Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Gastroenterology & Hepatology
  • Review Article
  • Published:

The clinical importance of emergingCampylobacter species

Nature Reviews Gastroenterology & Hepatologyvolume 8pages669–685 (2011)Cite this article

Subjects

Abstract

A growing number ofCampylobacter species other thanC. jejuni andC. coli have been recognized as emerging human and animal pathogens. AlthoughC. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidiousCampylobacter spp., includingC. concisus,C. upsaliensis andC. ureolyticus. These emergingCampylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emergingCampylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of theCampylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emergingCampylobacter spp. in gastrointestinal health and disease.

Key Points

  • Members of theCampylobacter genus are ecologically diverse and readily colonize humans and animals

  • C. jejuni andC. coli are established pathogens in human gastroenteritis, but otherCampylobacter species (the 'emerging' pathogens) also have a role in gastrointestinal and extragastrointestinal infections in humans

  • The pathogenic mechanisms used by emergingCampylobacter spp. are diverse, and include attachment and invasion, production of toxins that modulate host functions and evasion of host defense systems

  • EmergingCampylobacter spp. pose a substantial risk of zoonotic transmission as these species colonize pets, farm animals and wild animals, and can be found in contaminated food products

  • Ongoing epidemiological surveillance of emergingCampylobacter spp. is key to understanding the distribution and zoonosis of these potentially novel and emerging pathogens

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colorized scanning electron microscopic images of a number of emergingCampylobacter species.
Figure 2: Proposed mechanisms of pathogenesis used by emergingCampylobacter species to colonize the intestinal tract or to spread to systemic sites.
Figure 3: Current methodological approaches used for the isolation of fastidiousCampylobacter species.

Similar content being viewed by others

References

  1. Karmali, M. A., Penner, J. L., Fleming, P. C., Williams, A. & Hennessy, J. N. The serotype and biotype distribution of clinical isolates ofCampylobacter jejuni andCampylobacter coli over a three-year period.J. Infect. Dis.147, 243–246 (1983).

    Article CAS PubMed  Google Scholar 

  2. Gürtler, M., Alter, T., Kasimir, S. & Fehlhaber, K. The importance ofCampylobacter coli in human campylobacteriosis: prevalence and genetic characterization.Epidemiol. Infect.133, 1081–1087 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  3. Hamidian, M. et al. Prevalence of putative virulence markers inCampylobacter jejuni andCampylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran, Iran.Can. J. Microbiol.57, 143–148 (2011).

    Article CAS PubMed  Google Scholar 

  4. Friedman, C. R. et al. Risk factors for sporadicCampylobacter infection in the United States: a case-control study in FoodNet sites.Clin. Infect. Dis.38 (Suppl. 3), S285–S296 (2004).

    Article PubMed  Google Scholar 

  5. Moore, J. E. et al.Campylobacter.Vet. Res.36, 351–382 (2005).

    Article CAS PubMed  Google Scholar 

  6. Bourke, B., Chan, V. L. & Sherman, P.Campylobacter upsaliensis: waiting in the wings.Clin. Microbiol. Rev.11, 440–449 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Lastovica, A. EmergingCampylobacter spp.: the tip of the iceberg.Clin. Microbiol. Newsletter28, 49–56 (2006).

    Article  Google Scholar 

  8. Lastovica, A. J. & Skirrow, M. B. inCampylobacter, 2nd edn (eds. Nachamkin, I. & Blaser, M. J.) 89–120 (American Society for Microbiology, Washington, 2000).

    Google Scholar 

  9. Levy, A. J. A gastro-enteritis cutbreak probably due to a bovine strain ofVibrio.Yale J. Biol. Med.18, 243–258 (1946).

    CAS PubMed PubMed Central  Google Scholar 

  10. King, E. O. Human infections withVibrio fetus and a closely related vibrio.J. Infect. Dis.101, 119–128 (1957).

    Article CAS PubMed  Google Scholar 

  11. Scallan, E. et al. Foodborne illness acquired in the United States—major pathogens.Emerg. Infect. Dis.17, 7–15 (2011).

    Article PubMed PubMed Central  Google Scholar 

  12. Ailes, E. et al. Continued decline in the incidence ofCampylobacter infections, FoodNet 1996–2006.Foodborne Pathog. Dis.5, 329–337 (2008).

    Article PubMed  Google Scholar 

  13. Adak, G. K., Meakins, S. M., Yip, H., Lopman, B. A. & O'Brien, S. J. Disease risks from foods, England and Wales, 1996–2000.Emerg. Infect. Dis.11, 365–372 (2005).

    Article PubMed PubMed Central  Google Scholar 

  14. Gillespie, I. A., O'Brien, S. J. & Bolton, F. J. Age patterns of persons with campylobacteriosis, England and Wales, 1990–2007.Emerg. Infect. Dis.15, 2046–2048 (2009).

    Article PubMed PubMed Central  Google Scholar 

  15. Hall, G. et al. Estimating foodborne gastroenteritis, Australia.Emerg. Infect. Dis.11, 1257–1264 (2005).

    Article PubMed PubMed Central  Google Scholar 

  16. Lastovica, A. J. & le Roux, E. Efficient isolation of Campylobacteria from stools.J. Clin. Microbiol.38, 2798–2799 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  17. Vandenberg, O. et al. Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium.J. Antimicrob. Chemother.57, 908–913 (2006).

    Article CAS PubMed  Google Scholar 

  18. Lindblom, G. B., Sjogren, E., Hansson-Westerberg, J. & Kaijser, B.Campylobacter upsaliensis, C. sputorum sputorum andC. concisus as common causes of diarrhoea in Swedish children.Scand. J. Infect. Dis.27, 187–188 (1995).

    Article CAS PubMed  Google Scholar 

  19. Labarca, J. A. et al.Campylobacter upsaliensis: Another pathogen for consideration in the United States.Clin. Infect. Dis.34, E59–E60 (2002).

    Article PubMed  Google Scholar 

  20. Alam, K. et al. Clinical characteristics and serotype distribution ofCampylobacter jejuni andCampylobacter coli isolated from diarrhoeic patients in Dhaka, Bangladesh, and Cape Town, South Africa.Bangladesh J. Microbiol.23, 121–124 (2006).

    Article  Google Scholar 

  21. Engberg, J., On, S. L., Harrington, C. S. & Gerner-Smidt, P. Prevalence ofCampylobacter, Arcobacter, Helicobacter, andSutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters.J. Clin. Microbiol.38, 286–291 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  22. Lawson, A. J., Linton, D. & Stanley, J. 16S rRNA gene sequences of 'Candidatus Campylobacter hominis', a novel uncultivated species, are found in the gastrointestinal tract of healthy humans.Microbiology144, 2063–2071 (1998).

    Article CAS PubMed  Google Scholar 

  23. Van Etterijck, R. et al. Isolation ofCampylobacter concisus from feces of children with and without diarrhea.J. Clin. Microbiol.34, 2304–2306 (1996).

    CAS PubMed PubMed Central  Google Scholar 

  24. Matsheka, M. I., Lastovica, A. J., Zappe, H. & Elisha, B. G. The use of (GTG)5 oligonucleotide as an RAPD primer to typeCampylobacter concisus.Lett. Appl. Microbiol.42, 600–605 (2006).

    CAS PubMed  Google Scholar 

  25. Aabenhus, R., On, S. L., Siemer, B. L., Permin, H. & Andersen, L. P. Delineation ofCampylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data.J. Clin. Microbiol.43, 5091–5096 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Engberg, J. et al.Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics.Clin. Microbiol. Infect.11, 288–295 (2005).

    Article CAS PubMed  Google Scholar 

  27. Aabenhus, R., Permin, H. & Andersen, L. P. Characterization and subgrouping ofCampylobacter concisus strains using protein profiles, conventional biochemical testing and antibiotic susceptibility.Eur. J. Gastroenterol. Hepatol.17, 1019–1024 (2005).

    Article CAS PubMed  Google Scholar 

  28. Kalischuk, L. D. & Inglis, G. D. Comparative genotypic and pathogenic examination ofCampylobacter concisus isolates from diarrheic and non-diarrheic humans.BMC Microbiol.11, 53 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Sandstedt, K., Ursing, J. & Walder, M. ThermotolerantCampylobacter with no or weak catalase activity isolated from dogs.Curr. Microbiol.8, 209–213 (1983).

    Article CAS  Google Scholar 

  30. Steele, T. W., Sangster, N. & Lanser, J. A. DNA relatedness and biochemical features ofCampylobacter spp. isolated in central and South Australia.J. Clin. Microbiol.22, 71–74 (1985).

    CAS PubMed PubMed Central  Google Scholar 

  31. Taylor, D. N., Kiehlbauch, J. A., Tee, W., Pitarangsi, C. & Echeverria, P. Isolation of group 2 aerotolerantCampylobacter species from Thai children with diarrhea.J. Infect. Dis.163, 1062–1067 (1991).

    Article CAS PubMed  Google Scholar 

  32. Goossens, H. et al. Is “Campylobacter upsaliensis” an unrecognised cause of human diarrhoea?Lancet335, 584–586 (1990).

    Article CAS PubMed  Google Scholar 

  33. Goossens, H. et al. Investigation of an outbreak ofCampylobacter upsaliensis in day care centers in Brussels: analysis of relationships among isolates by phenotypic and genotypic typing methods.J. Infect. Dis.172, 1298–1305 (1995).

    Article CAS PubMed  Google Scholar 

  34. Jenkin, G. A. & Tee, W.Campylobacter upsaliensis-associated diarrhea in human immunodeficiency virus-infected patients.Clin. Infect. Dis.27, 816–821 (1998).

    Article CAS PubMed  Google Scholar 

  35. Walmsley, S. L. & Karmali, M. A. Direct isolation of atypical thermophilicCampylobacter species from human feces on selective agar medium.J. Clin. Microbiol.27, 668–670 (1989).

    CAS PubMed PubMed Central  Google Scholar 

  36. Broczyk, A., Thompson, S., Smith, D. & Lior, H. Water-borne outbreak ofCampylobacter laridis-associated gastroenteritis.Lancet1, 164–165 (1987).

    Article CAS PubMed  Google Scholar 

  37. Tauxe, R. V. et al. Illness associated withCampylobacter laridis, a newly recognizedCampylobacter species.J. Clin. Microbiol.21, 222–225 (1985).

    CAS PubMed PubMed Central  Google Scholar 

  38. Bullman, S. et al.Campylobacter ureolyticus: an emerging gastrointestinal pathogen?FEMS Immunol. Med. Microbiol.61, 228–230 (2011).

    Article CAS PubMed  Google Scholar 

  39. Lawson, A. J., Shafi, M. S., Pathak, K. & Stanley, J. Detection ofCampylobacter in gastroenteritis: comparison of direct PCR assay of faecal samples with selective culture.Epidemiol. Infect.121, 547–553 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Bullman, S., O'Leary, J., Corcoran, D., Sleator, R. D. & Lucey, B. Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis.Epidemiol. Infect.18, 1–5 (2011).

    Google Scholar 

  41. Inglis, G. D., Boras, V. F. & Houde, A. Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook Heath Region of Southwestern Alberta, Canada.J. Clin. Microbiol.49, 209–219 (2011).

    Article CAS PubMed  Google Scholar 

  42. Tremblay, C., Gaudreau, C. & Lorange, M. Epidemiology and antimicrobial susceptibilities of 111Campylobacter fetus subsp.fetus strains isolated in Quebec, Canada, from 1983 to 2000.J. Clin. Microbiol.41, 463–466 (2003).

    Article PubMed PubMed Central  Google Scholar 

  43. Man, S. M., Kaakoush, N. O. & Mitchell, H. M. The role of bacteria and pattern-recognition receptors in Crohn's disease.Nat. Rev. Gastroenterol. Hepatol.8, 152–168 (2011).

    Article PubMed  Google Scholar 

  44. Newman, A. & Lambert, J. R.Campylobacter jejuni causing flare-up in inflammatory bowel disease.Lancet2, 919 (1980).

    Article CAS PubMed  Google Scholar 

  45. Zhang, L. et al. Detection and isolation ofCampylobacter species other thanC. jejuni from children with Crohn's disease.J. Clin. Microbiol.47, 453–455 (2009).

    Article PubMed  Google Scholar 

  46. Man, S. M. et al.Campylobacter concisus and otherCampylobacter species in children with newly diagnosed Crohn's disease.Inflamm. Bowel Dis.16, 1008–1016 (2010).

    Article PubMed  Google Scholar 

  47. Lastovica, A. J. Clinical relevance ofCampylobacter concisus isolated from pediatric patients.J. Clin. Microbiol.47, 2360 (2009).

    Article PubMed PubMed Central  Google Scholar 

  48. Mukhopadhya, I. et al. Detection ofCampylobacter concisus and otherCampylobacter species in colonic biopsies from adults with ulcerative colitis.PLoS ONE6, e21490 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Deshpande, N. P. et al. Sequencing and validation of the genome of aCampylobacter concisus reveals intra-species diversity.PLoS ONE6, e22170 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Kovach, Z. et al. Immunoreactive proteins ofCampylobacter concisus, an emergent intestinal pathogen.FEMS Immunol. Med. Microbiol.http://dx.doi.org/10.1111/j.1574–1695X.2011.00864.x.

  51. Macuch, P. J. & Tanner, A. C.Campylobacter species in health, gingivitis, and periodontitis.J. Dent. Res.79, 785–792 (2000).

    Article CAS PubMed  Google Scholar 

  52. Abiko, Y., Sato, T., Mayanagi, G. & Takahashi, N. Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR.J. Periodontal Res.45, 389–395 (2010).

    Article CAS PubMed  Google Scholar 

  53. von Troil-Linden, B., Torkko, H., Alaluusua, S., Jousimies-Somer, H. & Asikainen, S. Salivary levels of suspected periodontal pathogens in relation to periodontal status and treatment.J. Dent. Res.74, 1789–1795 (1995).

    Article CAS PubMed  Google Scholar 

  54. Lopez, R., Dahlen, G., Retamales, C. & Baelum, V. Clustering of subgingival microbial species in adolescents with periodontitis.Eur. J. Oral Sci.119, 141–150 (2011).

    Article PubMed  Google Scholar 

  55. Umeda, M. et al. The distribution of periodontopathic bacteria among Japanese children and their parents.J. Periodontal Res.39, 398–404 (2004).

    Article PubMed  Google Scholar 

  56. Castillo, D. M. et al. Detection of specific periodontal microorganisms from bacteraemia samples after periodontal therapy using molecular-based diagnostics.J. Clin. Periodontol38, 418–427 (2011).

    Article CAS PubMed  Google Scholar 

  57. Arce, R. M. et al. Characterization of the invasive and inflammatory traits of oralCampylobacter rectus in a murine model of fetoplacental growth restriction and in trophoblast cultures.J. Reprod. Immunol.84, 145–153 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  58. Wang, B., Kraig, E. & Kolodrubetz, D. Use of defined mutants to assess the role of theCampylobacter rectus S-layer in bacterium-epithelial cell interactions.Infect. Immun.68, 1465–1473 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Ogura, N. et al. Effect ofCampylobacter rectus LPS on plasminogen activator-plasmin system in human gingival fibroblast cells.J. Periodontal Res.30, 132–140 (1995).

    Article CAS PubMed  Google Scholar 

  60. Aas, J. A. et al. Bacteria of dental caries in primary and permanent teeth in children and young adults.J. Clin. Microbiol.46, 1407–1417 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Chua, K. et al.Campylobacter insulaenigrae causing septicaemia and enteritis.J. Med. Microbiol.56, 1565–1567 (2007).

    Article PubMed  Google Scholar 

  62. Pigrau, C. et al. Bacteremia due toCampylobacter species: clinical findings and antimicrobial susceptibility patterns.Clin. Infect. Dis.25, 1414–1420 (1997).

    Article CAS PubMed  Google Scholar 

  63. Wong, J. S., Anderson, T. P., Chambers, S. T., On, S. L. & Murdoch, D. R.Campylobacter fetus-associated epidural abscess and bacteremia.J. Clin. Microbiol.47, 857–858 (2009).

    Article PubMed PubMed Central  Google Scholar 

  64. Pacanowski, J. et al.Campylobacter bacteremia: clinical features and factors associated with fatal outcome.Clin. Infect. Dis.47, 790–796 (2008).

    Article PubMed  Google Scholar 

  65. Nielsen, H. et al. Bacteraemia as a result ofCampylobacter species: a population-based study of epidemiology and clinical risk factors.Clin. Microbiol. Infect.16, 57–61 (2010).

    Article CAS PubMed  Google Scholar 

  66. Preston, M. A. et al.In vitro susceptibility of “Campylobacter upsaliensis” to twenty-four antimicrobial agents.Eur. J. Clin. Microbiol. Infect. Dis.9, 822–824 (1990).

    Article CAS PubMed  Google Scholar 

  67. Krause, R. et al. Recurrent septicemia due toCampylobacter fetus andCampylobacter lari in an immunocompetent patient.Infection30, 171–174 (2002).

    Article CAS PubMed  Google Scholar 

  68. Schmidt, U., Chmel, H., Kaminski, Z. & Sen, P. The clinical spectrum ofCampylobacter fetus infections: report of five cases and review of the literature.Q. J. Med.49, 431–442 (1980).

    CAS PubMed  Google Scholar 

  69. de Vries, J. J., Arents, N. L. & Manson, W. L.Campylobacter species isolated from extra-oro-intestinal abscesses: a report of four cases and literature review.Eur. J. Clin. Microbiol. Infect. Dis.27, 1119–1123 (2008).

    Article CAS PubMed  Google Scholar 

  70. Cody, A. J., Clarke, L., Bowler, I. C. & Dingle, K. E. Ciprofloxacin-resistant campylobacteriosis in the UK.Lancet376, 1987 (2010).

    Article PubMed  Google Scholar 

  71. Zhao, S. et al. Antimicrobial resistance ofCampylobacter isolates from retail meat in the United States between 2002 and 2007.Appl. Environ. Microbiol.76, 7949–7956 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Zheng, J., Meng, J., Zhao, S., Singh, R. & Song, W. Adherence to and invasion of human intestinal epithelial cells byCampylobacter jejuni andCampylobacter coli isolates from retail meat products.J. Food Prot.69, 768–774 (2006).

    Article CAS PubMed  Google Scholar 

  73. Zheng, J., Meng, J., Zhao, S., Singh, R. & Song, W.Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requiresCampylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-κB.Infect. Immun.76, 4498–4508 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Malagon, I., Garcia, S. & Heredia, N. Adherence, invasion, toxigenic, and chemotactic properties of MexicanCampylobacter strains.J. Food Prot.73, 2093–2098 (2010).

    Article PubMed  Google Scholar 

  75. Gorkiewicz, G. et al. A genomic island defines subspecies-specific virulence features of the host-adapted pathogenCampylobacter fetus subsp.venerealis.J. Bacteriol.192, 502–517 (2010).

    Article CAS PubMed  Google Scholar 

  76. Mooney, A. et al. Invasion of human epithelial cells byCampylobacter upsaliensis.Cell. Microbiol.5, 835–847 (2003).

    Article CAS PubMed  Google Scholar 

  77. Man, S. M. et al. Host attachment, invasion, and stimulation of proinflammatory cytokines byCampylobacter concisus and other non-Campylobacter jejuni Campylobacter species.J. Infect. Dis.202, 1855–1865 (2010).

    Article CAS PubMed  Google Scholar 

  78. Graham, L. L., Friel, T. & Woodman, R. L. Fibronectin enhancesCampylobacter fetus interaction with extracellular matrix components and INT 407 cells.Can. J. Microbiol.54, 37–47 (2008).

    Article CAS PubMed  Google Scholar 

  79. Graham, L. L.Campylobacter fetus adheres to and enters INT 407 cells.Can. J. Microbiol.48, 995–1007 (2002).

    Article CAS PubMed  Google Scholar 

  80. Fouts, D. E. et al. Major structural differences and novel potential virulence mechanisms from the genomes of multipleCampylobacter species.PLoS Biol.3, e15 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  81. Sylvester, F. A., Philpott, D., Gold, B., Lastovica, A. & Forstner, J. F. Adherence to lipids and intestinal mucin by a recently recognized human pathogen,Campylobacter upsaliensis.Infect. Immun.64, 4060–4066 (1996).

    CAS PubMed PubMed Central  Google Scholar 

  82. Nielsen, H. L. et al. Oral and fecalCampylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells.PLoS ONE6, e23858 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  83. Kaakoush, N. O. et al. The secretome ofCampylobacter concisus.FEBS J.277, 1606–1617 (2010).

    Article CAS PubMed  Google Scholar 

  84. Baker, N. T. & Graham, L. L.Campylobacter fetus translocation across Caco-2 cell monolayers.Microb. Pathog.49, 260–272 (2010).

    Article CAS PubMed  Google Scholar 

  85. Watson, R. O. & Galan, J. E.Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.PLoS Pathog.4, e14 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  86. Ge, Z., Schauer, D. B. & Fox, J. G.In vivo virulence properties of bacterial cytolethal-distending toxin.Cell. Microbiol.10, 1599–1607 (2008).

    Article CAS PubMed  Google Scholar 

  87. Asakura, M. et al. Development of a cytolethal distending toxin (cdt) gene-based species-specific multiplex PCR assay for the detection and identification ofCampylobacter jejuni, Campylobacter coli andCampylobacter fetus.FEMS Immunol. Med. Microbiol.52, 260–266 (2008).

    Article CAS PubMed  Google Scholar 

  88. Nakanishi, S., Tazumi, A., Moore, J. E., Millar, B. C. & Matsuda, M. Molecular and comparative analyses of the full-length cytolethal distending toxin (cdt) gene operon and its adjacent genetic loci from urease-positive thermophilicCampylobacter (UPTC) organisms.Br. J. Biomed. Sci.67, 208–215 (2010).

    CAS PubMed  Google Scholar 

  89. Pickett, C. L. et al. Prevalence of cytolethal distending toxin production inCampylobacter jejuni and relatedness ofCampylobacter sp. cdtB gene.Infect. Immun.64, 2070–2078 (1996).

    CAS PubMed PubMed Central  Google Scholar 

  90. Asakura, M. et al. Comparative analysis of cytolethal distending toxin (cdt) genes amongCampylobacter jejuni, C. coli andC. fetus strains.Microb. Pathog.42, 174–183 (2007).

    Article CAS PubMed  Google Scholar 

  91. Johnson, W. M. & Lior, H. A new heat-labile cytolethal distending toxin (CLDT) produced byCampylobacter spp.Microb. Pathog.4, 115–126 (1988).

    Article CAS PubMed  Google Scholar 

  92. Bang, D. D. et al. Prevalence of cytolethal distending toxin (cdt) genes and CDT production inCampylobacter spp. isolated from Danish broilers.J. Med. Microbiol.50, 1087–1094 (2001).

    Article CAS PubMed  Google Scholar 

  93. Ohya, T., Tominaga, K. & Nakazawa, M. Production of cytolethal distending toxin (CLDT) byCampylobacter fetus subsp.fetus isolated from calves.J. Vet. Med. Sci.55, 507–509 (1993).

    Article CAS PubMed  Google Scholar 

  94. Mooney, A. et al.Campylobacter upsaliensis exerts a cytolethal distending toxin effect on HeLa cells and T lymphocytes.Microbiology147, 735–743 (2001).

    Article CAS  Google Scholar 

  95. Gillespie, M. J., Smutko, J., Haraszthy, G. G. & Zambon, J. J. Isolation and partial characterization of theCampylobacter rectus cytotoxin.Microb. Pathog.14, 203–215 (1993).

    Article CAS PubMed  Google Scholar 

  96. Arimi, S. M., Park, R. W. & Fricker, C. R. Study of haemolytic activity of someCampylobacter spp. on blood agar plates.J. Appl. Bacteriol.69, 384–389 (1990).

    Article CAS PubMed  Google Scholar 

  97. Istivan, T. S., Coloe, P. J., Fry, B. N., Ward, P. & Smith, S. C. Characterization of a haemolytic phospholipase A(2) activity in clinical isolates ofCampylobacter concisus.J. Med. Microbiol.53, 483–493 (2004).

    Article CAS PubMed  Google Scholar 

  98. Istivan, T. S., Smith, S. C., Fry, B. N. & Coloe, P. J. Characterization ofCampylobacter concisus hemolysins.FEMS Immunol. Med. Microbiol.54, 224–235 (2008).

    Article CAS PubMed  Google Scholar 

  99. Johnson, W. M. & Lior, H. Cytotoxic and cytotonic factors produced byCampylobacter jejuni,Campylobacter coli, andCampylobacter laridis.J. Clin. Microbiol.24, 275–281 (1986).

    CAS PubMed PubMed Central  Google Scholar 

  100. Fasano, A. et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization,in vitro.J. Clin. Invest.96, 710–720 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  101. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems.Nat. Rev. Microbiol.1, 137–149 (2003).

    Article CAS PubMed  Google Scholar 

  102. Bacon, D. J. et al. DNA sequence and mutational analyses of the pVir plasmid ofCampylobacter jejuni 81–176.Infect. Immun.70, 6242–6250 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  103. Moolhuijzen, P. M. et al. Genomic analysis ofCampylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets.BMC Microbiol.9, 86 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  104. Batchelor, R. A., Pearson, B. M., Friis, L. M., Guerry, P. & Wells, J. M. Nucleotide sequences and comparison of two large conjugative plasmids from differentCampylobacter species.Microbiology150, 3507–3517 (2004).

    Article CAS PubMed  Google Scholar 

  105. Jani, A. J. & Cotter, P. A. Type VI secretion: not just for pathogenesis anymore.Cell Host Microbe8, 2–6 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  106. Chow, J. & Mazmanian, S. K. A pathobiont of the microbiota balances host colonization and intestinal inflammation.Cell Host Microbe7, 265–276 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  107. US National Library of Medicine.The National Center for Biotechnology Information[online], (2011).

  108. Blaser, M. J. et al. Pathogenesis ofCampylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins.J. Infect. Dis.155, 696–706 (1987).

    Article CAS PubMed  Google Scholar 

  109. Blaser, M. J., Smith, P. F., Repine, J. E. & Joiner, K. A. Pathogenesis ofCampylobacter fetus infections. Failure of encapsulatedCampylobacter fetus to bind C3b explains serum and phagocytosis resistance.J. Clin. Invest.81, 1434–1444 (1988).

    Article CAS PubMed PubMed Central  Google Scholar 

  110. Okuda, K. et al. Role for the S-layer ofCampylobacter rectus ATCC33238 in complement mediated killing and phagocytic killing by leukocytes from guinea pig and human peripheral blood.Oral Dis.3, 113–120 (1997).

    Article CAS PubMed  Google Scholar 

  111. Goossens, H. et al. Characterization and description of “Campylobacter upsaliensis” isolated from human feces.J. Clin. Microbiol.28, 1039–1046 (1990).

    CAS PubMed PubMed Central  Google Scholar 

  112. Blaser, M. J. & Pei, Z. Pathogenesis ofCampylobacter fetus infections: critical role of high-molecular-weight S-layer proteins in virulence.J. Infect. Dis.167, 372–377 (1993).

    Article CAS PubMed  Google Scholar 

  113. Tu, Z. C., Gaudreau, C. & Blaser, M. J. Mechanisms underlyingCampylobacter fetus pathogenesis in humans: surface-layer protein variation in relapsing infections.J. Infect. Dis.191, 2082–2089 (2005).

    Article CAS PubMed  Google Scholar 

  114. Flemming, H. C. & Wingender, J. The biofilm matrix.Nat. Rev. Microbiol.8, 623–633 (2010).

    Article CAS PubMed  Google Scholar 

  115. Haddock, G. et al.Campylobacter jejuni 81–176 forms distinct microcolonies onin vitro-infected human small intestinal tissue prior to biofilm formation.Microbiology156, 3079–3084 (2010).

    Article CAS PubMed  Google Scholar 

  116. Gunther, N. W. 4th & Chen, C. Y. The biofilm forming potential of bacterial species in the genusCampylobacter.Food Microbiol.26, 44–51 (2009).

    Article CAS PubMed  Google Scholar 

  117. Buswell, C. M. et al. Extended survival and persistence ofCampylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining.Appl. Environ. Microbiol.64, 733–741 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  118. Noiri, Y., Ozaki, K., Nakae, H., Matsuo, T. & Ebisu, S. An immunohistochemical study on the localization ofPorphyromonas gingivalis,Campylobacter rectus andActinomyces viscosus in human periodontal pockets.J. Periodontal Res.32, 598–607 (1997).

    Article CAS PubMed  Google Scholar 

  119. Wyss, C. Sticky, a novel phenotype ofCampylobacter rectus.Microb. Ecol. Health Dis.8, 175–179 (1995).

    Article  Google Scholar 

  120. Salama, S. M., Tabor, H., Richter, M. & Taylor, D. E. Pulsed-field gel electrophoresis for epidemiologic studies ofCampylobacter hyointestinalis isolates.J. Clin. Microbiol.30, 1982–1984 (1992).

    CAS PubMed PubMed Central  Google Scholar 

  121. Moran, L., Scates, P. & Madden, R. H. Prevalence ofCampylobacter spp. in raw retail poultry on sale in Northern Ireland.J. Food Prot.72, 1830–1835 (2009).

    Article PubMed  Google Scholar 

  122. Logue, C. M., Sherwood, J. S., Elijah, L. M., Olah, P. A. & Dockter, M. R. The incidence ofCampylobacter spp. on processed turkey from processing plants in the midwestern United States.J. Appl. Microbiol.95, 234–241 (2003).

    Article CAS PubMed  Google Scholar 

  123. Kapperud, G., Skjerve, E., Bean, N. H., Ostroff, S. M. & Lassen, J. Risk factors for sporadicCampylobacter infections: results of a case-control study in Southeastern Norway.J. Clin. Microbiol.30, 3117–3121 (1992).

    CAS PubMed PubMed Central  Google Scholar 

  124. Neimann, J., Engberg, J., Molbak, K. & Wegener, H. C. A case-control study of risk factors for sporadicCampylobacter infections in Denmark.Epidemiol. Infect.130, 353–366 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  125. Sekizuka, T. et al. Molecular cloning, nucleotide sequencing and characterization of the flagellin gene from isolates of urease-positive thermophilicCampylobacter.Res. Microbiol.155, 185–191 (2004).

    Article CAS PubMed  Google Scholar 

  126. Inglis, G. D., McAllister, T. A., Larney, F. J. & Topp, E. Prolonged survival ofCampylobacter species in bovine manure compost.Appl. Environ. Microbiol.76, 1110–1119 (2010).

    Article CAS PubMed  Google Scholar 

  127. Lynch, O. A., Cagney, C., McDowell, D. A. & Duffy, G. Occurrence of fastidiousCampylobacter spp. in fresh meat and poultry using an adapted cultural protocol.Int. J. Food Microbiol.150, 171–177 (2011).

    Article PubMed  Google Scholar 

  128. Bostan, K., Aydin, A. & Ang, M. K. Prevalence and antibiotic susceptibility of thermophilicCampylobacter species on beef, mutton, and chicken carcasses in Istanbul, Turkey.Microb. Drug Resist.15, 143–149 (2009).

    Article CAS PubMed  Google Scholar 

  129. Ichiyama, S. et al.Campylobacter fetus subspeciesfetus cellulitis associated with bacteremia in debilitated hosts.Clin. Infect. Dis.27, 252–255 (1998).

    Article CAS PubMed  Google Scholar 

  130. Chaban, B., Ngeleka, M. & Hill, J. E. Detection and quantification of 14Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals.BMC Microbiol.10, 73 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  131. Parsons, B. N. et al. Prevalence and shedding patterns ofCampylobacter spp. in longitudinal studies of kennelled dogs.Vet. J.http://dx.doi.org/10.1016/j.tvjl.2010.10.006.

  132. Parsons, B. N. et al. Prevalence ofCampylobacter spp. in a cross-sectional study of dogs attending veterinary practices in the UK and risk indicators associated with shedding.Vet. J.184, 66–70 (2010).

    Article CAS PubMed  Google Scholar 

  133. Figura, N.Campylobacter spp isolated from dog faeces.Lancet338, 1403 (1991).

    Article CAS PubMed  Google Scholar 

  134. Goossens, H. et al.Campylobacter upsaliensis enteritis associated with canine infections.Lancet337, 1486–1487 (1991).

    Article CAS PubMed  Google Scholar 

  135. Gurgan, T. & Diker, K. S. Abortion associated withCampylobacter upsaliensis.J. Clin. Microbiol.32, 3093–3094 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  136. Minihan, D. et al.Campylobacter spp. in Irish feedlot cattle: a longitudinal study involving pre-harvest and harvest phases of the food chain.J. Vet. Med. B Infect. Dis. Vet. Public Health51, 28–33 (2004).

    Article CAS PubMed  Google Scholar 

  137. Schweitzer, N. et al. Molecular characterization ofCampylobacter lanienae strains isolated from food-producing animals.Foodborne Pathog Dis.8, 615–621 (2011).

    Article CAS PubMed  Google Scholar 

  138. Kapperud, G. et al. Factors associated with increased and decreased risk ofCampylobacter infection: a prospective case-control study in Norway.Am. J. Epidemiol.158, 234–242 (2003).

    Article PubMed  Google Scholar 

  139. Gallay, A. et al. Risk factors for acquiring sporadicCampylobacter infection in France: results from a national case-control study.J. Infect. Dis.197, 1477–1484 (2008).

    Article PubMed  Google Scholar 

  140. Kaboré, H et al. Association between potential zoonotic enteric infections in children and environmental risk factors in Quebec, 1999–2006.Zoonoses Public Health57, e195–e205 (2010).

    Article PubMed  Google Scholar 

  141. Gorkiewicz, G., Feierl, G., Zechner, R. & Zechner, E. L. Transmission ofCampylobacter hyointestinalis from a pig to a human.J. Clin. Microbiol.40, 2601–2605 (2002).

    Article PubMed PubMed Central  Google Scholar 

  142. Acke, E. et al. A comparison of different culture methods for the recovery ofCampylobacter species from pets.Zoonoses Public Health56, 490–495 (2009).

    Article CAS PubMed  Google Scholar 

  143. Bolton, F. J., Hutchinson, D. N. & Parker, G. Reassessment of selective agars and filtration techniques for isolation ofCampylobacter species from faeces.Eur. J. Clin. Microbiol. Infect. Dis.7, 155–160 (1988).

    Article CAS PubMed  Google Scholar 

  144. Debruyne, L., On, S. L., De Brandt, E. & Vandamme, P. NovelCampylobacter lari-like bacteria from humans and molluscs: description ofCampylobacter peloridis sp. nov.,Campylobacter lari subsp.concheus subsp. nov. andCampylobacter lari subsp.lari subsp. nov.Int. J. Syst. Evol. Microbiol.59, 1126–1132 (2009).

    Article CAS PubMed  Google Scholar 

  145. Kaur, T. et al.Campylobacter troglodytis - sp. nov., isolated from feces of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) in Tanzania.Appl. Environ. Microbiol.77, 2366–2373 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  146. Zanoni, R. G., Debruyne, L., Rossi, M., Revez, J. & Vandamme, P.Campylobacter cuniculorum sp. nov., from rabbits.Int. J. Syst. Evol. Microbiol.59, 1666–1671 (2009).

    Article CAS PubMed  Google Scholar 

  147. Rossi, M. et al.Campylobacter avium sp. nov., a hippurate-positive species isolated from poultry.Int. J. Syst. Evol. Microbiol.59, 2364–2369 (2009).

    Article CAS PubMed  Google Scholar 

  148. Debruyne, L. et al.Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region.Int. J. Syst. Evol. Microbiol.60, 815–819 (2010).

    Article CAS PubMed  Google Scholar 

  149. Debruyne, L. et al.Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus).Int. J. Syst. Evol. Microbiol.60, 1870–1875 (2010).

    Article CAS PubMed  Google Scholar 

  150. Beisele, M. et al.Helicobacter marmotae, novelHelicobacter sp. andCampylobacter sp. isolated from livers and intestines of Prairie dogs.J. Med. Microbiol.60, 1366–1374 (2011).

    Article PubMed PubMed Central  Google Scholar 

  151. Goldman, C. G. et al. Novel gastric helicobacters and oral campylobacters are present in captive and wild cetaceans.Vet. Microbiol.152, 138–145 (2011).

    Article PubMed PubMed Central  Google Scholar 

  152. Blaser, M. J. et al. ExtraintestinalCampylobacter jejuni andCampylobacter coli infections: host factors and strain characteristics.J. Infect. Dis.153, 552–559 (1986).

    Article CAS PubMed  Google Scholar 

  153. Petersen, R. F., Harrington, C. S., Kortegaard, H. E. & On, S. L. A PCR-DGGE method for detection and identification ofCampylobacter, Helicobacter, Arcobacter and relatedEpsilobacteria and its application to saliva samples from humans and domestic pets.J. Appl. Microbiol.103, 2601–2615 (2007).

    Article CAS PubMed  Google Scholar 

  154. Kumar, P. S., Griffen, A. L., Moeschberger, M. L. & Leys, E. J. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis.J. Clin. Microbiol.43, 3944–55 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  155. Tu, Z. C. et al.Campylobacter fetus of reptile origin as a human pathogen.J. Clin. Microbiol.42, 4405–4407 (2004).

    Article PubMed PubMed Central  Google Scholar 

  156. Simor, A. E., Karmali, M. A., Jadavji, T. & Roscoe, M. Abortion and perinatal sepsis associated withCampylobacter infection.Rev. Infect. Dis.8, 397–402 (1986).

    Article CAS PubMed  Google Scholar 

  157. Dronda, F., Garcia-Arata, I., Navas, E. & de Rafael, L. Meningitis in adults due toCampylobacter fetus subspeciesfetus.Clin. Infect. Dis.27, 906–907 (1998).

    Article CAS PubMed  Google Scholar 

  158. Willis, M. D. & Austin, W. J. HumanVibrio fetus infection. Report of two dissimilar cases.Am. J. Dis. Child.112, 459–462 (1966).

    Article CAS PubMed  Google Scholar 

  159. Sauerwein, R. W., Bisseling, J. & Horrevorts, A. M. Septic abortion associated withCampylobacter fetus subspeciesfetus infection: case report and review of the literature.Infection21, 331–333 (1993).

    Article CAS PubMed  Google Scholar 

  160. Linscott, A. J. et al. Fatal septicemia due toClostridium hathewayi andCampylobacter hominis.Anaerobe11, 97–98 (2005).

    Article PubMed  Google Scholar 

  161. Lastovica, A. J. inCampylobacters, Helicobacters and related organisms (eds Newell, D. G. et al.) 475–479 (Plenum Press, New York, 1996).

    Book  Google Scholar 

  162. Logan, J. M., Burnens, A., Linton, D., Lawson, A. J. & Stanley, J.Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir.Int. J. Syst. Evol. Microbiol.50, 865–872 (2000).

    Article CAS PubMed  Google Scholar 

  163. Morris, C. N., Scully, B. & Garvey, G. J.Campylobacter lari associated with permanent pacemaker infection and bacteremia.Clin. Infect. Dis.27, 220–221 (1998).

    Article CAS PubMed  Google Scholar 

  164. On, S. L., Ridgwell, F., Cryan, B. & Azadian, B. S. Isolation ofCampylobacter sputorum biovar sputorum from an axillary abscess.J. Infect.24, 175–179 (1992).

    Article CAS PubMed  Google Scholar 

  165. Tee, W., Luppino, M. & Rambaldo, S. Bacteremia due toCampylobacter sputorum Biovar sputorum.Clin. Infect. Dis.27, 1544–1545 (1998).

    Article CAS PubMed  Google Scholar 

  166. On, S. L., Atabay, H. I., Corry, J. E., Harrington, C. S. & Vandamme, P. Emended description ofCampylobacter sputorum and revision of its infrasubspecific (biovar) divisions, includingC. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans.Int. J. Syst. Bacteriol.48, 195–206 (1998).

    Article PubMed  Google Scholar 

  167. Patton, C. M. et al. Human disease associated with “Campylobacter upsaliensis” (catalase-negative or weakly positiveCampylobacter species) in the United States.J. Clin. Microbiol.27, 66–73 (1989).

    CAS PubMed PubMed Central  Google Scholar 

  168. Gaudreau, C. & Lamothe, F.Campylobacter upsaliensis isolated from a breast abscess.J. Clin. Microbiol.30, 1354–1356 (1992).

    CAS PubMed PubMed Central  Google Scholar 

  169. Man, S. M., Kaakoush, N. O., Octavia, S. & Mitchell, H. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within theCampylobacter genus.Appl. Environ. Microbiol.76, 3071–3081 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  170. Duerden, B., Bennet, K. W. & Faulkner, J. Isolation ofBacteroides ureolyticus (B. corrodens) from clinical infections.J. Clin. Pathol.35, 309–312 (1982).

    Article CAS PubMed PubMed Central  Google Scholar 

  171. Inglis, G. D., Hoar, B. M., Whiteside, D. P. & Morck, D. W.Campylobacter canadensis sp. nov., from captive whooping cranes in Canada.Int. J. Syst. Evol. Microbiol.57, 2636–2644 (2007).

    Article CAS PubMed  Google Scholar 

  172. Enokimoto, M., Kubo, M., Bozono, Y., Mieno, Y. & Misawa, N. Enumeration and identification ofCampylobacter species in the liver and bile of slaughtered cattle.Int. J. Food Microbiol.118, 259–263 (2007).

    Article CAS PubMed  Google Scholar 

  173. Inglis, G. D. et al. Temporal prevalence of antimicrobial resistance inCampylobacter spp. from beef cattle in Alberta feedlots.Appl. Environ. Microbiol.72, 4088–4095 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  174. Muller, W., Bohland, C. & Methner, U. Detection and genotypic differentiation ofCampylobacter jejuni andCampylobacter coli strains from laying hens by multiplex PCR and fla-typing.Res. Vet. Sci.http://dx.doi/org/10.1016/j.rvsc.2011.01.028.

  175. Wadl, M. et al. Easy-to-use rapid test for direct detection ofCampylobacter spp. in chicken feces.J. Food Prot.72, 2483–2488 (2009).

    Article CAS PubMed  Google Scholar 

  176. Nonga, H. E. & Muhairwa, A. P. Prevalence and antibiotic susceptibility of thermophilicCampylobacter isolates from free range domestic duck (Cairina moschata) in Morogoro municipality, Tanzania.Trop. Anim. Health Prod.42, 165–172 (2010).

    Article PubMed  Google Scholar 

  177. Hutchinson, D. N. et al.Campylobacter enteritis associated with consumption of raw goat's milk.Lancet1, 1037–1038 (1985).

    Article CAS PubMed  Google Scholar 

  178. Sestak, K. et al. Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques.Infect. Immun.71, 4079–4086 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  179. Ertas, H. B., Ozbey, G., Kilic, A. & Muz, A. Isolation ofCampylobacter jejuni andCampylobacter coli from the gall bladder samples of sheep and identification by polymerase chain reaction.J. Vet. Med. B Infect. Dis. Vet. Public Health50, 294–297 (2003).

    Article CAS PubMed  Google Scholar 

  180. Oporto, B. & Hurtado, A. Emerging thermotolerantCampylobacter species in healthy ruminants and swine.Foodborne Pathog. Dis.8, 807–813 (2011).

    Article PubMed  Google Scholar 

  181. Campero, C. M. et al. Immunohistochemical identification ofCampylobacter fetus in natural cases of bovine and ovine abortions.J. Vet. Med. B Infect. Dis. Vet. Public Health52, 138–141 (2005).

    Article CAS PubMed  Google Scholar 

  182. Schulze, F., Bagon, A., Muller, W. & Hotzel, H. Identification ofCampylobacter fetus subspecies by phenotypic differentiation and PCR.J. Clin. Microbiol.44, 2019–2024 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  183. Willoughby, K. et al. A multiplex polymerase chain reaction to detect and differentiateCampylobacter fetus subspeciesfetus andCampylobacter fetus -speciesvenerealis: use on UK isolates of,C. fetus and otherCampylobacter spp.J. Appl. Microbiol.99, 758–766 (2005).

    Article CAS PubMed  Google Scholar 

  184. Harvey, S. & Greenwood, J. R. Isolation ofCampylobacter fetus from a pet turtle.J. Clin. Microbiol.21, 260–261 (1985).

    CAS PubMed PubMed Central  Google Scholar 

  185. Gebhart, C. J., Edmonds, P., Ward, G. E., Kurtz, H. J. & Brenner, D. J. “Campylobacter hyointestinalis” sp. nov.: a new species ofCampylobacter found in the intestines of pigs and other animals.J. Clin. Microbiol.21, 715–720 (1985).

    CAS PubMed PubMed Central  Google Scholar 

  186. Hill, B. D., Thomas, R. J. & Mackenzie, A. R.Campylobacter hyointestinalis-associated enteritis in Moluccan rusa deer (Cervus timorensis subsp.Moluccensis).J. Comp. Pathol.97, 687–694 (1987).

    Article CAS PubMed  Google Scholar 

  187. Hanninen, M. L. et al.Campylobacter hyointestinalis subsp.hyointestinalis, a commonCampylobacter species in reindeer.J. Appl. Microbiol.92, 717–723 (2002).

    Article CAS PubMed  Google Scholar 

  188. Stoddard, R. A. et al.Campylobacter insulaenigrae isolates from northern elephant seals (Mirounga angustirostris) in California.Appl. Environ. Microbiol.73, 1729–1735 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  189. Foster, G. et al.Campylobacter insulaenigrae sp. nov., isolated from marine mammals.Int. J. Syst. Evol. Microbiol.54, 2369–2373 (2004).

    Article CAS PubMed  Google Scholar 

  190. González, M., Villanueva, M. P., Debruyne, L., Vandamme, P. & Fernández, H.Campylobacter insulaenigrae: first isolation report from South American sea lion (Otaria flavescens [Shaw, 1800]).Braz. J. Microbiol.42, 261–265 (2011).

    Article PubMed PubMed Central  Google Scholar 

  191. Stoddard, R. A.Salmonella andCampylobacter spp. in Northern Elephant Seals, California.Emerg. Infect. Dis.11, 1967–1969 (2005).

    Article PubMed PubMed Central  Google Scholar 

  192. Benjamin, J., Leaper, S., Owen, R. J. & Skirrow, M. B. Description ofCampylobacter laridis, a new species comprising the nalidixic acid resistant thermophilicCampylobacter (NARTC) group.Curr. Microbiol.8, 231–238 (1983).

    Article  Google Scholar 

  193. Molina-Lopez, R. A. et al. Wild raptors as carriers of antimicrobial-resistantSalmonella andCampylobacter strains.Vet. Rec.168, 565 (2011).

    Article CAS PubMed  Google Scholar 

  194. Shigematsu, M. et al. Genetic heterogeneity of the cytolethal distending toxin B (cdtB) gene locus among isolates ofCampylobacter lari.Br. J. Biomed. Sci.63, 179–181 (2006).

    Article CAS PubMed  Google Scholar 

  195. Fox, J. G. et al. “Campylobacter upsaliensis” isolated from cats as identified by DNA relatedness and biochemical features.J. Clin. Microbiol.27, 2376–2378 (1989).

    CAS PubMed PubMed Central  Google Scholar 

  196. Hariharan, H. et al. Isolation ofBacteroides ureolyticus from the equine endometrium.J. Vet. Diagn. Invest.6, 127–130 (1994).

    Article CAS PubMed  Google Scholar 

  197. Selander, B., Rydberg, J., Lenner, C. & Hagerstrand, I. Unusual infectious complication in a pregnant woman. Spontaneous abortion caused byCampylobacter coli.Lakartidningen90, 4356–4357 (1993).

    CAS PubMed  Google Scholar 

  198. Macfarlane, S., Furrie, E., Macfarlane, G. T. & Dillon, J. F. Microbial colonization of the upper gastrointestinal tract in patients with Barrett's esophagus.Clin. Infect. Dis.45, 29–38 (2007).

    Article PubMed  Google Scholar 

  199. Cox, C. J., Kempsell, K. E. & Gaston, J. S. Investigation of infectious agents associated with arthritis by reverse transcription PCR of bacterial rRNA.Arthritis Res. Ther.5, R1–R8 (2003).

    Article CAS PubMed  Google Scholar 

  200. Farrugia, D. C., Eykyn, S. J. & Smyth, E. G.Campylobacter fetus endocarditis: two case reports and review.Clin. Infect. Dis.18, 443–446 (1994).

    Article CAS PubMed  Google Scholar 

  201. Steinkraus, G. E. & Wright, B. D. Septic abortion with intact fetal membranes caused byCampylobacter fetus subsp.fetus.J. Clin. Microbiol.32, 1608–1609 (1994).

    CAS PubMed PubMed Central  Google Scholar 

  202. Yamashita, K., Aoki, Y. & Hiroshima, K. Pyogenic vertebral osteomyelitis caused byCampylobacter fetus subspeciesfetus. A case report.Spine (Phila Pa 1976)24, 582–584 (1999).

    Article CAS  Google Scholar 

  203. Johnson, C. C. et al.Bacteroides gracilis, an important anaerobic bacterial pathogen.J. Clin. Microbiol.22, 799–802 (1985).

    CAS PubMed PubMed Central  Google Scholar 

  204. Gradel, K. O. et al. Increased short- and long-term risk of inflammatory bowel disease afterSalmonella orCampylobacter gastroenteritis.Gastroenterology137, 495–501 (2009).

    Article PubMed  Google Scholar 

  205. Ruigomez, A., Garcia Rodriguez, L. A. & Panes, J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities.Clin. Gastroenterol. Hepatol.5, 465–469 (2007).

    Article PubMed  Google Scholar 

  206. Verdu, E. F., Mauro, M., Bourgeois, J. & Armstrong, D. Clinical onset of celiac disease after an episode ofCampylobacter jejuni enteritis.Can. J. Gastroenterol.21, 453–455 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  207. Poropatich, K. O., Walker, C. L. & Black, R. E. Quantifying the association betweenCampylobacter infection and Guillain-Barre syndrome: a systematic review.J. Health Popul. Nutr.28, 545–552 (2010).

    Article PubMed PubMed Central  Google Scholar 

  208. Ternhag, A., Torner, A., Svensson, A., Ekdahl, K. & Giesecke, J. Short- and long-term effects of bacterial gastrointestinal infections.Emerg. Infect. Dis.14, 143–148 (2008).

    Article PubMed PubMed Central  Google Scholar 

  209. Roberts, T., Shah, A., Graham, J. G. & McQueen, I. N. The Miller Fischer syndrome followingCampylobacter enteritis: a report of two cases.J. Neurol. Neurosurg. Psychiatry50, 1557–1558 (1987).

    Article CAS PubMed PubMed Central  Google Scholar 

  210. Chamovitz, B. N. et al.Campylobacter jejuni-associated hemolytic-uremic syndrome in a mother and daughter.Pediatrics71, 253–256 (1983).

    CAS PubMed  Google Scholar 

  211. Lam, J. Y. et al. Three cases of severe invasive infections caused byCampylobacter rectus and first report of fatalC. rectus infection.J. Clin. Microbiol.49, 1687–1691 (2011).

    Article PubMed PubMed Central  Google Scholar 

  212. Aabenhus, R., Stenram, U., Andersen, L. P., Permin, H. & Ljungh, A. First attempt to produce experimentalCampylobacter concisus infection in mice.World J. Gastroenterol.14, 6954–6959 (2008).

    Article PubMed PubMed Central  Google Scholar 

  213. Arce, R. M. et al. Increased TLR4 expression in murine placentas after oral infection with periodontal pathogens.Placenta30, 156–162 (2009).

    Article CAS PubMed  Google Scholar 

  214. Young, V. B., Dangler, C. A., Fox, J. G. & Schauer, D. B. Chronic atrophic gastritis in SCID mice experimentally infected withCampylobacter fetus.Infect. Immun.68, 2110–2118 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to my colleagues who provided helpful suggestions for this Review article: R. O. Gilbert (Cornell University, USA), H. M. Mitchell and N. O. Kaakoush (The University of New South Wales, Australia), and P. Tourlomousis and D. Raghunathan (University of Cambridge, UK). I would also like to thank the Cambridge Commonwealth Trust and the Cambridge Australia Trust for their kind support. I apologize to my colleagues whose work was not cited in the Review owing to space limitations.

Author information

Authors and Affiliations

  1. Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK

    Si Ming Man

Authors
  1. Si Ming Man

    You can also search for this author inPubMed Google Scholar

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

About this article

Cite this article

Man, S. The clinical importance of emergingCampylobacter species.Nat Rev Gastroenterol Hepatol8, 669–685 (2011). https://doi.org/10.1038/nrgastro.2011.191

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing Microbiology

Sign up for theNature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing: Microbiology

[8]ページ先頭

©2009-2025 Movatter.jp