- Review Article
- Published:
The clinical importance of emergingCampylobacter species
Nature Reviews Gastroenterology & Hepatologyvolume 8, pages669–685 (2011)Cite this article
4060Accesses
19Altmetric
Abstract
A growing number ofCampylobacter species other thanC. jejuni andC. coli have been recognized as emerging human and animal pathogens. AlthoughC. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidiousCampylobacter spp., includingC. concisus,C. upsaliensis andC. ureolyticus. These emergingCampylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emergingCampylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of theCampylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emergingCampylobacter spp. in gastrointestinal health and disease.
Key Points
Members of theCampylobacter genus are ecologically diverse and readily colonize humans and animals
C. jejuni andC. coli are established pathogens in human gastroenteritis, but otherCampylobacter species (the 'emerging' pathogens) also have a role in gastrointestinal and extragastrointestinal infections in humans
The pathogenic mechanisms used by emergingCampylobacter spp. are diverse, and include attachment and invasion, production of toxins that modulate host functions and evasion of host defense systems
EmergingCampylobacter spp. pose a substantial risk of zoonotic transmission as these species colonize pets, farm animals and wild animals, and can be found in contaminated food products
Ongoing epidemiological surveillance of emergingCampylobacter spp. is key to understanding the distribution and zoonosis of these potentially novel and emerging pathogens
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others

Identification of pathogenic genes inCampylobacter jejuni isolated from broiler carcasses and broiler slaughterhouses

Identification and antimicrobial susceptibility profiles ofCampylobacter isolated from camel at municipal abattoirs in eastern Ethiopia

Investigating theCampylobacter enteritis winter peak in Germany, 2018/2019
References
Karmali, M. A., Penner, J. L., Fleming, P. C., Williams, A. & Hennessy, J. N. The serotype and biotype distribution of clinical isolates ofCampylobacter jejuni andCampylobacter coli over a three-year period.J. Infect. Dis.147, 243–246 (1983).
Gürtler, M., Alter, T., Kasimir, S. & Fehlhaber, K. The importance ofCampylobacter coli in human campylobacteriosis: prevalence and genetic characterization.Epidemiol. Infect.133, 1081–1087 (2005).
Hamidian, M. et al. Prevalence of putative virulence markers inCampylobacter jejuni andCampylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran, Iran.Can. J. Microbiol.57, 143–148 (2011).
Friedman, C. R. et al. Risk factors for sporadicCampylobacter infection in the United States: a case-control study in FoodNet sites.Clin. Infect. Dis.38 (Suppl. 3), S285–S296 (2004).
Moore, J. E. et al.Campylobacter.Vet. Res.36, 351–382 (2005).
Bourke, B., Chan, V. L. & Sherman, P.Campylobacter upsaliensis: waiting in the wings.Clin. Microbiol. Rev.11, 440–449 (1998).
Lastovica, A. EmergingCampylobacter spp.: the tip of the iceberg.Clin. Microbiol. Newsletter28, 49–56 (2006).
Lastovica, A. J. & Skirrow, M. B. inCampylobacter, 2nd edn (eds. Nachamkin, I. & Blaser, M. J.) 89–120 (American Society for Microbiology, Washington, 2000).
Levy, A. J. A gastro-enteritis cutbreak probably due to a bovine strain ofVibrio.Yale J. Biol. Med.18, 243–258 (1946).
King, E. O. Human infections withVibrio fetus and a closely related vibrio.J. Infect. Dis.101, 119–128 (1957).
Scallan, E. et al. Foodborne illness acquired in the United States—major pathogens.Emerg. Infect. Dis.17, 7–15 (2011).
Ailes, E. et al. Continued decline in the incidence ofCampylobacter infections, FoodNet 1996–2006.Foodborne Pathog. Dis.5, 329–337 (2008).
Adak, G. K., Meakins, S. M., Yip, H., Lopman, B. A. & O'Brien, S. J. Disease risks from foods, England and Wales, 1996–2000.Emerg. Infect. Dis.11, 365–372 (2005).
Gillespie, I. A., O'Brien, S. J. & Bolton, F. J. Age patterns of persons with campylobacteriosis, England and Wales, 1990–2007.Emerg. Infect. Dis.15, 2046–2048 (2009).
Hall, G. et al. Estimating foodborne gastroenteritis, Australia.Emerg. Infect. Dis.11, 1257–1264 (2005).
Lastovica, A. J. & le Roux, E. Efficient isolation of Campylobacteria from stools.J. Clin. Microbiol.38, 2798–2799 (2000).
Vandenberg, O. et al. Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium.J. Antimicrob. Chemother.57, 908–913 (2006).
Lindblom, G. B., Sjogren, E., Hansson-Westerberg, J. & Kaijser, B.Campylobacter upsaliensis, C. sputorum sputorum andC. concisus as common causes of diarrhoea in Swedish children.Scand. J. Infect. Dis.27, 187–188 (1995).
Labarca, J. A. et al.Campylobacter upsaliensis: Another pathogen for consideration in the United States.Clin. Infect. Dis.34, E59–E60 (2002).
Alam, K. et al. Clinical characteristics and serotype distribution ofCampylobacter jejuni andCampylobacter coli isolated from diarrhoeic patients in Dhaka, Bangladesh, and Cape Town, South Africa.Bangladesh J. Microbiol.23, 121–124 (2006).
Engberg, J., On, S. L., Harrington, C. S. & Gerner-Smidt, P. Prevalence ofCampylobacter, Arcobacter, Helicobacter, andSutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters.J. Clin. Microbiol.38, 286–291 (2000).
Lawson, A. J., Linton, D. & Stanley, J. 16S rRNA gene sequences of 'Candidatus Campylobacter hominis', a novel uncultivated species, are found in the gastrointestinal tract of healthy humans.Microbiology144, 2063–2071 (1998).
Van Etterijck, R. et al. Isolation ofCampylobacter concisus from feces of children with and without diarrhea.J. Clin. Microbiol.34, 2304–2306 (1996).
Matsheka, M. I., Lastovica, A. J., Zappe, H. & Elisha, B. G. The use of (GTG)5 oligonucleotide as an RAPD primer to typeCampylobacter concisus.Lett. Appl. Microbiol.42, 600–605 (2006).
Aabenhus, R., On, S. L., Siemer, B. L., Permin, H. & Andersen, L. P. Delineation ofCampylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data.J. Clin. Microbiol.43, 5091–5096 (2005).
Engberg, J. et al.Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics.Clin. Microbiol. Infect.11, 288–295 (2005).
Aabenhus, R., Permin, H. & Andersen, L. P. Characterization and subgrouping ofCampylobacter concisus strains using protein profiles, conventional biochemical testing and antibiotic susceptibility.Eur. J. Gastroenterol. Hepatol.17, 1019–1024 (2005).
Kalischuk, L. D. & Inglis, G. D. Comparative genotypic and pathogenic examination ofCampylobacter concisus isolates from diarrheic and non-diarrheic humans.BMC Microbiol.11, 53 (2011).
Sandstedt, K., Ursing, J. & Walder, M. ThermotolerantCampylobacter with no or weak catalase activity isolated from dogs.Curr. Microbiol.8, 209–213 (1983).
Steele, T. W., Sangster, N. & Lanser, J. A. DNA relatedness and biochemical features ofCampylobacter spp. isolated in central and South Australia.J. Clin. Microbiol.22, 71–74 (1985).
Taylor, D. N., Kiehlbauch, J. A., Tee, W., Pitarangsi, C. & Echeverria, P. Isolation of group 2 aerotolerantCampylobacter species from Thai children with diarrhea.J. Infect. Dis.163, 1062–1067 (1991).
Goossens, H. et al. Is “Campylobacter upsaliensis” an unrecognised cause of human diarrhoea?Lancet335, 584–586 (1990).
Goossens, H. et al. Investigation of an outbreak ofCampylobacter upsaliensis in day care centers in Brussels: analysis of relationships among isolates by phenotypic and genotypic typing methods.J. Infect. Dis.172, 1298–1305 (1995).
Jenkin, G. A. & Tee, W.Campylobacter upsaliensis-associated diarrhea in human immunodeficiency virus-infected patients.Clin. Infect. Dis.27, 816–821 (1998).
Walmsley, S. L. & Karmali, M. A. Direct isolation of atypical thermophilicCampylobacter species from human feces on selective agar medium.J. Clin. Microbiol.27, 668–670 (1989).
Broczyk, A., Thompson, S., Smith, D. & Lior, H. Water-borne outbreak ofCampylobacter laridis-associated gastroenteritis.Lancet1, 164–165 (1987).
Tauxe, R. V. et al. Illness associated withCampylobacter laridis, a newly recognizedCampylobacter species.J. Clin. Microbiol.21, 222–225 (1985).
Bullman, S. et al.Campylobacter ureolyticus: an emerging gastrointestinal pathogen?FEMS Immunol. Med. Microbiol.61, 228–230 (2011).
Lawson, A. J., Shafi, M. S., Pathak, K. & Stanley, J. Detection ofCampylobacter in gastroenteritis: comparison of direct PCR assay of faecal samples with selective culture.Epidemiol. Infect.121, 547–553 (1998).
Bullman, S., O'Leary, J., Corcoran, D., Sleator, R. D. & Lucey, B. Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis.Epidemiol. Infect.18, 1–5 (2011).
Inglis, G. D., Boras, V. F. & Houde, A. Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook Heath Region of Southwestern Alberta, Canada.J. Clin. Microbiol.49, 209–219 (2011).
Tremblay, C., Gaudreau, C. & Lorange, M. Epidemiology and antimicrobial susceptibilities of 111Campylobacter fetus subsp.fetus strains isolated in Quebec, Canada, from 1983 to 2000.J. Clin. Microbiol.41, 463–466 (2003).
Man, S. M., Kaakoush, N. O. & Mitchell, H. M. The role of bacteria and pattern-recognition receptors in Crohn's disease.Nat. Rev. Gastroenterol. Hepatol.8, 152–168 (2011).
Newman, A. & Lambert, J. R.Campylobacter jejuni causing flare-up in inflammatory bowel disease.Lancet2, 919 (1980).
Zhang, L. et al. Detection and isolation ofCampylobacter species other thanC. jejuni from children with Crohn's disease.J. Clin. Microbiol.47, 453–455 (2009).
Man, S. M. et al.Campylobacter concisus and otherCampylobacter species in children with newly diagnosed Crohn's disease.Inflamm. Bowel Dis.16, 1008–1016 (2010).
Lastovica, A. J. Clinical relevance ofCampylobacter concisus isolated from pediatric patients.J. Clin. Microbiol.47, 2360 (2009).
Mukhopadhya, I. et al. Detection ofCampylobacter concisus and otherCampylobacter species in colonic biopsies from adults with ulcerative colitis.PLoS ONE6, e21490 (2011).
Deshpande, N. P. et al. Sequencing and validation of the genome of aCampylobacter concisus reveals intra-species diversity.PLoS ONE6, e22170 (2011).
Kovach, Z. et al. Immunoreactive proteins ofCampylobacter concisus, an emergent intestinal pathogen.FEMS Immunol. Med. Microbiol.http://dx.doi.org/10.1111/j.1574–1695X.2011.00864.x.
Macuch, P. J. & Tanner, A. C.Campylobacter species in health, gingivitis, and periodontitis.J. Dent. Res.79, 785–792 (2000).
Abiko, Y., Sato, T., Mayanagi, G. & Takahashi, N. Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR.J. Periodontal Res.45, 389–395 (2010).
von Troil-Linden, B., Torkko, H., Alaluusua, S., Jousimies-Somer, H. & Asikainen, S. Salivary levels of suspected periodontal pathogens in relation to periodontal status and treatment.J. Dent. Res.74, 1789–1795 (1995).
Lopez, R., Dahlen, G., Retamales, C. & Baelum, V. Clustering of subgingival microbial species in adolescents with periodontitis.Eur. J. Oral Sci.119, 141–150 (2011).
Umeda, M. et al. The distribution of periodontopathic bacteria among Japanese children and their parents.J. Periodontal Res.39, 398–404 (2004).
Castillo, D. M. et al. Detection of specific periodontal microorganisms from bacteraemia samples after periodontal therapy using molecular-based diagnostics.J. Clin. Periodontol38, 418–427 (2011).
Arce, R. M. et al. Characterization of the invasive and inflammatory traits of oralCampylobacter rectus in a murine model of fetoplacental growth restriction and in trophoblast cultures.J. Reprod. Immunol.84, 145–153 (2010).
Wang, B., Kraig, E. & Kolodrubetz, D. Use of defined mutants to assess the role of theCampylobacter rectus S-layer in bacterium-epithelial cell interactions.Infect. Immun.68, 1465–1473 (2000).
Ogura, N. et al. Effect ofCampylobacter rectus LPS on plasminogen activator-plasmin system in human gingival fibroblast cells.J. Periodontal Res.30, 132–140 (1995).
Aas, J. A. et al. Bacteria of dental caries in primary and permanent teeth in children and young adults.J. Clin. Microbiol.46, 1407–1417 (2008).
Chua, K. et al.Campylobacter insulaenigrae causing septicaemia and enteritis.J. Med. Microbiol.56, 1565–1567 (2007).
Pigrau, C. et al. Bacteremia due toCampylobacter species: clinical findings and antimicrobial susceptibility patterns.Clin. Infect. Dis.25, 1414–1420 (1997).
Wong, J. S., Anderson, T. P., Chambers, S. T., On, S. L. & Murdoch, D. R.Campylobacter fetus-associated epidural abscess and bacteremia.J. Clin. Microbiol.47, 857–858 (2009).
Pacanowski, J. et al.Campylobacter bacteremia: clinical features and factors associated with fatal outcome.Clin. Infect. Dis.47, 790–796 (2008).
Nielsen, H. et al. Bacteraemia as a result ofCampylobacter species: a population-based study of epidemiology and clinical risk factors.Clin. Microbiol. Infect.16, 57–61 (2010).
Preston, M. A. et al.In vitro susceptibility of “Campylobacter upsaliensis” to twenty-four antimicrobial agents.Eur. J. Clin. Microbiol. Infect. Dis.9, 822–824 (1990).
Krause, R. et al. Recurrent septicemia due toCampylobacter fetus andCampylobacter lari in an immunocompetent patient.Infection30, 171–174 (2002).
Schmidt, U., Chmel, H., Kaminski, Z. & Sen, P. The clinical spectrum ofCampylobacter fetus infections: report of five cases and review of the literature.Q. J. Med.49, 431–442 (1980).
de Vries, J. J., Arents, N. L. & Manson, W. L.Campylobacter species isolated from extra-oro-intestinal abscesses: a report of four cases and literature review.Eur. J. Clin. Microbiol. Infect. Dis.27, 1119–1123 (2008).
Cody, A. J., Clarke, L., Bowler, I. C. & Dingle, K. E. Ciprofloxacin-resistant campylobacteriosis in the UK.Lancet376, 1987 (2010).
Zhao, S. et al. Antimicrobial resistance ofCampylobacter isolates from retail meat in the United States between 2002 and 2007.Appl. Environ. Microbiol.76, 7949–7956 (2010).
Zheng, J., Meng, J., Zhao, S., Singh, R. & Song, W. Adherence to and invasion of human intestinal epithelial cells byCampylobacter jejuni andCampylobacter coli isolates from retail meat products.J. Food Prot.69, 768–774 (2006).
Zheng, J., Meng, J., Zhao, S., Singh, R. & Song, W.Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requiresCampylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-κB.Infect. Immun.76, 4498–4508 (2008).
Malagon, I., Garcia, S. & Heredia, N. Adherence, invasion, toxigenic, and chemotactic properties of MexicanCampylobacter strains.J. Food Prot.73, 2093–2098 (2010).
Gorkiewicz, G. et al. A genomic island defines subspecies-specific virulence features of the host-adapted pathogenCampylobacter fetus subsp.venerealis.J. Bacteriol.192, 502–517 (2010).
Mooney, A. et al. Invasion of human epithelial cells byCampylobacter upsaliensis.Cell. Microbiol.5, 835–847 (2003).
Man, S. M. et al. Host attachment, invasion, and stimulation of proinflammatory cytokines byCampylobacter concisus and other non-Campylobacter jejuni Campylobacter species.J. Infect. Dis.202, 1855–1865 (2010).
Graham, L. L., Friel, T. & Woodman, R. L. Fibronectin enhancesCampylobacter fetus interaction with extracellular matrix components and INT 407 cells.Can. J. Microbiol.54, 37–47 (2008).
Graham, L. L.Campylobacter fetus adheres to and enters INT 407 cells.Can. J. Microbiol.48, 995–1007 (2002).
Fouts, D. E. et al. Major structural differences and novel potential virulence mechanisms from the genomes of multipleCampylobacter species.PLoS Biol.3, e15 (2005).
Sylvester, F. A., Philpott, D., Gold, B., Lastovica, A. & Forstner, J. F. Adherence to lipids and intestinal mucin by a recently recognized human pathogen,Campylobacter upsaliensis.Infect. Immun.64, 4060–4066 (1996).
Nielsen, H. L. et al. Oral and fecalCampylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells.PLoS ONE6, e23858 (2011).
Kaakoush, N. O. et al. The secretome ofCampylobacter concisus.FEBS J.277, 1606–1617 (2010).
Baker, N. T. & Graham, L. L.Campylobacter fetus translocation across Caco-2 cell monolayers.Microb. Pathog.49, 260–272 (2010).
Watson, R. O. & Galan, J. E.Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.PLoS Pathog.4, e14 (2008).
Ge, Z., Schauer, D. B. & Fox, J. G.In vivo virulence properties of bacterial cytolethal-distending toxin.Cell. Microbiol.10, 1599–1607 (2008).
Asakura, M. et al. Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification ofCampylobacter jejuni, Campylobacter coli andCampylobacter fetus.FEMS Immunol. Med. Microbiol.52, 260–266 (2008).
Nakanishi, S., Tazumi, A., Moore, J. E., Millar, B. C. & Matsuda, M. Molecular and comparative analyses of the full-length cytolethal distending toxin (cdt) gene operon and its adjacent genetic loci from urease-positive thermophilicCampylobacter (UPTC) organisms.Br. J. Biomed. Sci.67, 208–215 (2010).
Pickett, C. L. et al. Prevalence of cytolethal distending toxin production inCampylobacter jejuni and relatedness ofCampylobacter sp. cdtB gene.Infect. Immun.64, 2070–2078 (1996).
Asakura, M. et al. Comparative analysis of cytolethal distending toxin (cdt) genes amongCampylobacter jejuni, C. coli andC. fetus strains.Microb. Pathog.42, 174–183 (2007).
Johnson, W. M. & Lior, H. A new heat-labile cytolethal distending toxin (CLDT) produced byCampylobacter spp.Microb. Pathog.4, 115–126 (1988).
Bang, D. D. et al. Prevalence of cytolethal distending toxin (cdt) genes and CDT production inCampylobacter spp. isolated from Danish broilers.J. Med. Microbiol.50, 1087–1094 (2001).
Ohya, T., Tominaga, K. & Nakazawa, M. Production of cytolethal distending toxin (CLDT) byCampylobacter fetus subsp.fetus isolated from calves.J. Vet. Med. Sci.55, 507–509 (1993).
Mooney, A. et al.Campylobacter upsaliensis exerts a cytolethal distending toxin effect on HeLa cells and T lymphocytes.Microbiology147, 735–743 (2001).
Gillespie, M. J., Smutko, J., Haraszthy, G. G. & Zambon, J. J. Isolation and partial characterization of theCampylobacter rectus cytotoxin.Microb. Pathog.14, 203–215 (1993).
Arimi, S. M., Park, R. W. & Fricker, C. R. Study of haemolytic activity of someCampylobacter spp. on blood agar plates.J. Appl. Bacteriol.69, 384–389 (1990).
Istivan, T. S., Coloe, P. J., Fry, B. N., Ward, P. & Smith, S. C. Characterization of a haemolytic phospholipase A(2) activity in clinical isolates ofCampylobacter concisus.J. Med. Microbiol.53, 483–493 (2004).
Istivan, T. S., Smith, S. C., Fry, B. N. & Coloe, P. J. Characterization ofCampylobacter concisus hemolysins.FEMS Immunol. Med. Microbiol.54, 224–235 (2008).
Johnson, W. M. & Lior, H. Cytotoxic and cytotonic factors produced byCampylobacter jejuni,Campylobacter coli, andCampylobacter laridis.J. Clin. Microbiol.24, 275–281 (1986).
Fasano, A. et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization,in vitro.J. Clin. Invest.96, 710–720 (1995).
Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems.Nat. Rev. Microbiol.1, 137–149 (2003).
Bacon, D. J. et al. DNA sequence and mutational analyses of the pVir plasmid ofCampylobacter jejuni 81–176.Infect. Immun.70, 6242–6250 (2002).
Moolhuijzen, P. M. et al. Genomic analysis ofCampylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets.BMC Microbiol.9, 86 (2009).
Batchelor, R. A., Pearson, B. M., Friis, L. M., Guerry, P. & Wells, J. M. Nucleotide sequences and comparison of two large conjugative plasmids from differentCampylobacter species.Microbiology150, 3507–3517 (2004).
Jani, A. J. & Cotter, P. A. Type VI secretion: not just for pathogenesis anymore.Cell Host Microbe8, 2–6 (2010).
Chow, J. & Mazmanian, S. K. A pathobiont of the microbiota balances host colonization and intestinal inflammation.Cell Host Microbe7, 265–276 (2010).
US National Library of Medicine.The National Center for Biotechnology Information[online], (2011).
Blaser, M. J. et al. Pathogenesis ofCampylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins.J. Infect. Dis.155, 696–706 (1987).
Blaser, M. J., Smith, P. F., Repine, J. E. & Joiner, K. A. Pathogenesis ofCampylobacter fetus infections. Failure of encapsulatedCampylobacter fetus to bind C3b explains serum and phagocytosis resistance.J. Clin. Invest.81, 1434–1444 (1988).
Okuda, K. et al. Role for the S-layer ofCampylobacter rectus ATCC33238 in complement mediated killing and phagocytic killing by leukocytes from guinea pig and human peripheral blood.Oral Dis.3, 113–120 (1997).
Goossens, H. et al. Characterization and description of “Campylobacter upsaliensis” isolated from human feces.J. Clin. Microbiol.28, 1039–1046 (1990).
Blaser, M. J. & Pei, Z. Pathogenesis ofCampylobacter fetus infections: critical role of high-molecular-weight S-layer proteins in virulence.J. Infect. Dis.167, 372–377 (1993).
Tu, Z. C., Gaudreau, C. & Blaser, M. J. Mechanisms underlyingCampylobacter fetus pathogenesis in humans: surface-layer protein variation in relapsing infections.J. Infect. Dis.191, 2082–2089 (2005).
Flemming, H. C. & Wingender, J. The biofilm matrix.Nat. Rev. Microbiol.8, 623–633 (2010).
Haddock, G. et al.Campylobacter jejuni 81–176 forms distinct microcolonies onin vitro-infected human small intestinal tissue prior to biofilm formation.Microbiology156, 3079–3084 (2010).
Gunther, N. W. 4th & Chen, C. Y. The biofilm forming potential of bacterial species in the genusCampylobacter.Food Microbiol.26, 44–51 (2009).
Buswell, C. M. et al. Extended survival and persistence ofCampylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining.Appl. Environ. Microbiol.64, 733–741 (1998).
Noiri, Y., Ozaki, K., Nakae, H., Matsuo, T. & Ebisu, S. An immunohistochemical study on the localization ofPorphyromonas gingivalis,Campylobacter rectus andActinomyces viscosus in human periodontal pockets.J. Periodontal Res.32, 598–607 (1997).
Wyss, C. Sticky, a novel phenotype ofCampylobacter rectus.Microb. Ecol. Health Dis.8, 175–179 (1995).
Salama, S. M., Tabor, H., Richter, M. & Taylor, D. E. Pulsed-field gel electrophoresis for epidemiologic studies ofCampylobacter hyointestinalis isolates.J. Clin. Microbiol.30, 1982–1984 (1992).
Moran, L., Scates, P. & Madden, R. H. Prevalence ofCampylobacter spp. in raw retail poultry on sale in Northern Ireland.J. Food Prot.72, 1830–1835 (2009).
Logue, C. M., Sherwood, J. S., Elijah, L. M., Olah, P. A. & Dockter, M. R. The incidence ofCampylobacter spp. on processed turkey from processing plants in the midwestern United States.J. Appl. Microbiol.95, 234–241 (2003).
Kapperud, G., Skjerve, E., Bean, N. H., Ostroff, S. M. & Lassen, J. Risk factors for sporadicCampylobacter infections: results of a case-control study in Southeastern Norway.J. Clin. Microbiol.30, 3117–3121 (1992).
Neimann, J., Engberg, J., Molbak, K. & Wegener, H. C. A case-control study of risk factors for sporadicCampylobacter infections in Denmark.Epidemiol. Infect.130, 353–366 (2003).
Sekizuka, T. et al. Molecular cloning, nucleotide sequencing and characterization of the flagellin gene from isolates of urease-positive thermophilicCampylobacter.Res. Microbiol.155, 185–191 (2004).
Inglis, G. D., McAllister, T. A., Larney, F. J. & Topp, E. Prolonged survival ofCampylobacter species in bovine manure compost.Appl. Environ. Microbiol.76, 1110–1119 (2010).
Lynch, O. A., Cagney, C., McDowell, D. A. & Duffy, G. Occurrence of fastidiousCampylobacter spp. in fresh meat and poultry using an adapted cultural protocol.Int. J. Food Microbiol.150, 171–177 (2011).
Bostan, K., Aydin, A. & Ang, M. K. Prevalence and antibiotic susceptibility of thermophilicCampylobacter species on beef, mutton, and chicken carcasses in Istanbul, Turkey.Microb. Drug Resist.15, 143–149 (2009).
Ichiyama, S. et al.Campylobacter fetus subspeciesfetus cellulitis associated with bacteremia in debilitated hosts.Clin. Infect. Dis.27, 252–255 (1998).
Chaban, B., Ngeleka, M. & Hill, J. E. Detection and quantification of 14Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals.BMC Microbiol.10, 73 (2010).
Parsons, B. N. et al. Prevalence and shedding patterns ofCampylobacter spp. in longitudinal studies of kennelled dogs.Vet. J.http://dx.doi.org/10.1016/j.tvjl.2010.10.006.
Parsons, B. N. et al. Prevalence ofCampylobacter spp. in a cross-sectional study of dogs attending veterinary practices in the UK and risk indicators associated with shedding.Vet. J.184, 66–70 (2010).
Figura, N.Campylobacter spp isolated from dog faeces.Lancet338, 1403 (1991).
Goossens, H. et al.Campylobacter upsaliensis enteritis associated with canine infections.Lancet337, 1486–1487 (1991).
Gurgan, T. & Diker, K. S. Abortion associated withCampylobacter upsaliensis.J. Clin. Microbiol.32, 3093–3094 (1994).
Minihan, D. et al.Campylobacter spp. in Irish feedlot cattle: a longitudinal study involving pre-harvest and harvest phases of the food chain.J. Vet. Med. B Infect. Dis. Vet. Public Health51, 28–33 (2004).
Schweitzer, N. et al. Molecular characterization ofCampylobacter lanienae strains isolated from food-producing animals.Foodborne Pathog Dis.8, 615–621 (2011).
Kapperud, G. et al. Factors associated with increased and decreased risk ofCampylobacter infection: a prospective case-control study in Norway.Am. J. Epidemiol.158, 234–242 (2003).
Gallay, A. et al. Risk factors for acquiring sporadicCampylobacter infection in France: results from a national case-control study.J. Infect. Dis.197, 1477–1484 (2008).
Kaboré, H et al. Association between potential zoonotic enteric infections in children and environmental risk factors in Quebec, 1999–2006.Zoonoses Public Health57, e195–e205 (2010).
Gorkiewicz, G., Feierl, G., Zechner, R. & Zechner, E. L. Transmission ofCampylobacter hyointestinalis from a pig to a human.J. Clin. Microbiol.40, 2601–2605 (2002).
Acke, E. et al. A comparison of different culture methods for the recovery ofCampylobacter species from pets.Zoonoses Public Health56, 490–495 (2009).
Bolton, F. J., Hutchinson, D. N. & Parker, G. Reassessment of selective agars and filtration techniques for isolation ofCampylobacter species from faeces.Eur. J. Clin. Microbiol. Infect. Dis.7, 155–160 (1988).
Debruyne, L., On, S. L., De Brandt, E. & Vandamme, P. NovelCampylobacter lari-like bacteria from humans and molluscs: description ofCampylobacter peloridis sp. nov.,Campylobacter lari subsp.concheus subsp. nov. andCampylobacter lari subsp.lari subsp. nov.Int. J. Syst. Evol. Microbiol.59, 1126–1132 (2009).
Kaur, T. et al.Campylobacter troglodytis - sp. nov., isolated from feces of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) in Tanzania.Appl. Environ. Microbiol.77, 2366–2373 (2011).
Zanoni, R. G., Debruyne, L., Rossi, M., Revez, J. & Vandamme, P.Campylobacter cuniculorum sp. nov., from rabbits.Int. J. Syst. Evol. Microbiol.59, 1666–1671 (2009).
Rossi, M. et al.Campylobacter avium sp. nov., a hippurate-positive species isolated from poultry.Int. J. Syst. Evol. Microbiol.59, 2364–2369 (2009).
Debruyne, L. et al.Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region.Int. J. Syst. Evol. Microbiol.60, 815–819 (2010).
Debruyne, L. et al.Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus).Int. J. Syst. Evol. Microbiol.60, 1870–1875 (2010).
Beisele, M. et al.Helicobacter marmotae, novelHelicobacter sp. andCampylobacter sp. isolated from livers and intestines of Prairie dogs.J. Med. Microbiol.60, 1366–1374 (2011).
Goldman, C. G. et al. Novel gastric helicobacters and oral campylobacters are present in captive and wild cetaceans.Vet. Microbiol.152, 138–145 (2011).
Blaser, M. J. et al. ExtraintestinalCampylobacter jejuni andCampylobacter coli infections: host factors and strain characteristics.J. Infect. Dis.153, 552–559 (1986).
Petersen, R. F., Harrington, C. S., Kortegaard, H. E. & On, S. L. A PCR-DGGE method for detection and identification ofCampylobacter, Helicobacter, Arcobacter and relatedEpsilobacteria and its application to saliva samples from humans and domestic pets.J. Appl. Microbiol.103, 2601–2615 (2007).
Kumar, P. S., Griffen, A. L., Moeschberger, M. L. & Leys, E. J. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis.J. Clin. Microbiol.43, 3944–55 (2005).
Tu, Z. C. et al.Campylobacter fetus of reptile origin as a human pathogen.J. Clin. Microbiol.42, 4405–4407 (2004).
Simor, A. E., Karmali, M. A., Jadavji, T. & Roscoe, M. Abortion and perinatal sepsis associated withCampylobacter infection.Rev. Infect. Dis.8, 397–402 (1986).
Dronda, F., Garcia-Arata, I., Navas, E. & de Rafael, L. Meningitis in adults due toCampylobacter fetus subspeciesfetus.Clin. Infect. Dis.27, 906–907 (1998).
Willis, M. D. & Austin, W. J. HumanVibrio fetus infection. Report of two dissimilar cases.Am. J. Dis. Child.112, 459–462 (1966).
Sauerwein, R. W., Bisseling, J. & Horrevorts, A. M. Septic abortion associated withCampylobacter fetus subspeciesfetus infection: case report and review of the literature.Infection21, 331–333 (1993).
Linscott, A. J. et al. Fatal septicemia due toClostridium hathewayi andCampylobacter hominis.Anaerobe11, 97–98 (2005).
Lastovica, A. J. inCampylobacters, Helicobacters and related organisms (eds Newell, D. G. et al.) 475–479 (Plenum Press, New York, 1996).
Logan, J. M., Burnens, A., Linton, D., Lawson, A. J. & Stanley, J.Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir.Int. J. Syst. Evol. Microbiol.50, 865–872 (2000).
Morris, C. N., Scully, B. & Garvey, G. J.Campylobacter lari associated with permanent pacemaker infection and bacteremia.Clin. Infect. Dis.27, 220–221 (1998).
On, S. L., Ridgwell, F., Cryan, B. & Azadian, B. S. Isolation ofCampylobacter sputorum biovar sputorum from an axillary abscess.J. Infect.24, 175–179 (1992).
Tee, W., Luppino, M. & Rambaldo, S. Bacteremia due toCampylobacter sputorum Biovar sputorum.Clin. Infect. Dis.27, 1544–1545 (1998).
On, S. L., Atabay, H. I., Corry, J. E., Harrington, C. S. & Vandamme, P. Emended description ofCampylobacter sputorum and revision of its infrasubspecific (biovar) divisions, includingC. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans.Int. J. Syst. Bacteriol.48, 195–206 (1998).
Patton, C. M. et al. Human disease associated with “Campylobacter upsaliensis” (catalase-negative or weakly positiveCampylobacter species) in the United States.J. Clin. Microbiol.27, 66–73 (1989).
Gaudreau, C. & Lamothe, F.Campylobacter upsaliensis isolated from a breast abscess.J. Clin. Microbiol.30, 1354–1356 (1992).
Man, S. M., Kaakoush, N. O., Octavia, S. & Mitchell, H. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within theCampylobacter genus.Appl. Environ. Microbiol.76, 3071–3081 (2010).
Duerden, B., Bennet, K. W. & Faulkner, J. Isolation ofBacteroides ureolyticus (B. corrodens) from clinical infections.J. Clin. Pathol.35, 309–312 (1982).
Inglis, G. D., Hoar, B. M., Whiteside, D. P. & Morck, D. W.Campylobacter canadensis sp. nov., from captive whooping cranes in Canada.Int. J. Syst. Evol. Microbiol.57, 2636–2644 (2007).
Enokimoto, M., Kubo, M., Bozono, Y., Mieno, Y. & Misawa, N. Enumeration and identification ofCampylobacter species in the liver and bile of slaughtered cattle.Int. J. Food Microbiol.118, 259–263 (2007).
Inglis, G. D. et al. Temporal prevalence of antimicrobial resistance inCampylobacter spp. from beef cattle in Alberta feedlots.Appl. Environ. Microbiol.72, 4088–4095 (2006).
Muller, W., Bohland, C. & Methner, U. Detection and genotypic differentiation ofCampylobacter jejuni andCampylobacter coli strains from laying hens by multiplex PCR and fla-typing.Res. Vet. Sci.http://dx.doi/org/10.1016/j.rvsc.2011.01.028.
Wadl, M. et al. Easy-to-use rapid test for direct detection ofCampylobacter spp. in chicken feces.J. Food Prot.72, 2483–2488 (2009).
Nonga, H. E. & Muhairwa, A. P. Prevalence and antibiotic susceptibility of thermophilicCampylobacter isolates from free range domestic duck (Cairina moschata) in Morogoro municipality, Tanzania.Trop. Anim. Health Prod.42, 165–172 (2010).
Hutchinson, D. N. et al.Campylobacter enteritis associated with consumption of raw goat's milk.Lancet1, 1037–1038 (1985).
Sestak, K. et al. Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques.Infect. Immun.71, 4079–4086 (2003).
Ertas, H. B., Ozbey, G., Kilic, A. & Muz, A. Isolation ofCampylobacter jejuni andCampylobacter coli from the gall bladder samples of sheep and identification by polymerase chain reaction.J. Vet. Med. B Infect. Dis. Vet. Public Health50, 294–297 (2003).
Oporto, B. & Hurtado, A. Emerging thermotolerantCampylobacter species in healthy ruminants and swine.Foodborne Pathog. Dis.8, 807–813 (2011).
Campero, C. M. et al. Immunohistochemical identification ofCampylobacter fetus in natural cases of bovine and ovine abortions.J. Vet. Med. B Infect. Dis. Vet. Public Health52, 138–141 (2005).
Schulze, F., Bagon, A., Muller, W. & Hotzel, H. Identification ofCampylobacter fetus subspecies by phenotypic differentiation and PCR.J. Clin. Microbiol.44, 2019–2024 (2006).
Willoughby, K. et al. A multiplex polymerase chain reaction to detect and differentiateCampylobacter fetus subspeciesfetus andCampylobacter fetus -speciesvenerealis: use on UK isolates of,C. fetus and otherCampylobacter spp.J. Appl. Microbiol.99, 758–766 (2005).
Harvey, S. & Greenwood, J. R. Isolation ofCampylobacter fetus from a pet turtle.J. Clin. Microbiol.21, 260–261 (1985).
Gebhart, C. J., Edmonds, P., Ward, G. E., Kurtz, H. J. & Brenner, D. J. “Campylobacter hyointestinalis” sp. nov.: a new species ofCampylobacter found in the intestines of pigs and other animals.J. Clin. Microbiol.21, 715–720 (1985).
Hill, B. D., Thomas, R. J. & Mackenzie, A. R.Campylobacter hyointestinalis-associated enteritis in Moluccan rusa deer (Cervus timorensis subsp.Moluccensis).J. Comp. Pathol.97, 687–694 (1987).
Hanninen, M. L. et al.Campylobacter hyointestinalis subsp.hyointestinalis, a commonCampylobacter species in reindeer.J. Appl. Microbiol.92, 717–723 (2002).
Stoddard, R. A. et al.Campylobacter insulaenigrae isolates from northern elephant seals (Mirounga angustirostris) in California.Appl. Environ. Microbiol.73, 1729–1735 (2007).
Foster, G. et al.Campylobacter insulaenigrae sp. nov., isolated from marine mammals.Int. J. Syst. Evol. Microbiol.54, 2369–2373 (2004).
González, M., Villanueva, M. P., Debruyne, L., Vandamme, P. & Fernández, H.Campylobacter insulaenigrae: first isolation report from South American sea lion (Otaria flavescens [Shaw, 1800]).Braz. J. Microbiol.42, 261–265 (2011).
Stoddard, R. A.Salmonella andCampylobacter spp. in Northern Elephant Seals, California.Emerg. Infect. Dis.11, 1967–1969 (2005).
Benjamin, J., Leaper, S., Owen, R. J. & Skirrow, M. B. Description ofCampylobacter laridis, a new species comprising the nalidixic acid resistant thermophilicCampylobacter (NARTC) group.Curr. Microbiol.8, 231–238 (1983).
Molina-Lopez, R. A. et al. Wild raptors as carriers of antimicrobial-resistantSalmonella andCampylobacter strains.Vet. Rec.168, 565 (2011).
Shigematsu, M. et al. Genetic heterogeneity of the cytolethal distending toxin B (cdtB) gene locus among isolates ofCampylobacter lari.Br. J. Biomed. Sci.63, 179–181 (2006).
Fox, J. G. et al. “Campylobacter upsaliensis” isolated from cats as identified by DNA relatedness and biochemical features.J. Clin. Microbiol.27, 2376–2378 (1989).
Hariharan, H. et al. Isolation ofBacteroides ureolyticus from the equine endometrium.J. Vet. Diagn. Invest.6, 127–130 (1994).
Selander, B., Rydberg, J., Lenner, C. & Hagerstrand, I. Unusual infectious complication in a pregnant woman. Spontaneous abortion caused byCampylobacter coli.Lakartidningen90, 4356–4357 (1993).
Macfarlane, S., Furrie, E., Macfarlane, G. T. & Dillon, J. F. Microbial colonization of the upper gastrointestinal tract in patients with Barrett's esophagus.Clin. Infect. Dis.45, 29–38 (2007).
Cox, C. J., Kempsell, K. E. & Gaston, J. S. Investigation of infectious agents associated with arthritis by reverse transcription PCR of bacterial rRNA.Arthritis Res. Ther.5, R1–R8 (2003).
Farrugia, D. C., Eykyn, S. J. & Smyth, E. G.Campylobacter fetus endocarditis: two case reports and review.Clin. Infect. Dis.18, 443–446 (1994).
Steinkraus, G. E. & Wright, B. D. Septic abortion with intact fetal membranes caused byCampylobacter fetus subsp.fetus.J. Clin. Microbiol.32, 1608–1609 (1994).
Yamashita, K., Aoki, Y. & Hiroshima, K. Pyogenic vertebral osteomyelitis caused byCampylobacter fetus subspeciesfetus. A case report.Spine (Phila Pa 1976)24, 582–584 (1999).
Johnson, C. C. et al.Bacteroides gracilis, an important anaerobic bacterial pathogen.J. Clin. Microbiol.22, 799–802 (1985).
Gradel, K. O. et al. Increased short- and long-term risk of inflammatory bowel disease afterSalmonella orCampylobacter gastroenteritis.Gastroenterology137, 495–501 (2009).
Ruigomez, A., Garcia Rodriguez, L. A. & Panes, J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities.Clin. Gastroenterol. Hepatol.5, 465–469 (2007).
Verdu, E. F., Mauro, M., Bourgeois, J. & Armstrong, D. Clinical onset of celiac disease after an episode ofCampylobacter jejuni enteritis.Can. J. Gastroenterol.21, 453–455 (2007).
Poropatich, K. O., Walker, C. L. & Black, R. E. Quantifying the association betweenCampylobacter infection and Guillain-Barre syndrome: a systematic review.J. Health Popul. Nutr.28, 545–552 (2010).
Ternhag, A., Torner, A., Svensson, A., Ekdahl, K. & Giesecke, J. Short- and long-term effects of bacterial gastrointestinal infections.Emerg. Infect. Dis.14, 143–148 (2008).
Roberts, T., Shah, A., Graham, J. G. & McQueen, I. N. The Miller Fischer syndrome followingCampylobacter enteritis: a report of two cases.J. Neurol. Neurosurg. Psychiatry50, 1557–1558 (1987).
Chamovitz, B. N. et al.Campylobacter jejuni-associated hemolytic-uremic syndrome in a mother and daughter.Pediatrics71, 253–256 (1983).
Lam, J. Y. et al. Three cases of severe invasive infections caused byCampylobacter rectus and first report of fatalC. rectus infection.J. Clin. Microbiol.49, 1687–1691 (2011).
Aabenhus, R., Stenram, U., Andersen, L. P., Permin, H. & Ljungh, A. First attempt to produce experimentalCampylobacter concisus infection in mice.World J. Gastroenterol.14, 6954–6959 (2008).
Arce, R. M. et al. Increased TLR4 expression in murine placentas after oral infection with periodontal pathogens.Placenta30, 156–162 (2009).
Young, V. B., Dangler, C. A., Fox, J. G. & Schauer, D. B. Chronic atrophic gastritis in SCID mice experimentally infected withCampylobacter fetus.Infect. Immun.68, 2110–2118 (2000).
Acknowledgements
I am grateful to my colleagues who provided helpful suggestions for this Review article: R. O. Gilbert (Cornell University, USA), H. M. Mitchell and N. O. Kaakoush (The University of New South Wales, Australia), and P. Tourlomousis and D. Raghunathan (University of Cambridge, UK). I would also like to thank the Cambridge Commonwealth Trust and the Cambridge Australia Trust for their kind support. I apologize to my colleagues whose work was not cited in the Review owing to space limitations.
Author information
Authors and Affiliations
Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
Si Ming Man
- Si Ming Man
You can also search for this author inPubMed Google Scholar
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Man, S. The clinical importance of emergingCampylobacter species.Nat Rev Gastroenterol Hepatol8, 669–685 (2011). https://doi.org/10.1038/nrgastro.2011.191
Published:
Issue Date: