ASM Press, Washington DC, 1993).

    Google Scholar 

  15. Hodgkin, J. & Kaiser, D. Genetics of gliding motility inM. xanthus (Myxobacterales): genes controlling movement of single cells.Mol. Gen. Genet.171, 167–176 (1979).

    Article  Google Scholar 

  16. Hodgkin, J. & Kaiser, D. Genetics of gliding motility inM. xanthus (Myxobacterales): two gene systems control movement.Mol. Gen. Genet.171, 177–191 (1979).

    Article  Google Scholar 

  17. Maier, B., Potter, L., So, M., Seifert, H. S. & Sheetz, M. P. Single pilus motor forces exceed 100 pN.Proc. Natl Acad. Sci. USA99, 16012–16017 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. Kaiser, D. Social gliding is correlated with the presence of pili inMyxococcus xanthus.Proc. Natl Acad. Sci. USA76, 5952–5956 (1979).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Wu, S. S. & Kaiser, D. Regulation of expression of thepilA gene inMyxococcus xanthus.J. Bacteriol.179, 7748–7758 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Wall, D., Kolenbrander, P. E. & Kaiser, D. TheMyxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pili biogenesis, S motility and development.J. Bacteriol.181, 24–33 (1999).

    CAS PubMed PubMed Central  Google Scholar 

  21. Wolfgang, M. et al. PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliatedNeisseria gonorrhoeae.Mol. Microbiol.29, 321–330 (1998).

    Article CAS PubMed  Google Scholar 

  22. Vale, R. D. AAA proteins: lords of the ring.J. Cell Biol.150, F13–F19 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility.Nature407, 98–102 (2000).Describes the use of laser tweezers to directly measure the force of the type IV pilus retraction.

    Article CAS PubMed  Google Scholar 

  24. Merz, A. J. & Forest, K. T. Bacterial surface motility: slime trails, grappling hooks and nozzles.Curr. Biol.12, R297–R303 (2002).

    Article CAS PubMed  Google Scholar 

  25. Sun, H., Zusman, D. R. & Shi, W. Type IV pilus ofMyxococcus xanthus is a motility apparatus controlled by thefrz chemosensory system.Curr. Biol.10, 1143–1146 (2000).

    Article CAS PubMed  Google Scholar 

  26. Kaiser, D. How do pili pull?Curr. Biol.10, R777–R780 (2000).

    Article CAS PubMed  Google Scholar 

  27. Skerker, J. & Berg, H. Direct observation of extension and retraction of type IV pili.Proc. Natl Acad. Sci. USA98, 6901–6904 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Wall, D. & Kaiser, D. Type IV pili and cell motility.Mol. Microbiol.32, 1–10 (1999).

    Article CAS PubMed  Google Scholar 

  29. Arnold, J. W. & Shimkets, L. J. Cell surface properties correlated with cohesion inMyxococcus xanthus.J. Bacteriol.170, 5771–5777 (1988).

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Arnold, J. W. & Shimkets, L. Inhibition of cell–cell interactions inMyxococcus xanthus by congo red.J. Bacteriol.170, 5765–5770 (1988).

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Behmlander, R. M. & Dworkin, M. Biochemical and structural analyses of the extracellular matrix fibrils ofMyxococcus xanthus.J. Bacteriol.176, 6295–6303 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Dworkin, M. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell–cell interactions inMyxococcus xanthus.BioEssays21, 590–595 (1999).

    Article CAS PubMed  Google Scholar 

  33. Yang, Z. et al. TheMyxococcus xanthus dif genes are required for the biogenesis of cell surface fibrils essential for social gliding motility.J. Bacteriol.182, 5793–5798 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Kaiser, D. & Crosby, C. Cell movement and its coordination in swarms ofMyxococcus xanthus.Cell Motil.3, 227–245 (1983).

    Article  Google Scholar 

  35. Bowden, M. G. & Kaplan, H. B. TheMyxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development.Mol. Microbiol.30, 275–284 (1998).

    Article CAS PubMed  Google Scholar 

  36. Li, Y. et al. Extracellular polysaccharides mediate pilus retraction during social motility ofMyxococcus xanthus.Proc. Natl Acad. Sci. USA100, 5443–5448 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Kuhlwein, H. & Reichenbach, H.Schwarmentwicklung und Morphogenese bei Myxobacterien–Archangium, Myxococcus, Chondrococcus, Chondromyces. (eds Heunert, H. H. & Kuczka, H.) Film C893 (Inst. Wissensch. Film, Gottingen, Germany, 1965).

    Google Scholar 

  38. Burchard, R. P. Trail following by gliding bacteria.J. Bacteriol.152, 495–501 (1982).

    CAS PubMed PubMed Central  Google Scholar 

  39. Shi, W. & Zusman, D. R. The two motility systems ofMyxococcus xanthus show different selective advantages on various surfaces.Proc. Natl Acad. Sci. USA90, 3378–3382 (1993).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Wolgemuth, C., Hoiczyk, E., Kaiser, D. & Oster, G. How myxobacteria glide.Curr. Biol.12, 1–20 (2002).Provides experimental evidence for the secretion of slime from jets at the rear ofM. xanthus cells that propels them for A-motility.

    Article  Google Scholar 

  41. Hoiczyk, E. & Baumeister, W. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria.Curr. Biol.8, 1161–1168 (1998).

    Article CAS PubMed  Google Scholar 

  42. Stanier, R. Y. Elasticotaxis in myxobacteria.J. Bacteriol.44, 405–412 (1942).

    CAS PubMed PubMed Central  Google Scholar 

  43. Fontes, M. & Kaiser, D.Myxococcus cells respond to elastic forces in their substrate.Proc. Natl Acad. Sci. USA96, 8052–8057 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Dworkin, M. Tactic behavior ofMyxococcus xanthus.J. Bacteriol.154, 452–459 (1983).

    CAS PubMed PubMed Central  Google Scholar 

  45. Burchard, R. P. Growth of surface colonies of the gliding bacteriumMyxococcus xanthus.Arch. Microbiol.96, 247–254 (1974).

    Article CAS PubMed  Google Scholar 

  46. Sager, B. & Kaiser, D. Intercellular C-signaling and the traveling waves ofMyxococcus.Genes Dev.8, 2793–2804 (1994).

    Article CAS PubMed  Google Scholar 

  47. Kim, S. K. & Kaiser, D. Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis ofMyxococcus xanthus.Genes Dev.4, 896–905 (1990).

    Article CAS PubMed  Google Scholar 

  48. Gronewold, T. M. A. & Kaiser, D. Theact operon controls the level and time of C-signal production forM. xanthus development.Mol. Microbiol.40, 744–756 (2001).Provides evidence for a positive feedback circuit that increases the number of C-signal molecules that are displayed on the cell surface.

    Article CAS PubMed  Google Scholar 

  49. Gronewold, T. M. A. & Kaiser, D.act operon control of developmental gene expression inMyxococcus xanthus.J. Bacteriol.184, 1172–1179 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Ogawa, M., Fujitani, S., Mao, X., Inouye, S. & Komano, T. FruA, a putative transcription factor essential for the development ofMyxococcus xanthus.Mol. Microbiol.22, 757–767 (1996).

    Article CAS PubMed  Google Scholar 

  51. Ellehauge, E., Norregaard-Madsen, M. & Søgaard-Andersen, L. The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals inM. xanthus development.Mol. Microbiol.30, 807–813 (1998).References 50 and 51 show that thefruA response-regulator links reception of the C-signal to thefrz chemosensory pathway.

    Article CAS PubMed  Google Scholar 

  52. Søgaard-Andersen, L., Slack, F., Kimsey, H. & Kaiser, D. Intercellular C-signaling inMyxococcus xanthus involves a branched signal transduction pathway.Genes Dev.10, 740–754 (1996).

    Article PubMed  Google Scholar 

  53. McBride, M. J., Weinberg, R. A. & Zusman, D. R. Frizzy aggregation genes of the gliding bacteriumMyxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria.Proc. Natl Acad. Sci. USA86, 424–428 (1989).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. McCleary, W. R., McBride, M. J. & Zusman, D. R. Developmental sensory transduction inMyxococcus xanthus involves methylation and demethylation offrzCD.J. Bacteriol.172, 4877–4887 (1990).

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Welch, R. & Kaiser, D. Cell behavior in traveling wave patterns of myxobacteria.Proc. Natl Acad. Sci. USA98, 14907–14912 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  56. Reichenbach, H. Rhythmic motion in swarms of myxobacteria.Ber. Deutsch. Bot. Ges.78, 102–105 (1965).

    Google Scholar 

  57. Shimkets, L. & Kaiser, D. Induction of coordinated movement ofMyxococcus xanthus cells.J. Bacteriol.152, 451–461 (1982).

    CAS PubMed PubMed Central  Google Scholar 

  58. Igoshin, O., Mogilner, A., Welch, R., Kaiser, D. & Oster, G. Pattern formation and traveling waves in myxobacteria: theory and modeling.Proc. Natl Acad. Sci. USA98, 14913–14918 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Kuner, J. & Kaiser, D. Fruiting body morphogenesis in submerged cultures ofMyxococcus xanthus.J. Bacteriol.151, 458–461 (1982).

    CAS PubMed PubMed Central  Google Scholar 

  60. Jelsbak, L. & Søgaard-Andersen, L. The cell-surface associated C-signal induces behavioral changes in individualM. xanthus cells during fruiting body morphogenesis.Proc. Natl Acad. Sci. USA96, 5031–5036 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Jelsbak, L. & Søgaard-Andersen, L. Pattern formation by a cell-surface associated morphogen inM. xanthus.Proc. Natl Acad. Sci. USA99, 2032–2037 (2002).The first cell-tracking experiments of cells that are induced to stream by the C-signal.

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Sager, B. & Kaiser, D. Two cell-density domains within theMyxococcus xanthus fruiting body.Proc. Natl Acad. Sci. USA90, 3690–3694 (1993).

    Article CAS PubMed PubMed Central  Google Scholar 

  63. O'Connor, K. A. & Zusman, D. R. Patterns of cellular interactions during fruiting-body formation inMyxococcus xanthus.J. Bacteriol.171, 6013–6024 (1989)

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Julien, B., Kaiser, D. & Garza, A. Spatial control of cell differentiation inMyxococcus xanthus.Proc. Natl Acad. Sci. USA97, 9098–9103 (2000).The first paper to show that the C-signal induces sporulation only inside of a fruiting body.

    Article CAS PubMed PubMed Central  Google Scholar 

  65. O'Connor, K. A. & Zusman, D. R. Behavior of peripheral rods and their role in the life cycle ofMyxococcus xanthus.J. Bacteriol.173, 3342–3355 (1991).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Kaiser, D. Cell fate and organogenesis in bacteria.Trends Genet.15, 273–277 (1999).

    Article CAS PubMed  Google Scholar 

  67. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors.Nature423, 448–452 (2003).

    Article CAS PubMed  Google Scholar 

  68. Henrichsen, J. Bacterial surface translocation: a survey and a classification.Bacteriol. Rev.36, 478–503 (1972).

    CAS PubMed PubMed Central  Google Scholar 

  69. Henrichsen, J. Twitching motility and its mechanism.Acta Path. Microbiol. Scand.83, B187–B190 (1975).

    Google Scholar 

  70. Mattick, J. S. Type IV pili and twitching motility.Annu. Rev. Microbiol.56, 289–314 (2002).

    Article CAS PubMed  Google Scholar 

  71. Bieber, D. et al. Type IV pili, transient bacterial aggregates and virulence in enteropathogenicEscherichia coli.Science280, 2114–2118 (1998).

    Article CAS PubMed  Google Scholar 

  72. O'Toole, G. A. & Kolter, R. Initiation of biofilm formation inPseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis.Mol. Microbiol.28, 449–461 (1998).

    Article CAS PubMed  Google Scholar 

  73. Klausen, M. Biofilm formation byPseudomonas aeruginosa wild type, flagella and type IV pili mutants.Mol. Microbiol.48, 1511–1524 (2003).

    Article CAS PubMed  Google Scholar 

  74. Börner, U., Deutsch, A., Reichenbach, H. & Bär, M. Rippling patterns in aggregates of myxobacteria arise from cell–cell collisions.Phys. Rev. Lett.89, 078101 (2002).

    Article PubMed  Google Scholar 

  75. Alber, M. S., Jiang, Y. & Kiskowski, M. Lattice gas cellular automata model for rippling and aggregation in myxobacteria.SIAM J. Appl. Math. (in the press).

Download references

Acknowledgements

I thank L. Jelsbak, O. Igoshin, G. Oster and M. Alber for their suggestions. D. K. is supported by a grant from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

  1. Departments of Biochemistry and Developmental Biology, Stanford University, Stanford, 94305, California, USA

    Dale Kaiser

Authors
  1. Dale Kaiser

    You can also search for this author inPubMed Google Scholar

Supplementary information

Online Movie

To view this movie you need Quicktime. To download this player for free click here:Download Quicktime player. (MOV 631 kb)

Related links

Related links

FURTHER INFORMATION

Dale Kaiser's laboratory

TIGR

Glossary

SPORANGIUM

A specialized structure that contains myxobacterial spores.

TRANSDUCTION

The virus-mediated transfer of host DNA (plasmid or chromosomal) from a donor cell to a recipient cell.

TRANSFECTION

The transformation of prokaryotic cells with viral DNA or RNA.

TYPE IV PILI

Elongated hair-like structures extending from the surface of Gram-negative cells that are independent of flagella, and which can retract and pull the cell forward.

AAA MOTOR PROTEIN

An ATPase that is associated with various cellular activities. AAA proteins are essential in all organisms.

FIBRILS

Filamentous extracellular matrix material comprising polysaccharides and protein.

O-ANTIGEN

A heat-stable antigen that is associated with Gram-negative bacteria and which comprises chains of identical oligosaccharide units that can vary in length.

QUORUM SENSOR

An extracellular signal molecule, the concentration of which is proportional to the cell concentration, and which is used by many bacteria to detect cell density

FOURIER ANALYSIS

Mathematical decomposition of a complex periodic function into a sum of simple sine waves.

Rights and permissions

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp