Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Genetics
  • Review Article
  • Published:

The genetics of inbreeding depression

Nature Reviews Geneticsvolume 10pages783–796 (2009)Cite this article

Key Points

  • Inbreeding depression is the reduced survival and fertility of offspring of related individuals. Large effects are documented in wild animal and plant populations, as well as in humans. Intercrossing inbred strains improves yield (heterosis).

  • Inbreeding depression implies that genetic variation exists in species for alleles that affect fitness. It is important for the evolutionary maintenance of outcrossing mating systems.

  • Inbreeding depression and heterosis could be caused either by the presence of (largely recessive) deleterious mutations that are present at low frequencies in populations (so that inbreeding increases the frequency of individuals expressing their effects; the 'dominance hypothesis') or by alleles with heterozygote advantage that are maintained by balancing selection at intermediate frequencies (here, homozygotes would have lower fitness; the 'overdominance hypothesis').

  • These two hypotheses are genetically distinct but, if deleterious mutations are common, genome regions may frequently carry mutations in different genes in repulsion. Therefore, homozygotes for each chromosome type might express fitness-reducing recessive mutations, and heterozygotes (with wild-type function of both genes) would have higher fitness owing to complementation. The region would therefore show heterozygote advantage even though no overdominant gene is present. Distinguishing this 'pseudo-overdominance' from true overdominance is difficult.

  • Rather than excluding overdominance, much work has focused on assessing the extent to which genetic variation in populations can be accounted for purely by deleterious mutations.

  • The overall data suggest that inbreeding depression is predominantly caused by recessive deleterious mutations in populations, so we argue that the same applies to heterosis and that the appearance of overdominance is often due to pseudo-overdominance.

  • This suggestion is consistent with fine-mapping data from genetic analyses of heterosis and with molecular evolutionary data that suggests that purifying selection is pervasive in functional genes but that long-term balancing selection (of which overdominance is a sub-category) is infrequent.

Abstract

Inbreeding depression — the reduced survival and fertility of offspring of related individuals — occurs in wild animal and plant populations as well as in humans, indicating that genetic variation in fitness traits exists in natural populations. Inbreeding depression is important in the evolution of outcrossing mating systems and, because intercrossing inbred strains improves yield (heterosis), which is important in crop breeding, the genetic basis of these effects has been debated since the early twentieth century. Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding depression and heterosis are predominantly caused by the presence of recessive deleterious mutations in populations.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the main genetic hypotheses for inbreeding depression.
Figure 2: Molecular hypotheses for heterosis or heterozygote functional superiority.

Similar content being viewed by others

References

  1. Darwin, C. R.The Effects of Cross and Self Fertilization in the Vegetable Kingdom (John Murray, London, 1876).

    Book  Google Scholar 

  2. Darwin, C. R.The Various Contrivances by which Orchids are Fertilised by Insects. (John Murray, London, 1862).

    Google Scholar 

  3. Darwin, C. R.The Different Forms of Flowers on Plants of the Same Species (John Murray, London, 1877).

    Book  Google Scholar 

  4. McCune, A. R. et al. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish.Science296, 2398–2401 (2002).

    Article CAS PubMed  Google Scholar 

  5. Zhang, H.-Y. et al. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids.Mol. Plant1, 720–731 (2008).A fascinating, detailed study of gene expression differences in rice, together with information about DNA sequence differences in non-coding regions that are adjacent to genes. It also contains clear models that show the possible expression patterns that can arise.

    Article CAS PubMed  Google Scholar 

  6. Duvick, D. N. Biotechnology in the 1930s: the development of hybrid maize.Nature Rev. Genet.2, 69–74 (2000).

    Article  Google Scholar 

  7. Grossniklaus, U., Nogler, G. A. & Dijk, P. J. v. How to avoid sex: the genetic control of gametophytic apomixis.Plant Cell13, 1491–1498 (2004).

    Google Scholar 

  8. Lewontin, R. C.The Genetic Basis of Evolutionary Change (Columbia Univ. Press, New York, 1974).

    Google Scholar 

  9. Crow, J. F. Mutation, mean fitness, and genetic load.Oxf. Surv. Evol. Biol.9, 3–42 (1993).

    Google Scholar 

  10. Barrière, A. et al. Detecting heterozygosity in shotgun genome assemblies: lessons from obligately outcrossing nematodes.Genome Res.19, 470–480 (2009).

    Article PubMed PubMed Central CAS  Google Scholar 

  11. Sved, J. A. An estimate of heterosis inDrosophila melanogaster.Genet. Res.18, 97–105 (1971).

    Article CAS PubMed  Google Scholar 

  12. Latter, B., Mulley, J., Reid, D. & Pascoe, L. Reduced genetic load revealed by slow inbreeding inDrosophila melanogaster.Genetics139, 287–297 (1998).

    Article  Google Scholar 

  13. Willis, J. H. Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals inMimulus guttatus.Heredity69, 562–572 (1992).

    Article  Google Scholar 

  14. Klekowski, E. J., Lowenfeld, R. L. & Hepler, P. K. Mangrove genetics II. Outcrossing and lower spontaneous mutation rates in Puerto Rican Rhizophora.Int. J. Plant Sci.155, 373–381 (1994).

    Article  Google Scholar 

  15. Ohnishi, O. Population genetics of cultivated buckwheat,Fagopyrum esculentum Moench. I. Frequency of chlorophyll-deficient mutants in Japanese populations.Jpn J. Genet.57, 623–639 (1982).

    Article  Google Scholar 

  16. Ohnishi, O. Population genetics of cultivated buckwheat,Fagopyrum esculentum Moench. III. Frequency of sterility mutants in Japanese populations.Jpn J. Genet.60, 391–404 (1985).

    Article  Google Scholar 

  17. Willis, J. H. The contribution of male sterility mutations to inbreeding depression inMimulus guttatus.Heredity83, 337–346 (1999).This genetic study extends the evidence for large-effect mutations that segregate in natural populations to species other thanD. melanogaster.

    Article PubMed  Google Scholar 

  18. Werren, J. inThe Natural History of Inbreeding and Outbreeding (ed. Thornhill, N. W.) 42–59 (Univ. Chicago Press, 1993).

    Google Scholar 

  19. Henter, H. J. Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa.Evolution57, 1793–1803 (2003).

    Article PubMed  Google Scholar 

  20. Fisher, R. A. Average excess and average effect of a gene substitution.Ann. Eugen.11, 53–63 (1941).An important theoretical paper that first introduced and showed the genetic transmission advantage of inbreeding.

    Article  Google Scholar 

  21. Nagylaki, T. A model for the evolution of self fertilization and vegetative reproduction.J. Theor. Biol.58, 55–58 (1976).

    Article CAS PubMed  Google Scholar 

  22. Stebbins, G. L.Variation and Evolution in Plants (Columbia Univ. Press, New York, 1950).

    Book  Google Scholar 

  23. Lloyd, D. G. Some reproductive factors affecting the selection of self-fertilization in plants.Am. Nat.113, 67–79 (1979).

    Article  Google Scholar 

  24. Porcher, E. & Lande, R. The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation.J. Evol. Biol.18, 497–508 (2005).An important, integrated model of outcrossing rate evolution that includes several biologically relevant processes.

    Article CAS PubMed  Google Scholar 

  25. Charlesworth, D. & Charlesworth, B. Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate.Evolution44, 870–888 (1990).

    Article CAS PubMed  Google Scholar 

  26. Johnston, M. O. et al. Correlations among fertility components can maintain mixed mating in plants.Am. Nat.173, 1–11 (2009).

    Article PubMed  Google Scholar 

  27. Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression.Annu. Rev. Ecol. Syst.30, 479–513 (1999).

    Article  Google Scholar 

  28. Carr, D. E. & Dudash, M. Recent approaches into the genetic basis of inbreeding depression in plants.Philos. Trans. R. Soc. Lond. B358, 1071–1084 (2003).

    Article CAS  Google Scholar 

  29. Crnokrak, P. & Barrett, S. C. D. Perspective: purging the genetic load: a review of the experimental evidence.Evolution56, 2347–2358 (2002).

    Article PubMed  Google Scholar 

  30. Charlesworth, B., Charlesworth, D. & Morgan, M. T. Genetic loads and estimates of mutation rates in very inbred plant populations.Nature347, 380–382 (1990).

    Article  Google Scholar 

  31. Ohta, T. & Cockerham, C. C. Detrimental genes with partial selfing and effects on a neutral locus.Genet. Res.23, 191–200 (1974).

    Article  Google Scholar 

  32. Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: I. Mutation parameters and inbreeding rate.Genet. Res.74, 165–178 (1999).

    Article CAS PubMed  Google Scholar 

  33. Charlesworth, D., Morgan, M. T. & Charlesworth, B. Inbreeding depression, genetic load and the evolution of outcrossing rates in a multi-locus system with no linkage.Evolution44, 1469–1489 (1990).

    Article CAS PubMed  Google Scholar 

  34. Willis, J. H. The role of genes of large effect on inbreeding depression inMimulus guttatus.Evolution53, 1678–1691 (1999).An ingenious experimental approach to understanding how much inbreeding depression can be accounted for by large-effect deleterious mutations.

    Article CAS PubMed  Google Scholar 

  35. Fox, C. W., Scheibly, K. L. & Reed, D. H. Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression.Evolution62, 2236–2249 (2008).

    Article PubMed  Google Scholar 

  36. Moll, R. H., Cock, C. C., Stuber, C. W. & Williams, W. P. Selection responses, genetic–environmental interactions, and heterosis with recurrent selection for yield in maize.Crop Sci.18, 641–645 (1978).

    Article  Google Scholar 

  37. Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences.Ann. Rev. Ecol. Syst.18, 237–268 (1987).

    Article  Google Scholar 

  38. Falconer, D. S. & Mackay, T. F. C.Introduction to Quantitative Genetics (Longman, Harlow, 1996).

    Google Scholar 

  39. Haldane, J. B. S. Parental and fraternal correlations in fitness.Ann. Eugen.14, 288–292 (1949).

    Article CAS PubMed  Google Scholar 

  40. Houle, D., Hoffmaster, D. K., Assimacopoulos, S. & Charlesworth, B. The genomic rate of mutation for fitness inDrosophila.Nature359, 58–60 (1992).

    Article CAS PubMed  Google Scholar 

  41. Mukai, T., Cardellino, R. A., Watanabe, T. K. & Crow, J. F. The genetic variance for viability and its components in a local population ofDrosophila melanogaster.Genetics78, 1195–1208 (1974).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Charlesworth, B., Miyo, T. & Borthwick, H. Selection responses of means and inbreeding depression for female fecundity inDrosophila melanogaster suggest contributions from intermediate-frequency alleles to quantitative trait variation.Genet. Res.89, 85–91 (2007).

    Article CAS PubMed  Google Scholar 

  43. Charlesworth, B. & Hughes, K. A. inEvolutionary Genetics: From Molecules to Morphology (eds Singh, R. S. & Krimbas, C. B.) 369–392 (Cambridge Univ. Press, 2000).

    Google Scholar 

  44. Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence.Proc. Natl Acad. Sci. USA93, 6140–6145 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Charlesworth, B. & Charlesworth, D. The genetic basis of inbreeding depression.Genet. Res.74, 329–340 (1999).

    Article CAS PubMed  Google Scholar 

  46. Kelly, J. K. & Willis, J. H. Deleterious mutations and genetic variation for flower size inMimulus guttatus.Evolution55, 937–942 (2001).

    Article CAS PubMed  Google Scholar 

  47. Kelly, J. K. Deleterious mutations and the genetic variance of male fitness components inMimulus guttatus.Genetics164, 1071–1085 (2003).An integrated analysis that uses quantitative genetic approaches to detect the effects of deleterious mutations on a fitness-related character.

    Article PubMed PubMed Central  Google Scholar 

  48. Schultz, S. & Willis, J. H. Individual variation in inbreeding depression: the roles of inbreeding history and mutation.Genetics141, 1209–1223 (1995).The authors extend models that are used to predict the overall average inbreeding depression to predict the distribution of effects.

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T. & Lander, E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers.Genetics132, 823–839 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Garcia, A., Wang, S., Melchinger, A. E. & Zeng, Z. B. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice.Genetics180, 1707–1724 (2008).

    Article PubMed PubMed Central  Google Scholar 

  51. Graham, G., Wolff, D. & Stuber, C. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping.Crop Sci.37, 1601–1610 (1997).

    Article CAS  Google Scholar 

  52. Latter, B. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding inDrosophila melanogaster.Genetics148, 1143–1158 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Noor, M. A. F., Cunningham, A. & Larkin, J. Consequences of recombination rate variation on quantitative trait locus mapping studies: simulations based on theDrosophila melanogaster genome.Genetics159, 581–588 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. McMullen, M. D. et al. Genetic properties of the maize nested association mapping population.Science325, 737–740 (2009).

    Article CAS PubMed  Google Scholar 

  55. Mitchell-Olds, T. Interval mapping of viability loci causing heterosis inArabidopsis.Genetics140, 1105–1109 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  56. Radoev, M., Becker, H. & Ecke, W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping.Genetics179, 1547–1558 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Wright, S.Evolution and the Genetics of Populations Vol.3 (Univ. Chicago Press, 1977).

    Google Scholar 

  58. Redei, G. P. Single locus heterosis.Z. Indukt. Abstamm. Vererbungsl.93, 164–170 (1962).

    Google Scholar 

  59. Schuler, J. F. Natural mutations in inbred lines of maize and their heterotic effect. I. Comparison of parent, mutant and their F1 hybrid in a highly inbred background.Genetics39, 908–922 (1954).

    Article CAS PubMed PubMed Central  Google Scholar 

  60. Schuler, J. F. & Sprague, G. F. Natural mutations in inbred lines of maize and their heterotic effect. II. Comparison of mother line versus mutant when outcrossed to related inbreds.Genetics41, 281–291 (1955).An important early test to distinguish between true overdominance and pseudo-overdominance.

    Article  Google Scholar 

  61. Xiao, J., Li, J., Yuan, L. & Tanksley, S. Dominance is the major genetic-basis of heterosis in rice as revealed by QTL analysis using molecular markers.Genetics140, 745–754 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Li, Z., Pinson, S. R. M., Park, W. D., Patterson, A. H. & Stansel, J. W. Epistasis for three grain yield components in rice (Oryza sativa L.).Genetics145, 453–465 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  63. Li, Z. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.Genetics158, 1737–1753 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Luo, X. et al. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice.J. Integr. Plant Biol.51, 393–408 (2009).

    Article PubMed  Google Scholar 

  65. Kusterer, B. et al. Heterosis for biomass-related traits inArabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines.Genetics177, 1839–1850 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Kusterer, B. et al. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits inArabidopsis.Genetics175, 2009–2017 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  67. Melchinger, A. E. et al. Genetic basis of heterosis for growth-related traits inArabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis.Genetics177, 1827–1837 (2007).

    Article PubMed PubMed Central  Google Scholar 

  68. Semel, Y. et al. Overdominant quantitative trait loci for yield and fitness in tomato.Proc. Natl Acad. Sci. USA103, 12981–12986 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Nakazato, T., Bogonovich, M. & Moyle, L. C. Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes.Evolution62, 774–792 (2008).

    Article CAS PubMed  Google Scholar 

  70. Eshed, Y. & Zamir, D. An introgression line population ofLycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics141, 1147–1162 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Remington, D. & O'Malley, D. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family.Genetics155, 337–348 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Remington, D. & O'Malley, D. Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family ofPinus taeda.Evolution54, 1580–1589 (2000).

    Article CAS PubMed  Google Scholar 

  73. Huang, X. et al. High-throughput genotyping by whole-genome resequencing.Genome Res.19, 1068–1076 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Springer, N. & Stupar, R. Allelic variation and heterosis in maize: how do two halves make more than a whole?Genome Res.17, 264–275 (2007).

    Article CAS PubMed  Google Scholar 

  75. Song, X., Ni, Z., Yao, Y., Zhang, Y. & Sun, Q. Identification of differentially expressed proteins between hybrid and parents in wheat (Triticum aestivum L.) seedling leaves.Theor. Appl. Genet.118, 213–225 (2009).

    Article CAS PubMed  Google Scholar 

  76. Swanson-Wagner, R. A. et al. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents.Proc. Natl Acad. Sci. USA103, 6805–6810 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  77. Auger, D. et al. Nonadditive gene expression in diploid and triploid hybrids of maize.Genetics169, 389–397 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  78. Uzarowska, A. et al. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height.Plant Mol. Biol.63, 21–34 (2007).

    Article CAS PubMed  Google Scholar 

  79. Guo, M. et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis.Theor. Appl. Genet.113, 831–845 (2006).

    Article CAS PubMed  Google Scholar 

  80. Stupar, R. M. et al. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis.BMC Plant Biol.8, 33 (2008).

    Article PubMed PubMed Central CAS  Google Scholar 

  81. Lemos, B., Araripe, L. O., Fontanillas, P. & Hartl, D. L. Dominance and the evolutionary accumulation ofcis- andtrans-effects on gene expression.Proc. Natl Acad. Sci. USA105, 14471–14476 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  82. Zhao, X., Chai, Y. & Liu, B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids.Plant Sci.172, 930–938 (2007).

    Article CAS  Google Scholar 

  83. Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits.Nature Rev. Genet.10, 241–251 (2009).

    Article CAS PubMed  Google Scholar 

  84. Valdar, W., Flint, J. & Mott, R. Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice.Genetics172, 1783–1797 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice.Nature Genet.38, 879–887 (2006).

    Article CAS PubMed  Google Scholar 

  86. Macdonald, S. & Long, A. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations ofDrosophila melanogaster.Genetics176, 1261–1281 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  87. Gruber, J. D., Genissel, A., Macdonald, S. & Long, A. How repeatable are associations between polymorphisms inachaete–scute and bristle number variation inDrosophila?Genetics175, 1987–1997 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  88. Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions.PLoS Genet.2, e64 (2006).

    Article PubMed PubMed Central CAS  Google Scholar 

  89. Currat, M. et al. Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the βS Senegal mutation.Am. J. Hum. Genet.70, 207–223 (2002).

    Article CAS PubMed  Google Scholar 

  90. Hamblin, M. T. & Rienzo, A. D. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus.Am. J. Hum. Genet.66, 1669–1679 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  91. Helgason, A., Pálsson, S., GuÐbjartsson, D. F., Kristjánsson, þ . & Stefánsson, K. An association between the kinship and fertility of human couples.Science319, 813–816 (2008).

    Article CAS PubMed  Google Scholar 

  92. Bittles, A. H. & Neel, J. V. The costs of human inbreeding and their implications for variations at the DNA level.Nature Genet.8, 117–121 (1994).

    Article CAS PubMed  Google Scholar 

  93. Stoltenberg, C., Magnus, P., Skrondal, A. & Lie, R. Consanguinity and recurrence risk of stillbirth and infant death.Am. J. Public Health89, 517–523 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  94. Stoltenberg, C., Magnus, P., Skrondal, A. & Lie, R. Consanguinity and recurrence risk of birth defects: a population-based study.Am. J. Med. Genet.82, 423–428 (1999).

    Article CAS PubMed  Google Scholar 

  95. Rudan, I. et al. Inbreeding and risk of late onset complex disease.J. Med. Genet.40, 925–932 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  96. Weeks, S. C., Reed, S., Ott, D. & Scanabissi, F. Inbreeding effects on sperm production in clam shrimp (Eulimnadia texana).Evol. Ecol. Res.11, 125–134 (2009).

    Google Scholar 

  97. Hoare, K. & Hughes, R. N. Inbreeding and hermaphroditism in the sessile, brooding bryozoanCelleporella hyalina.Mar. Biol.139, 147–162 (2001).

    Article  Google Scholar 

  98. Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding depression in plants.Evolution50, 54–70 (1995).

    Article  Google Scholar 

  99. Escobar, J., Nicot, A. & David, P. The different sources of variation in inbreeding depression, heterosis and outbreeding depression in a metapopulation ofPhysa acuta.Genetics180, 1593–1608 (2008).

    Article PubMed PubMed Central  Google Scholar 

  100. Dolgin, E., Charlesworth, B., Baird, S. & Cutter, A. Inbreeding and outbreeding depression inCaenorhabditis nematodes.Evolution61, 1339–1352 (2007).

    Article PubMed  Google Scholar 

  101. Weller, S. G., Sakai, A. K., Thai, D. A., Tom, J. & Rankin, A. E. Inbreeding depression and heterosis in populations ofSchiedea viscosa, a highly selfing species.J. Evol. Biol.18, 1434–1444 (2005).

    Article CAS PubMed  Google Scholar 

  102. Richards, C. Inbreeding depression and genetic rescue in a plant metapopulationAm. Nat.155, 383–394 (2000).

    Article PubMed  Google Scholar 

  103. Crow, J. F. & Simmons, M. J. inThe Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 1–35 (Academic Press, London, 1983).

    Google Scholar 

  104. Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation.Ann. Rev. Ecol. Evol. Syst.39, 21–42 (2008).

    Article  Google Scholar 

  105. Dyer, K. A., Charlesworth, B. & Jaenike, J. Chromosome-wide linkage disequilibrium as a consequence of meiotic driveProc. Natl Acad. Sci. USA104, 1587–1592 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  106. Glemin, S., Bataillon, T., Ronfort, J., Mignot, A. & Olivieri, I. Inbreeding depression in small populations of self-incompatible plants.Genetics159, 1217–1229 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  107. Pankey, M. & Wares, J. Overdominant maintenance of diversity in the sea starPisaster ochraceus.J. Evol. Biol.22, 80–87 (2009).

    Article CAS PubMed  Google Scholar 

  108. Scoville, A., Lee, Y. W., Willis, J. H. & Kelly, J. K. The contribution of chromosomal polymorphisms to the G-matrix ofMimulus guttatus.New Phytol.183, 803–815 (2009).

    Article PubMed PubMed Central  Google Scholar 

  109. Fishman, L. & Saunders, A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers.Science322, 1559–1562 (2008).

    Article CAS PubMed  Google Scholar 

  110. Williams, W. Heterosis and the genetics of complex characters.Nature184, 527–530 (1959).

    Article CAS PubMed  Google Scholar 

  111. Schnell, F. & Cockerham, C. Multiplicative vs. arbitrary gene action in heterosis.Genetics131, 461–469 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  112. Bataillon, T. & Kirkpatrick, M. Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter.Genet. Res.75, 75–81 (2000).

    Article CAS PubMed  Google Scholar 

  113. Glémin, S., Ronfort, J. & Bataillon, T. Patterns of inbreeding depression and architecture of the load in subdivided populations.Genetics165, 2193–2212 (2003).By analysing a model of deleterious mutations in a biologically realistic model of population structure, the authors reveal heterosis in inter-population crosses and within-population inbreeding depression.

    Article PubMed PubMed Central  Google Scholar 

  114. Schierup, M. H., Vekemans, X. & Charlesworth, D. The effect of subdivision on variation at multi-allelic loci under balancing selection.Genet. Res.76, 51–62 (2000).

    Article CAS PubMed  Google Scholar 

  115. Coyne, J. A. & Orr, H. A.Speciation (Sinauer, Sunderland, 2004).

    Google Scholar 

  116. Song, L., Guo, W. & Zhang, T. Interaction of novel Dobzhansky–Muller type genes for the induction of hybrid lethality betweenGossypium hirsutum andG. barbadense cv. Coastland R4-4.Theor. Appl. Genet.119, 33–41 (2009).

    Article CAS PubMed  Google Scholar 

  117. Bomblies, K., Lempe, J., Dangl, J. & Weigel, D. Autoimmune response as a mechanism for a Dobzhansky–Muller-type incompatibility syndrome in plants.PLoS Biol.5, 1962–1972 (2007).

    Article CAS  Google Scholar 

  118. Seidel, H. S., Rockman, M. V. & Kruglyak, L. Widespread genetic incompatibility inC. elegans maintained by balancing selection.Science319, 589–594 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  119. Hurst, L. D. Genetics and the understanding of selection.Nature Rev. Genet.10, 83–93 (2009).

    Article CAS PubMed  Google Scholar 

  120. Yang, J., Gu, Z. & Li, W. Rate of protein evolution versus fitness effect of gene deletion.Mol. Biol. Evol.20, 772–774 (2003).

    Article PubMed CAS  Google Scholar 

  121. Kondrashov, A. S. & Crow, J. F. A molecular approach to estimating the human deleterious mutation-rate.Hum. Mutat.2, 229–234 (1993).

    Article CAS PubMed  Google Scholar 

  122. Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex.Science290, 331–333 (2000).

    Article CAS PubMed  Google Scholar 

  123. Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates inDrosophila.Nature445, 82–85 (2007).This paper provides direct evidence that the deleterious mutation rate is high inD. melanogaster.

    Article CAS PubMed  Google Scholar 

  124. Haddrill, P. R., Charlesworth, B., Halligan, D. L. & Andolfatto, P. Patterns of intron sequence evolution inDrosophila are dependent upon length and GC content.Genome Biol.6, R67 (2005).

    Article PubMed PubMed Central CAS  Google Scholar 

  125. Katzman, S. et al. Human genome ultraconserved elements are ultraselected.Science317, 915 (2007).

    Article CAS PubMed  Google Scholar 

  126. Parmley, J. L., Chamary, J. V. & Hurst, L. D. Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers.Mol. Biol. Evol.23, 301–309 (2006).

    Article CAS PubMed  Google Scholar 

  127. Keightley, P. D., Kryukov, G. V., Sunyaev, S., Halligan, D. L. & Gaffney, D. J. Evolutionary constraints in conserved nongenic sequences of mammals.Genome Res.15, 1373–1378 (2006).

    Article CAS  Google Scholar 

  128. Asthana, S. et al. Widely distributed noncoding purifying selection in the human genome.Proc. Natl Acad. Sci. USA104, 12410–12415 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  129. Wright, S. & Andolfatto, P. The impact of natural selection on the genome: emerging patterns inDrosophila andArabidopsis.Annu. Rev. Ecol. Evol. Syst.39, 193–213 (2008).

    Article  Google Scholar 

  130. Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans.Genetics173, 891–900 (2006).The authors make sophisticated use of population genetics theory to estimate the distribution (rather than the average value) of selection coefficients of deleterious mutations.

    Article CAS PubMed PubMed Central  Google Scholar 

  131. Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome.PLoS Genet.4, e1000083 (2008).

    Article PubMed PubMed Central CAS  Google Scholar 

  132. Keightley, P. & Halligan, D. Analysis and implications of mutational variation.Genetica136, 359–369 (2009).

    Article PubMed  Google Scholar 

  133. Loewe, L., Charlesworth, B., Bartolomé, C. & Nöel, V. Estimating selection on nonsynonymous mutations.Genetics172, 1079–1092 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  134. Loewe, L. & Charlesworth, B. Inferring the distribution of mutational effects on fitness inDrosophila.Biol. Lett.2, 426–430 (2006).

    Article PubMed PubMed Central  Google Scholar 

  135. Keightley, P. & Eyre-Walker, A. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies.Genetics177, 2251–2261 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  136. Bubb, K. L. et al. Scan of human genome reveals no new loci under ancient balancing selection.Genetics173, 2165–2177 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  137. Asthana, S., Schmidt, S. & Sunyaev, S. A limited role for balancing selection.Trends Genet.21, 30–32 (2005).References 136 and 137 give evidence that overdominance is not common.

    Article CAS PubMed  Google Scholar 

  138. Fumagalli, M. et al. Widespread balancing selection and pathogen-driven selection at blood group antigen genes.Genome Res.19, 199–212 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  139. Calafell, F. et al. Evolutionary dynamics of the humanABO gene.Hum. Genet.124, 123–135 (2008).

    Article PubMed  Google Scholar 

  140. Moss, D., Arce, S., Otoshi, C. & Moss, S. Inbreeding effects on hatchery and growout performance of Pacific white shrimp,Penaeus (Litopenaeus)vannamei.J. World Aquacult. Soc.39, 467–476 (2008).

    Article  Google Scholar 

  141. Richards, C. M., Church, S. & McCauley, D. E. The influence of population size and isolation on gene flow by pollen inSilene alba.Evolution53, 63–73 (1999).

    Article PubMed  Google Scholar 

  142. Mori, K., Saito, Y., Sakagami, T. & Sahara, K. Inbreeding depression of female fecundity by genetic factors retained in natural populations of a male-haploid social mite (Acari: Tetranychidae).Exp. Appl. Acarol.39, 15–23 (2005).

    Article  Google Scholar 

  143. Schneller, J. J. & Holderegger, R. Vigor and survival of inbred and outbred progeny ofAthyrium filix-femina.Int. J. Plant Sci.158, 79–82 (1997).

    Article  Google Scholar 

  144. Klekowski, E. J. Genetic load inOsmunda regalis populations.Am. J. Bot.60, 146–154 (1973).The studies reported in references 143 and 144 show evidence for recessive large-effect deleterious mutations in natural populations of ferns, a type of organism that should be more widely used in such studies.

    Article  Google Scholar 

  145. Keller, L. F. Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia).Evolution52, 240–250 (1998).

    PubMed  Google Scholar 

  146. Ritland, K. Inferences about inbreeding depression based upon changes of the inbreeding coefficient.Evolution44, 1230–1241 (1990).

    Article PubMed  Google Scholar 

  147. Liautard, C. & Sundstrom, L. Estimation of individual level of inbreeding using relatedness measures in haplodiploids.Insectes Soc.52, 323–326 (2005).

    Article  Google Scholar 

  148. Camara, M., Evans, S. & Langdon, C. Parental relatedness and survival of Pacific oysters from a naturalized population.J. Shellfish Res.27, 323–336 (2008).

    Article  Google Scholar 

  149. Herlihy, C. R. & Eckert, C. G. Genetic cost of reproductive assurance in a self-fertilizing plant.Nature416, 320–323 (2002).

    Article CAS PubMed  Google Scholar 

  150. Bierne, N., S. Launey, Y. Naciri-Graven & Bonhomme, F. Early effect of inbreeding as revealed by microsatellite analyses onOstrea edulis larvae.Genetics148, 1893–1906 (2000).

    Article  Google Scholar 

  151. Launey, S. & Hedgecock, D. High genetic load in the pacific oysterCrassostrea gigas.Genetics159, 255–265 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  152. Fu, Y.-B. & Ritland, K. Evidence for the partial dominance of viability genes inMimulus guttatus.Genetics136, 323–331 (1993).

    Article  Google Scholar 

  153. Fu, Y.-B. & Ritland, K. On estimating the linkage of marker genes to viability genes controlling inbreeding depression.Theor. Appl. Genet.88, 925–932 (1994).

    Article CAS PubMed  Google Scholar 

  154. Haag, C. & Ebert, D. D. Genotypic selection inDaphnia populations consisting of inbred sibships.J. Evol. Biol.20, 881–891 (2007).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grant GM073990 to J.H.W. We thank B. Charlesworth for discussions.

Author information

Authors and Affiliations

  1. Institute for Evolutionary Biology, Ashworth Laboratories, King's Buildings, University of Edinburgh, West Mains Road, EH9 3JT, Edinburgh, UK

    Deborah Charlesworth

  2. Department of Biology, Box 90338, 3314 French Family Science Center, Science Drive, Duke University, Durham, 27708, North Carolina, USA

    John H. Willis

Authors
  1. Deborah Charlesworth

    You can also search for this author inPubMed Google Scholar

  2. John H. Willis

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDeborah Charlesworth.

Glossary

Fitness-related characters

Survival, growth rate and fertility.

Inbreeding coefficient

The probability that two alleles in an individual were both descended from a single allele in an ancestor (that is, that they are 'identical by descent').

Mutation–selection balance

The balance between mutations that introduce deleterious alleles into the population and the removal of such alleles by natural selection. The result is that such mutations are present at low frequencies but, despite selection, are never entirely absent.

Balancing selection

Selection — such as heterozygote advantage and frequency-dependent selection — that maintains genetic variants in a population.

Purging

Reducing the frequencies of deleterious mutations in inbred populations, thereby lowering the mutational load (the presence of deleterious mutations in populations).

Balancer stock

A strain of fly that contains a chromosome with genetic markers and with an inversion to prevent recombination with other arrangements. Such chromosomes are used to breed stocks with 'extracted' wild-type chromosomes for estimates of homozygous and heterozygous effects.

Hermaphrodite

An individual with both male and female reproductive functions (including monoecious plants, which have separate male and female flowers).

Darwinian fitness

Survival from zygote to maturity (viability) and reproductive performance (fertility); often measured as the product of viability and fertility measures.

Inversion

Rearrangement in which part of a chromosome is inverted in order with respect to a homologous chromosome in the same species or in a different species.

Meiotic drive regions

Regions containing genes that have non-Mendelian segregation in heterozygotes because one allelic version of the region is rendered non-functional during meiosis.

Complementation

Restoration of function in heterozygotes for two genes with recessive loss-of-function mutations (unless both mutations are in the trans configuration in the same gene, so that neither allele is functional).

Haplodiploidy

The system in Hymenoptera (bees, wasps and their relatives) in which fertilized eggs develop into females and unfertilized eggs develop into (haploid) males.

Large-effect mutations

In the context of this Review, mutations that cause major phenotypic abnormality, disease, lethality or sterility.

Outbreeding depression

Reduced fitness of F1 or F2 individuals after a cross between two species or strains.

Genetic variance

The variance of trait values that can be ascribed to genetic differences among individuals. The total genetic variance in a trait can be dissected into additive, dominance and other components; in populations, these components depend on the frequencies of the alleles at loci affecting the trait.

Additive variance

The component of genetic variance that is due to the additive effects of alleles. It is the primary contributor to resemblances between parents and offspring and to evolutionary responses to selection.

Dominance variance

The component of genetic variance that arises from deviations of heterozygotes from the mean of the two homozygotes (this will be large for loci with overdominant alleles).

Quantitative trait locus mapping

The use of genetic mapping to locate genome regions that contain a gene or genes that affect character values.

Mutation accumulation lines

Lines developed by multiple generations of breeding in such a way as to minimize the action of natural selection (for example, by using the same number of progeny from each breeding individual in each generation).

Repulsion

The situation in a diploid organism when an allele of interest at one locus (for example, a mutant allele) came from a gamete contributed by one parent, and an allele at another locus came from the other parent (for example, the genotype +−/−+, in which – denotes mutant alleles and+ denotes wild-type alleles).

Recombinant inbred lines

A population of fully homozygous individuals obtained through the repeated selfing of an F1 hybrid.

Epistatic

The dependency of the effects of alleles at one locus on the genotypes at other loci in the genome.

Introgression

Crossing strains or species in such a way as to introduce some of the genome of one of the parents into that of the other, often by repeated backcrossing and selecting for certain genetic markers or phenotypic characters.

Selection coefficient

The strength of selection, measured as the difference in fitness from genotypes of interest (for instance, a homozygote for a lethal allele has a selection coefficient of 1 if the fitness of the wild-type homozygote is denoted by 1).

Synonymous changes

Mutations or substitutions in a coding sequence are synonymous if they do not change the amino acid sequence of the protein encoded (non-synonymous changes are ones that do change the amino acid sequence).

Rights and permissions

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp